Abstract

The directly modulated laser (DML) is one of the most cost-effective transmitter options in optical communication systems, but it introduces an additional impairment caused by the interaction between frequency chirp and chromatic dispersion for C-band transmission. In this paper, we propose a low-complexity intensity directed equalizer based on feedforward equalizer and decision feedback equalizer (FFE/DFE) to mitigate the chirp induced distortions, and remarkably improve the transmission performance of PAM signals generated by DML. The equalizer is based on the fact that the directly modulated PAM symbols with different intensity levels have different chirp frequencies, which will lead to different inter-symbol interference (ISI) contributions to their adjacent symbols due to the velocity difference caused by chromatic dispersion. To address this phenomenon, the proposed equalizer employs multiple sets of tap coefficients according to the intensity levels of PAM signals. With this equalizer and a commercial 16.8GHz DML, we demonstrate a 56Gb/s PAM4 transmission over a record 43km SSMF in the C-band without optical dispersion compensation under the 3.8 × 10−3 HD-FEC BER threshold.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
C-band 56-Gb/s PAM4 transmission over 80-km SSMF with electrical equalization at receiver

Xizi Tang, Shuangyue Liu, Zhongliang Sun, Han Cui, Xuekai Xu, Jia Qi, Mengqi Guo, Yueming Lu, and Yaojun Qiao
Opt. Express 27(18) 25708-25717 (2019)

100 Gbit/s VSB-PAM-n IM/DD transmission system based on 10 GHz DML with optical filtering and joint nonlinear equalization

Jiao Zhang, Jianjun Yu, Xinying Li, Yiran Wei, Kaihui Wang, Li Zhao, Wen Zhou, Miao Kong, Xiaolong Pan, Bo Liu, and Xiangjun Xin
Opt. Express 27(5) 6098-6105 (2019)

Performance comparison of DML, EML and MZM in dispersion-unmanaged short reach transmissions with digital signal processing

Kuo Zhang, Qunbi Zhuge, Haiyun Xin, Weisheng Hu, and David V. Plant
Opt. Express 26(26) 34288-34304 (2018)

References

  • View by:
  • |
  • |
  • |

  1. IEEE P802.3bs 400 Gb/s Ethernet Task Force, accessed on Dec. 19, 2016. [Online]. Available: http://www.ieee802.org/3/bs/
  2. Z. Li, I. Shubin, and X. Zhou, “Optical interconnects: recent advances and future challenges,” Opt. Express 23(3), 3717–3720 (2015).
    [PubMed]
  3. X. Liu and F. Effenberger, “Emerging optical access network technologies for 5G wireless,” J. Opt. Commun. Netw. 8(12), B70–B79 (2016).
  4. H. Xin, K. Zhang, H. He, W. Hu, and M. Zhang, “Fidelity enhancement in high-data-rate digital mobile fronthaul with sample bits interleaving and unequally-spaced PAM4,” Opt. Express 25(5), 5559–5570 (2017).
    [PubMed]
  5. D. V. Plant, M. Morsy-Osman, and M. Chagnon, “Optical communication systems for datacenter networks.” in Optical Fiber Communications Conference (OFC) (2017), paper W3B.1.
  6. Y. Gao, J. C. Cartledge, S. S.-H. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.C.2.
  7. Y. Matsui, “28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB lasers,” J. Lightwave Technol. 34(11), 2687 (2016).
  8. T. Takahara, T. Tanaka, M. Nishihara, L. Li, Z. Tao, and J. C. Rasmussen, “100-Gb/s (2 x 50-Gb/s) transmission over 80-km using 10-Gb/s class DML,” in Opto-Electron. Commun. Conf. (OECC) (2012), paper 5A2–2.
  9. Z. Li, L. Yi, X. Wang, and W. Hu, “28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON,” Opt. Express 23(16), 20249–20256 (2015).
    [PubMed]
  10. S. Bae, H. Kim, and Y. Chung, “Transmission of 51.56-Gb/s OOK signal over 15 km of SSMF using directly modulated 1.55-μm DFB laser,” in Optical Fiber Communication Conference (2016), paper Tu2J.5.
  11. N. Eiselt, H. Griesser, J. Wei, A. Dochhan, R. Hohenleitner, M. Ortsiefer, M. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental demonstration of 56 Gbit/s PAM-4 over 15 km and 84 Gbit/s PAM-4 over 1 km SSMF at 1525 nm using a 25G VCSEL,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper Th.1.C.1.
  12. M. Kim, S. Bae, H. Kim, and Y. C. Chung, “Transmission of 56-Gb/s PAM-4 signal over 20 km of SSMF using a 1.55-μm directly-modulated laser,” in Optical Fiber Communication Conference (OFC) (2017), paper Tu2D.6.
  13. C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communications Conference (OFC) (2015), paper Th4A.5.
  14. F. Karinou, N. Stojanovic, and C. Prodaniuc, “56 Gb/s 20-km transmission of PAM-4 signal employing an EML in C-band without in-line chromatic dispersion compensation,” In Proceedings of European Conference on Optical Communication (ECOC) (2016), paper W.4.P1.SC5.50.
  15. F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).
  16. J. Zhang, T. Ye, X. Yi, C. Yu, and K. Qiu, “An efficient hybrid equalizer for 50 Gb/s PAM-4 signal transmission over 50 km SSMF in a 10-GHz DML-based IM/DD system,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper SF1L.1.
  17. J. G. Proakis and D. K. Manolakis, Digital Signal Processing, 4th ed., Pearson, 2006.
  18. K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity-directed equalizer for chirp compensation enabling DML-based 56Gb/s PAM4 C-band delivery over 35.9km SSMF,” in Proceedings of European Conference on Optical Communication (ECOC) (2017), paper M.2.F.1.
  19. D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1126–1139 (2010).
  20. J. Yu, Z. Jia, M.-F. Huang, M. Haris, P. N. Ji, T. Wang, and G.-K. Chang, “Applications of 40-Gb/s chirp-managed laser in access and metro networks,” J. Lightwave Technol. 27(3), 253–265 (2009).
  21. K. Sato, S. Kuwahara, and Y. Miyamoto, “Chirp characteristics of 40-Gb/s directly modulated distributedfeedback laser diodes,” J. Lightwave Technol. 23(11), 3790–3797 (2005).
  22. N. Kikuchi, R. Hirai, and T. Fukui, “Non-linearity compensation of highspeed PAM4 signals from directly-modulated laser at high extinction ratio,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.B.4.
  23. N. Stojanovic, Q. Zhang, C. Prodaniuc, and F. Karinou, “Eye deskewing algorithms for PAM modulation formats in IM-DD transmission systems,” in Optical Fiber Communications Conference (OFC) (2017), paper Tu2D.4.
  24. J. M. Castro, R. J. Pimpinella, B. Kose, Y. Huang, A. Novick, and B. Lane, “Eye skew modeling, measurements and mitigation methods for VCSEL PAM-4 channels at data rates over 66 Gb/s,” in Optical Fiber Communications Conference (OFC) (2017), paper W3G.3.
  25. C. C. Wei, “Analysis and iterative equalization of transient and adiabatic chirp effects in DML-based OFDM transmission systems,” Opt. Express 20(23), 25774–25789 (2012).
    [PubMed]
  26. N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener equalizers for short-reach 100G PAM-4 Applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).

2017 (3)

2016 (2)

Y. Matsui, “28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB lasers,” J. Lightwave Technol. 34(11), 2687 (2016).

X. Liu and F. Effenberger, “Emerging optical access network technologies for 5G wireless,” J. Opt. Commun. Netw. 8(12), B70–B79 (2016).

2015 (2)

2012 (1)

2010 (1)

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1126–1139 (2010).

2009 (1)

2005 (1)

Chang, G.-K.

Effenberger, F.

Haris, M.

He, H.

Hu, W.

Huang, M.-F.

Ji, P. N.

Jia, Z.

Karinou, F.

F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).

N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener equalizers for short-reach 100G PAM-4 Applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).

Kuwahara, S.

Li, Z.

Liu, X.

Mahgerefteh, D.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1126–1139 (2010).

Matsui, Y.

Y. Matsui, “28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB lasers,” J. Lightwave Technol. 34(11), 2687 (2016).

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1126–1139 (2010).

McCallion, K.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1126–1139 (2010).

Miyamoto, Y.

Prodaniuc, C.

F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).

N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener equalizers for short-reach 100G PAM-4 Applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).

Qiang, Z.

Sato, K.

Shubin, I.

Stojanovic, N.

N. Stojanovic, F. Karinou, Z. Qiang, and C. Prodaniuc, “Volterra and Wiener equalizers for short-reach 100G PAM-4 Applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).

F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).

Wang, T.

Wang, X.

Wei, C. C.

Xin, H.

Yi, L.

Yu, J.

Zhang, K.

Zhang, M.

Zhang, Q.

F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).

Zheng, X.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1126–1139 (2010).

Zhou, X.

IEEE J. Sel. Top. Quantum Electron. (1)

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1126–1139 (2010).

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Express (4)

Photonics (1)

F. Karinou, N. Stojanovic, C. Prodaniuc, and Q. Zhang, “Experimental demonstration of an electro-absorption modulated laser for high-speed transmissions at 1.55-μm window using digital signal processing,” Photonics 4(1), 9 (2017).

Other (15)

J. Zhang, T. Ye, X. Yi, C. Yu, and K. Qiu, “An efficient hybrid equalizer for 50 Gb/s PAM-4 signal transmission over 50 km SSMF in a 10-GHz DML-based IM/DD system,” in Conference on Lasers and Electro-Optics (CLEO) (2017), paper SF1L.1.

J. G. Proakis and D. K. Manolakis, Digital Signal Processing, 4th ed., Pearson, 2006.

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity-directed equalizer for chirp compensation enabling DML-based 56Gb/s PAM4 C-band delivery over 35.9km SSMF,” in Proceedings of European Conference on Optical Communication (ECOC) (2017), paper M.2.F.1.

T. Takahara, T. Tanaka, M. Nishihara, L. Li, Z. Tao, and J. C. Rasmussen, “100-Gb/s (2 x 50-Gb/s) transmission over 80-km using 10-Gb/s class DML,” in Opto-Electron. Commun. Conf. (OECC) (2012), paper 5A2–2.

S. Bae, H. Kim, and Y. Chung, “Transmission of 51.56-Gb/s OOK signal over 15 km of SSMF using directly modulated 1.55-μm DFB laser,” in Optical Fiber Communication Conference (2016), paper Tu2J.5.

N. Eiselt, H. Griesser, J. Wei, A. Dochhan, R. Hohenleitner, M. Ortsiefer, M. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental demonstration of 56 Gbit/s PAM-4 over 15 km and 84 Gbit/s PAM-4 over 1 km SSMF at 1525 nm using a 25G VCSEL,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper Th.1.C.1.

M. Kim, S. Bae, H. Kim, and Y. C. Chung, “Transmission of 56-Gb/s PAM-4 signal over 20 km of SSMF using a 1.55-μm directly-modulated laser,” in Optical Fiber Communication Conference (OFC) (2017), paper Tu2D.6.

C. Chen, X. Tang, and Z. Zhang, “Transmission of 56-Gb/s PAM-4 over 26-km single mode fiber using maximum likelihood sequence estimation,” in Optical Fiber Communications Conference (OFC) (2015), paper Th4A.5.

F. Karinou, N. Stojanovic, and C. Prodaniuc, “56 Gb/s 20-km transmission of PAM-4 signal employing an EML in C-band without in-line chromatic dispersion compensation,” In Proceedings of European Conference on Optical Communication (ECOC) (2016), paper W.4.P1.SC5.50.

N. Kikuchi, R. Hirai, and T. Fukui, “Non-linearity compensation of highspeed PAM4 signals from directly-modulated laser at high extinction ratio,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.B.4.

N. Stojanovic, Q. Zhang, C. Prodaniuc, and F. Karinou, “Eye deskewing algorithms for PAM modulation formats in IM-DD transmission systems,” in Optical Fiber Communications Conference (OFC) (2017), paper Tu2D.4.

J. M. Castro, R. J. Pimpinella, B. Kose, Y. Huang, A. Novick, and B. Lane, “Eye skew modeling, measurements and mitigation methods for VCSEL PAM-4 channels at data rates over 66 Gb/s,” in Optical Fiber Communications Conference (OFC) (2017), paper W3G.3.

IEEE P802.3bs 400 Gb/s Ethernet Task Force, accessed on Dec. 19, 2016. [Online]. Available: http://www.ieee802.org/3/bs/

D. V. Plant, M. Morsy-Osman, and M. Chagnon, “Optical communication systems for datacenter networks.” in Optical Fiber Communications Conference (OFC) (2017), paper W3B.1.

Y. Gao, J. C. Cartledge, S. S.-H. Yam, A. Rezania, and Y. Matsui, “112 Gb/s PAM-4 using a directly modulated laser with linear pre-compensation and nonlinear post-compensation,” in Proceedings of European Conference on Optical Communication (ECOC) (2016), paper M.2.C.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Illustration of the interaction between adiabatic chirp and chromatic dispersion.
Fig. 2
Fig. 2 The detailed structure of (a) conventional (P-1)-tap FFE and Q-tap DFE, (b) (P-1)-tap ID-FFE and Q-tap ID-DFE
Fig. 3
Fig. 3 The block diagram of the pre-FFE + ID-FFE/ID-DFE.
Fig. 4
Fig. 4 Experimental setup. FPGA: field-programmable gate array; DAC: digital to analog converter; VOA: variable optical attenuator; RTO: real-time oscilloscope. Eye diagrams after fiber transmission are also shown.
Fig. 5
Fig. 5 BER performance with different distances. The inset scatter diagrams are measured with 5dBm received optical power.
Fig. 6
Fig. 6 BER performance with difference tap numbers of ID-FFE and ID-DFE when received power is 5dBm and transmission distance is 35.9km.
Fig. 7
Fig. 7 Comparison of the required tap number of FFE and ID-FFE.
Fig. 8
Fig. 8 The BER performance of ID-FFE/ID-DFE w/ and w/o pre-FFE.
Fig. 9
Fig. 9 Frequency responses of the 43, 35.9 and 30km transmission cases
Fig. 10
Fig. 10 BER performance versus the tap number of the pre-FFE.
Fig. 11
Fig. 11 BER performances of the 2nd order memory length of Volterra filter. The BER of the ID-FFE/ID-DFE and the pre-FFE + ID-FFE/ID-DFE are also depicted as references.

Tables (3)

Tables Icon

Table 1 Eye Skew Suppression and ISI Mitigation with Different Distances

Tables Icon

Table 2 Eye Skew Suppression and ISI Mitigation with Different Chirp

Tables Icon

Table 3 Eye Diagrams of ID-FFE and pre-FFE + ID-FFE with 35.9km and 43km Distances

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ f = α 4 π κ P ( t )
y I D F F E ( m ) = i = 0 P w i x ( n i )
w i = { w i , 0 , i f x ( n i ) T h 1 w i , 1 , i f T h 1 < x ( n i ) T h 2 w i , 2 , i f T h 2 < x ( n i ) T h 3 w i , 3 , i f x ( n i ) > T h 3
y I D D F E ( m ) = y I D F F E ( m ) + i = 1 Q v i y ( m i )
v i = { v i , 0 , i f y ( m i ) = L v 0 v i , 1 , i f y ( m i ) = L v 1 v i , 2 , i f y ( m i ) = L v 2 v i , 3 , i f y ( m i ) = L v 3

Metrics