Abstract

An automatic real-time focus inspection system based on a combination of dynamic focusing and real-time focus detection is introduced for use in high-precision laser processing. The system allows for accurately and rapidly positioning the laser focus on the target surface, wherever it is located along the optical axis. The proposed method is superior to conventional methods because it not only offers accurate, versatile, and high-speed autofocusing, but also combines well with the fabrication laser to perform laser processing when the laser focus is located on the sample. In this system, the laser focus is flexibly and automatically shifted along the optical axis by a dynamic focusing device to rapidly meet the working surface, ensuring high quality and complexity of fabricated patterns. Thus, the laser focus is not restricted to the focal point of the objective lens of infinity corrected microscopes reported previously. Furthermore, the focal spot analytically maintains its size with a size deviation less than 0.1% while the focus is slightly shifted along the optical axis, guaranteeing the size and quality of fabricated patterns. The proposed method is expected to lead to a high-precision laser fabrication system that can be widely applied in both science and the industry.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time

Pietro Ferraro, Giuseppe Coppola, Sergio De Nicola, Andrea Finizio, and Giovanni Pierattini
Opt. Lett. 28(14) 1257-1259 (2003)

Focus control system for laser welding

Francis M. Haran, Duncan P. Hand, Chris Peters, and Julian D. C. Jones
Appl. Opt. 36(21) 5246-5251 (1997)

Dynamic axial control over optically levitating particles in air with an electrically-tunable variable-focus lens

Wenguo Zhu, Niko Eckerskorn, Avinash Upadhya, Li Li, Andrei V. Rode, and Woei Ming Lee
Biomed. Opt. Express 7(7) 2902-2911 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. B. J. Cadot, D. A. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tools Manuf. 107, 8–20 (2016).
  2. Z. Hao, J. Wang, P. Yao, and C. Huang, “Heat transfer and material ablation in hybrid laser-waterjet microgrooving of single crystalline germanium,” Int. J. Mach. Tools Manuf. 116, 25–39 (2017).
  3. C. Chen, M. Gao, and X. Zeng, “Relationship between temperature at cut front edge and kerf quality in fiber laser cutting of Al–Cu aluminum alloy,” Int. J. Mach. Tools Manuf. 109, 58–64 (2016).
  4. Y. Ito, T. Kizaki, R. Shinomoto, M. Ueki, N. Sugita, and M. Mitsuishi, “High-efficiency and precision cutting of glass by selective laser-assisted milling,” Precis. Eng. 47, 498–507 (2017).
  5. S. Mullick, Y. K. Madhukar, S. Roy, and A. K. Nath, “An investigation of energy loss mechanisms in water-jet assisted underwater laser cutting process using an analytical model,” Int. J. Mach. Tools Manuf. 91, 62–75 (2015).
  6. I. Karnadi, J. Son, J.-Y. Kim, H. Jang, S. Lee, K. S. Kim, B. Min, and Y.-H. Lee, “A printed nanobeam laser on a SiO2/Si substrate for low-threshold continuous-wave operation,” Opt. Express 22(10), 12115–12121 (2014).
    [PubMed]
  7. T. Ishigure, K. Shitanda, and Y. Oizmi, “Index-profile design for low-loss crossed multimode waveguide for optical printed circuit board,” Opt. Express 23(17), 22262–22273 (2015).
    [PubMed]
  8. S. Feng, C. Qin, K. Shang, S. Pathak, W. Lai, B. Guan, M. Clements, T. Su, G. Liu, H. Lu, R. P. Scott, and S. J. Ben Yoo, “Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits,” Opt. Express 25(8), 8872–8885 (2017).
    [PubMed]
  9. J. Houzet, N. Faure, M. Larochette, A.-C. Brulez, S. Benayoun, and C. Mauclair, “Ultrafast laser spatial beam shaping based on Zernike polynomials for surface processing,” Opt. Express 24(6), 6542–6552 (2016).
    [PubMed]
  10. K.-C. Fan, C.-L. Chu, and J.-I. Mou, “Development of a low-cost focusing probe for profile measurement,” Meas. Sci. Technol. 12, 2137–2146 (2001).
  11. H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
    [PubMed]
  12. J. Luo, Y. Liang, and G. Yang, “Realization of autofocusing system for laser direct writing on non-planar surfaces,” Rev. Sci. Instrum. 83(5), 053102 (2012).
    [PubMed]
  13. B. X. Cao, P. Le Hoang, S. Ahn, J. O. Kim, and J. Noh, “High-precision detection of focal position on a curved surface for laser processing,” Precis. Eng. 50, 204–210 (2017).
  14. B. J. Jung, H. J. Kong, B. G. Jeon, D. Y. Yang, Y. Son, and K. S. Lee, “Autofocusing method using fluorescence detection for precise two-photon nanofabrication,” Opt. Express 19(23), 22659–22668 (2011).
    [PubMed]
  15. M. Antti, H. Ville, and V. Jorma, “Precise online auto-focus system in high speed laser micromachining applications,” Phys. Procedia 39, 807–813 (2012).
  16. O. Armbruster, A. Naghilou, H. Pöhl, and W. Kautek, “In-situ and non-destructive focus determination device for high precision laser applications,” J. Opt. 18, 095401 (2016).
  17. B. X. Cao, M. Bae, H. Sohn, J. Choi, Y. Kim, J.-O. Kim, and J. Noh, “Design and performance of a focus-detection system for use in laser micromachining,” Micromachines (Basel) 7(1), 2 (2016).
  18. B. X. Cao, P. Hoang, S. Ahn, J.-O. Kim, H. Sohn, and J. Noh, “Real-time detection of focal position of workpiece surface during laser processing using diffractive beam samplers,” Opt. Lasers Eng. 86, 92–97 (2016).
  19. D. Wang, X. Ding, T. Zhang, and H. Kuang, “A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications,” Opt. Laser Technol. 45, 190–197 (2012).
  20. I. A. Martínez and D. Petrov, “Back-focal-plane position detection with extended linear range for photonic force microscopy,” Appl. Opt. 51(25), 5973–5977 (2012).
    [PubMed]
  21. P. Annibale, A. Dvornikov, and E. Gratton, “Optical measurement of focal offset in tunable lenses,” Opt. Express 24(2), 1031–1036 (2016).
    [PubMed]
  22. I. Alexeev, J. Strauss, A. Gröschl, K. Cvecek, and M. Schmidt, “Laser focus positioning method with submicrometer accuracy,” Appl. Opt. 52(3), 415–421 (2013).
    [PubMed]
  23. W.-Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20, 045902 (2009).
  24. C.-S. Liu, P.-H. Hu, and Y.-C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109, 259 (2012).
  25. C.-S. Liu, Y.-C. Lin, and P.-H. Hu, “Design and characterization of precise laser-based autofocusing microscope with reduced geometrical fluctuations,” Microsyst. Technol. 19, 1717–1724 (2013).
  26. C.-S. Liu and S.-H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B 117, 1161 (2014).
  27. C.-S. Liu, Z.-Y. Wang, and Y.-C. Chang, “Design and characterization of high-performance autofocusing microscope with zoom in/out functions,” Appl. Phys. B 121, 69 (2015).
  28. C.-S. Liu and S.-H. Jiang, “Precise autofocusing microscope with rapid response,” Opt. Lasers Eng. 66, 294–300 (2015).
  29. A. Weiss, A. Obotnine, and A. Lasinski, “Method and apparatus for the auto-focusing infinity corrected microscopes,” U.S. Patent 7700903 B2 (2010).
  30. B. X. Cao, P. L. Hoang, S. Ahn, J.-O. Kim, H. Kang, and J. Noh, “In-situ real-time focus detection during laser processing using double-hole masks and advanced image sensor software,” Sensors (Basel) 17(7), 1540 (2017).
    [PubMed]

2017 (5)

Z. Hao, J. Wang, P. Yao, and C. Huang, “Heat transfer and material ablation in hybrid laser-waterjet microgrooving of single crystalline germanium,” Int. J. Mach. Tools Manuf. 116, 25–39 (2017).

Y. Ito, T. Kizaki, R. Shinomoto, M. Ueki, N. Sugita, and M. Mitsuishi, “High-efficiency and precision cutting of glass by selective laser-assisted milling,” Precis. Eng. 47, 498–507 (2017).

S. Feng, C. Qin, K. Shang, S. Pathak, W. Lai, B. Guan, M. Clements, T. Su, G. Liu, H. Lu, R. P. Scott, and S. J. Ben Yoo, “Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits,” Opt. Express 25(8), 8872–8885 (2017).
[PubMed]

B. X. Cao, P. Le Hoang, S. Ahn, J. O. Kim, and J. Noh, “High-precision detection of focal position on a curved surface for laser processing,” Precis. Eng. 50, 204–210 (2017).

B. X. Cao, P. L. Hoang, S. Ahn, J.-O. Kim, H. Kang, and J. Noh, “In-situ real-time focus detection during laser processing using double-hole masks and advanced image sensor software,” Sensors (Basel) 17(7), 1540 (2017).
[PubMed]

2016 (7)

P. Annibale, A. Dvornikov, and E. Gratton, “Optical measurement of focal offset in tunable lenses,” Opt. Express 24(2), 1031–1036 (2016).
[PubMed]

O. Armbruster, A. Naghilou, H. Pöhl, and W. Kautek, “In-situ and non-destructive focus determination device for high precision laser applications,” J. Opt. 18, 095401 (2016).

B. X. Cao, M. Bae, H. Sohn, J. Choi, Y. Kim, J.-O. Kim, and J. Noh, “Design and performance of a focus-detection system for use in laser micromachining,” Micromachines (Basel) 7(1), 2 (2016).

B. X. Cao, P. Hoang, S. Ahn, J.-O. Kim, H. Sohn, and J. Noh, “Real-time detection of focal position of workpiece surface during laser processing using diffractive beam samplers,” Opt. Lasers Eng. 86, 92–97 (2016).

J. Houzet, N. Faure, M. Larochette, A.-C. Brulez, S. Benayoun, and C. Mauclair, “Ultrafast laser spatial beam shaping based on Zernike polynomials for surface processing,” Opt. Express 24(6), 6542–6552 (2016).
[PubMed]

G. B. J. Cadot, D. A. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tools Manuf. 107, 8–20 (2016).

C. Chen, M. Gao, and X. Zeng, “Relationship between temperature at cut front edge and kerf quality in fiber laser cutting of Al–Cu aluminum alloy,” Int. J. Mach. Tools Manuf. 109, 58–64 (2016).

2015 (4)

S. Mullick, Y. K. Madhukar, S. Roy, and A. K. Nath, “An investigation of energy loss mechanisms in water-jet assisted underwater laser cutting process using an analytical model,” Int. J. Mach. Tools Manuf. 91, 62–75 (2015).

T. Ishigure, K. Shitanda, and Y. Oizmi, “Index-profile design for low-loss crossed multimode waveguide for optical printed circuit board,” Opt. Express 23(17), 22262–22273 (2015).
[PubMed]

C.-S. Liu, Z.-Y. Wang, and Y.-C. Chang, “Design and characterization of high-performance autofocusing microscope with zoom in/out functions,” Appl. Phys. B 121, 69 (2015).

C.-S. Liu and S.-H. Jiang, “Precise autofocusing microscope with rapid response,” Opt. Lasers Eng. 66, 294–300 (2015).

2014 (2)

C.-S. Liu and S.-H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B 117, 1161 (2014).

I. Karnadi, J. Son, J.-Y. Kim, H. Jang, S. Lee, K. S. Kim, B. Min, and Y.-H. Lee, “A printed nanobeam laser on a SiO2/Si substrate for low-threshold continuous-wave operation,” Opt. Express 22(10), 12115–12121 (2014).
[PubMed]

2013 (2)

C.-S. Liu, Y.-C. Lin, and P.-H. Hu, “Design and characterization of precise laser-based autofocusing microscope with reduced geometrical fluctuations,” Microsyst. Technol. 19, 1717–1724 (2013).

I. Alexeev, J. Strauss, A. Gröschl, K. Cvecek, and M. Schmidt, “Laser focus positioning method with submicrometer accuracy,” Appl. Opt. 52(3), 415–421 (2013).
[PubMed]

2012 (5)

M. Antti, H. Ville, and V. Jorma, “Precise online auto-focus system in high speed laser micromachining applications,” Phys. Procedia 39, 807–813 (2012).

C.-S. Liu, P.-H. Hu, and Y.-C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109, 259 (2012).

D. Wang, X. Ding, T. Zhang, and H. Kuang, “A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications,” Opt. Laser Technol. 45, 190–197 (2012).

I. A. Martínez and D. Petrov, “Back-focal-plane position detection with extended linear range for photonic force microscopy,” Appl. Opt. 51(25), 5973–5977 (2012).
[PubMed]

J. Luo, Y. Liang, and G. Yang, “Realization of autofocusing system for laser direct writing on non-planar surfaces,” Rev. Sci. Instrum. 83(5), 053102 (2012).
[PubMed]

2011 (1)

2009 (2)

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[PubMed]

W.-Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20, 045902 (2009).

2001 (1)

K.-C. Fan, C.-L. Chu, and J.-I. Mou, “Development of a low-cost focusing probe for profile measurement,” Meas. Sci. Technol. 12, 2137–2146 (2001).

Ahn, S.

B. X. Cao, P. Le Hoang, S. Ahn, J. O. Kim, and J. Noh, “High-precision detection of focal position on a curved surface for laser processing,” Precis. Eng. 50, 204–210 (2017).

B. X. Cao, P. L. Hoang, S. Ahn, J.-O. Kim, H. Kang, and J. Noh, “In-situ real-time focus detection during laser processing using double-hole masks and advanced image sensor software,” Sensors (Basel) 17(7), 1540 (2017).
[PubMed]

B. X. Cao, P. Hoang, S. Ahn, J.-O. Kim, H. Sohn, and J. Noh, “Real-time detection of focal position of workpiece surface during laser processing using diffractive beam samplers,” Opt. Lasers Eng. 86, 92–97 (2016).

Alexeev, I.

Annibale, P.

Antti, M.

M. Antti, H. Ville, and V. Jorma, “Precise online auto-focus system in high speed laser micromachining applications,” Phys. Procedia 39, 807–813 (2012).

Armbruster, O.

O. Armbruster, A. Naghilou, H. Pöhl, and W. Kautek, “In-situ and non-destructive focus determination device for high precision laser applications,” J. Opt. 18, 095401 (2016).

Axinte, D. A.

G. B. J. Cadot, D. A. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tools Manuf. 107, 8–20 (2016).

Bae, M.

B. X. Cao, M. Bae, H. Sohn, J. Choi, Y. Kim, J.-O. Kim, and J. Noh, “Design and performance of a focus-detection system for use in laser micromachining,” Micromachines (Basel) 7(1), 2 (2016).

Ben Yoo, S. J.

Benayoun, S.

Billingham, J.

G. B. J. Cadot, D. A. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tools Manuf. 107, 8–20 (2016).

Brulez, A.-C.

Cadot, G. B. J.

G. B. J. Cadot, D. A. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tools Manuf. 107, 8–20 (2016).

Cao, B. X.

B. X. Cao, P. Le Hoang, S. Ahn, J. O. Kim, and J. Noh, “High-precision detection of focal position on a curved surface for laser processing,” Precis. Eng. 50, 204–210 (2017).

B. X. Cao, P. L. Hoang, S. Ahn, J.-O. Kim, H. Kang, and J. Noh, “In-situ real-time focus detection during laser processing using double-hole masks and advanced image sensor software,” Sensors (Basel) 17(7), 1540 (2017).
[PubMed]

B. X. Cao, M. Bae, H. Sohn, J. Choi, Y. Kim, J.-O. Kim, and J. Noh, “Design and performance of a focus-detection system for use in laser micromachining,” Micromachines (Basel) 7(1), 2 (2016).

B. X. Cao, P. Hoang, S. Ahn, J.-O. Kim, H. Sohn, and J. Noh, “Real-time detection of focal position of workpiece surface during laser processing using diffractive beam samplers,” Opt. Lasers Eng. 86, 92–97 (2016).

Chang, Y.-C.

C.-S. Liu, Z.-Y. Wang, and Y.-C. Chang, “Design and characterization of high-performance autofocusing microscope with zoom in/out functions,” Appl. Phys. B 121, 69 (2015).

Chen, C.

C. Chen, M. Gao, and X. Zeng, “Relationship between temperature at cut front edge and kerf quality in fiber laser cutting of Al–Cu aluminum alloy,” Int. J. Mach. Tools Manuf. 109, 58–64 (2016).

Chen, F. Z.

W.-Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20, 045902 (2009).

Chen, N. T.

W.-Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20, 045902 (2009).

Chen, P. J.

W.-Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20, 045902 (2009).

Choi, J.

B. X. Cao, M. Bae, H. Sohn, J. Choi, Y. Kim, J.-O. Kim, and J. Noh, “Design and performance of a focus-detection system for use in laser micromachining,” Micromachines (Basel) 7(1), 2 (2016).

Chu, C.-L.

K.-C. Fan, C.-L. Chu, and J.-I. Mou, “Development of a low-cost focusing probe for profile measurement,” Meas. Sci. Technol. 12, 2137–2146 (2001).

Clements, M.

Cvecek, K.

Ding, X.

D. Wang, X. Ding, T. Zhang, and H. Kuang, “A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications,” Opt. Laser Technol. 45, 190–197 (2012).

Dvornikov, A.

Fan, K.-C.

K.-C. Fan, C.-L. Chu, and J.-I. Mou, “Development of a low-cost focusing probe for profile measurement,” Meas. Sci. Technol. 12, 2137–2146 (2001).

Faure, N.

Feng, S.

Gao, M.

C. Chen, M. Gao, and X. Zeng, “Relationship between temperature at cut front edge and kerf quality in fiber laser cutting of Al–Cu aluminum alloy,” Int. J. Mach. Tools Manuf. 109, 58–64 (2016).

Gratton, E.

Gröschl, A.

Guan, B.

Hao, Z.

Z. Hao, J. Wang, P. Yao, and C. Huang, “Heat transfer and material ablation in hybrid laser-waterjet microgrooving of single crystalline germanium,” Int. J. Mach. Tools Manuf. 116, 25–39 (2017).

Hoang, P.

B. X. Cao, P. Hoang, S. Ahn, J.-O. Kim, H. Sohn, and J. Noh, “Real-time detection of focal position of workpiece surface during laser processing using diffractive beam samplers,” Opt. Lasers Eng. 86, 92–97 (2016).

Hoang, P. L.

B. X. Cao, P. L. Hoang, S. Ahn, J.-O. Kim, H. Kang, and J. Noh, “In-situ real-time focus detection during laser processing using double-hole masks and advanced image sensor software,” Sensors (Basel) 17(7), 1540 (2017).
[PubMed]

Houzet, J.

Hsu, W.-Y.

W.-Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20, 045902 (2009).

Hu, P.-H.

C.-S. Liu, Y.-C. Lin, and P.-H. Hu, “Design and characterization of precise laser-based autofocusing microscope with reduced geometrical fluctuations,” Microsyst. Technol. 19, 1717–1724 (2013).

C.-S. Liu, P.-H. Hu, and Y.-C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109, 259 (2012).

Huang, C.

Z. Hao, J. Wang, P. Yao, and C. Huang, “Heat transfer and material ablation in hybrid laser-waterjet microgrooving of single crystalline germanium,” Int. J. Mach. Tools Manuf. 116, 25–39 (2017).

Hwang, C. H.

W.-Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20, 045902 (2009).

Ishigure, T.

Ito, Y.

Y. Ito, T. Kizaki, R. Shinomoto, M. Ueki, N. Sugita, and M. Mitsuishi, “High-efficiency and precision cutting of glass by selective laser-assisted milling,” Precis. Eng. 47, 498–507 (2017).

Jang, H.

Jeon, B. G.

Jiang, S.-H.

C.-S. Liu and S.-H. Jiang, “Precise autofocusing microscope with rapid response,” Opt. Lasers Eng. 66, 294–300 (2015).

C.-S. Liu and S.-H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B 117, 1161 (2014).

Jorma, V.

M. Antti, H. Ville, and V. Jorma, “Precise online auto-focus system in high speed laser micromachining applications,” Phys. Procedia 39, 807–813 (2012).

Jung, B. J.

Kang, H.

B. X. Cao, P. L. Hoang, S. Ahn, J.-O. Kim, H. Kang, and J. Noh, “In-situ real-time focus detection during laser processing using double-hole masks and advanced image sensor software,” Sensors (Basel) 17(7), 1540 (2017).
[PubMed]

Karnadi, I.

Kautek, W.

O. Armbruster, A. Naghilou, H. Pöhl, and W. Kautek, “In-situ and non-destructive focus determination device for high precision laser applications,” J. Opt. 18, 095401 (2016).

Kim, D.-I.

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[PubMed]

Kim, J. O.

B. X. Cao, P. Le Hoang, S. Ahn, J. O. Kim, and J. Noh, “High-precision detection of focal position on a curved surface for laser processing,” Precis. Eng. 50, 204–210 (2017).

Kim, J.-O.

B. X. Cao, P. L. Hoang, S. Ahn, J.-O. Kim, H. Kang, and J. Noh, “In-situ real-time focus detection during laser processing using double-hole masks and advanced image sensor software,” Sensors (Basel) 17(7), 1540 (2017).
[PubMed]

B. X. Cao, M. Bae, H. Sohn, J. Choi, Y. Kim, J.-O. Kim, and J. Noh, “Design and performance of a focus-detection system for use in laser micromachining,” Micromachines (Basel) 7(1), 2 (2016).

B. X. Cao, P. Hoang, S. Ahn, J.-O. Kim, H. Sohn, and J. Noh, “Real-time detection of focal position of workpiece surface during laser processing using diffractive beam samplers,” Opt. Lasers Eng. 86, 92–97 (2016).

Kim, J.-Y.

Kim, K. S.

Kim, Y.

B. X. Cao, M. Bae, H. Sohn, J. Choi, Y. Kim, J.-O. Kim, and J. Noh, “Design and performance of a focus-detection system for use in laser micromachining,” Micromachines (Basel) 7(1), 2 (2016).

Kizaki, T.

Y. Ito, T. Kizaki, R. Shinomoto, M. Ueki, N. Sugita, and M. Mitsuishi, “High-efficiency and precision cutting of glass by selective laser-assisted milling,” Precis. Eng. 47, 498–507 (2017).

Kong, H. J.

Kuang, H.

D. Wang, X. Ding, T. Zhang, and H. Kuang, “A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications,” Opt. Laser Technol. 45, 190–197 (2012).

Kuo, C. H.

W.-Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20, 045902 (2009).

Lai, W.

Larochette, M.

Le Hoang, P.

B. X. Cao, P. Le Hoang, S. Ahn, J. O. Kim, and J. Noh, “High-precision detection of focal position on a curved surface for laser processing,” Precis. Eng. 50, 204–210 (2017).

Lee, C. S.

W.-Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20, 045902 (2009).

Lee, K. S.

Lee, S.

Lee, Y.-H.

Lee, Y.-W.

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[PubMed]

Liang, Y.

J. Luo, Y. Liang, and G. Yang, “Realization of autofocusing system for laser direct writing on non-planar surfaces,” Rev. Sci. Instrum. 83(5), 053102 (2012).
[PubMed]

Lin, Y.-C.

C.-S. Liu, Y.-C. Lin, and P.-H. Hu, “Design and characterization of precise laser-based autofocusing microscope with reduced geometrical fluctuations,” Microsyst. Technol. 19, 1717–1724 (2013).

C.-S. Liu, P.-H. Hu, and Y.-C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109, 259 (2012).

Liu, C.-S.

C.-S. Liu, Z.-Y. Wang, and Y.-C. Chang, “Design and characterization of high-performance autofocusing microscope with zoom in/out functions,” Appl. Phys. B 121, 69 (2015).

C.-S. Liu and S.-H. Jiang, “Precise autofocusing microscope with rapid response,” Opt. Lasers Eng. 66, 294–300 (2015).

C.-S. Liu and S.-H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B 117, 1161 (2014).

C.-S. Liu, Y.-C. Lin, and P.-H. Hu, “Design and characterization of precise laser-based autofocusing microscope with reduced geometrical fluctuations,” Microsyst. Technol. 19, 1717–1724 (2013).

C.-S. Liu, P.-H. Hu, and Y.-C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109, 259 (2012).

Liu, G.

Lu, H.

Luo, J.

J. Luo, Y. Liang, and G. Yang, “Realization of autofocusing system for laser direct writing on non-planar surfaces,” Rev. Sci. Instrum. 83(5), 053102 (2012).
[PubMed]

Madhukar, Y. K.

S. Mullick, Y. K. Madhukar, S. Roy, and A. K. Nath, “An investigation of energy loss mechanisms in water-jet assisted underwater laser cutting process using an analytical model,” Int. J. Mach. Tools Manuf. 91, 62–75 (2015).

Martínez, I. A.

Mauclair, C.

Min, B.

Mitsuishi, M.

Y. Ito, T. Kizaki, R. Shinomoto, M. Ueki, N. Sugita, and M. Mitsuishi, “High-efficiency and precision cutting of glass by selective laser-assisted milling,” Precis. Eng. 47, 498–507 (2017).

Mou, J.-I.

K.-C. Fan, C.-L. Chu, and J.-I. Mou, “Development of a low-cost focusing probe for profile measurement,” Meas. Sci. Technol. 12, 2137–2146 (2001).

Mullick, S.

S. Mullick, Y. K. Madhukar, S. Roy, and A. K. Nath, “An investigation of energy loss mechanisms in water-jet assisted underwater laser cutting process using an analytical model,” Int. J. Mach. Tools Manuf. 91, 62–75 (2015).

Naghilou, A.

O. Armbruster, A. Naghilou, H. Pöhl, and W. Kautek, “In-situ and non-destructive focus determination device for high precision laser applications,” J. Opt. 18, 095401 (2016).

Nath, A. K.

S. Mullick, Y. K. Madhukar, S. Roy, and A. K. Nath, “An investigation of energy loss mechanisms in water-jet assisted underwater laser cutting process using an analytical model,” Int. J. Mach. Tools Manuf. 91, 62–75 (2015).

Noh, J.

B. X. Cao, P. Le Hoang, S. Ahn, J. O. Kim, and J. Noh, “High-precision detection of focal position on a curved surface for laser processing,” Precis. Eng. 50, 204–210 (2017).

B. X. Cao, P. L. Hoang, S. Ahn, J.-O. Kim, H. Kang, and J. Noh, “In-situ real-time focus detection during laser processing using double-hole masks and advanced image sensor software,” Sensors (Basel) 17(7), 1540 (2017).
[PubMed]

B. X. Cao, P. Hoang, S. Ahn, J.-O. Kim, H. Sohn, and J. Noh, “Real-time detection of focal position of workpiece surface during laser processing using diffractive beam samplers,” Opt. Lasers Eng. 86, 92–97 (2016).

B. X. Cao, M. Bae, H. Sohn, J. Choi, Y. Kim, J.-O. Kim, and J. Noh, “Design and performance of a focus-detection system for use in laser micromachining,” Micromachines (Basel) 7(1), 2 (2016).

Oizmi, Y.

Pathak, S.

Petrov, D.

Pöhl, H.

O. Armbruster, A. Naghilou, H. Pöhl, and W. Kautek, “In-situ and non-destructive focus determination device for high precision laser applications,” J. Opt. 18, 095401 (2016).

Qin, C.

Rhee, H.-G.

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[PubMed]

Roy, S.

S. Mullick, Y. K. Madhukar, S. Roy, and A. K. Nath, “An investigation of energy loss mechanisms in water-jet assisted underwater laser cutting process using an analytical model,” Int. J. Mach. Tools Manuf. 91, 62–75 (2015).

Schmidt, M.

Scott, R. P.

Shang, K.

Shinomoto, R.

Y. Ito, T. Kizaki, R. Shinomoto, M. Ueki, N. Sugita, and M. Mitsuishi, “High-efficiency and precision cutting of glass by selective laser-assisted milling,” Precis. Eng. 47, 498–507 (2017).

Shitanda, K.

Sohn, H.

B. X. Cao, M. Bae, H. Sohn, J. Choi, Y. Kim, J.-O. Kim, and J. Noh, “Design and performance of a focus-detection system for use in laser micromachining,” Micromachines (Basel) 7(1), 2 (2016).

B. X. Cao, P. Hoang, S. Ahn, J.-O. Kim, H. Sohn, and J. Noh, “Real-time detection of focal position of workpiece surface during laser processing using diffractive beam samplers,” Opt. Lasers Eng. 86, 92–97 (2016).

Son, J.

Son, Y.

Strauss, J.

Su, T.

Sugita, N.

Y. Ito, T. Kizaki, R. Shinomoto, M. Ueki, N. Sugita, and M. Mitsuishi, “High-efficiency and precision cutting of glass by selective laser-assisted milling,” Precis. Eng. 47, 498–507 (2017).

Ueki, M.

Y. Ito, T. Kizaki, R. Shinomoto, M. Ueki, N. Sugita, and M. Mitsuishi, “High-efficiency and precision cutting of glass by selective laser-assisted milling,” Precis. Eng. 47, 498–507 (2017).

Ville, H.

M. Antti, H. Ville, and V. Jorma, “Precise online auto-focus system in high speed laser micromachining applications,” Phys. Procedia 39, 807–813 (2012).

Wang, D.

D. Wang, X. Ding, T. Zhang, and H. Kuang, “A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications,” Opt. Laser Technol. 45, 190–197 (2012).

Wang, J.

Z. Hao, J. Wang, P. Yao, and C. Huang, “Heat transfer and material ablation in hybrid laser-waterjet microgrooving of single crystalline germanium,” Int. J. Mach. Tools Manuf. 116, 25–39 (2017).

Wang, Z.-Y.

C.-S. Liu, Z.-Y. Wang, and Y.-C. Chang, “Design and characterization of high-performance autofocusing microscope with zoom in/out functions,” Appl. Phys. B 121, 69 (2015).

Yang, D. Y.

Yang, G.

J. Luo, Y. Liang, and G. Yang, “Realization of autofocusing system for laser direct writing on non-planar surfaces,” Rev. Sci. Instrum. 83(5), 053102 (2012).
[PubMed]

Yao, P.

Z. Hao, J. Wang, P. Yao, and C. Huang, “Heat transfer and material ablation in hybrid laser-waterjet microgrooving of single crystalline germanium,” Int. J. Mach. Tools Manuf. 116, 25–39 (2017).

Yu, Z. R.

W.-Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20, 045902 (2009).

Zeng, X.

C. Chen, M. Gao, and X. Zeng, “Relationship between temperature at cut front edge and kerf quality in fiber laser cutting of Al–Cu aluminum alloy,” Int. J. Mach. Tools Manuf. 109, 58–64 (2016).

Zhang, T.

D. Wang, X. Ding, T. Zhang, and H. Kuang, “A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications,” Opt. Laser Technol. 45, 190–197 (2012).

Appl. Opt. (2)

Appl. Phys. B (3)

C.-S. Liu and S.-H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B 117, 1161 (2014).

C.-S. Liu, Z.-Y. Wang, and Y.-C. Chang, “Design and characterization of high-performance autofocusing microscope with zoom in/out functions,” Appl. Phys. B 121, 69 (2015).

C.-S. Liu, P.-H. Hu, and Y.-C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109, 259 (2012).

Int. J. Mach. Tools Manuf. (4)

G. B. J. Cadot, D. A. Axinte, and J. Billingham, “Continuous trench, pulsed laser ablation for micro-machining applications,” Int. J. Mach. Tools Manuf. 107, 8–20 (2016).

Z. Hao, J. Wang, P. Yao, and C. Huang, “Heat transfer and material ablation in hybrid laser-waterjet microgrooving of single crystalline germanium,” Int. J. Mach. Tools Manuf. 116, 25–39 (2017).

C. Chen, M. Gao, and X. Zeng, “Relationship between temperature at cut front edge and kerf quality in fiber laser cutting of Al–Cu aluminum alloy,” Int. J. Mach. Tools Manuf. 109, 58–64 (2016).

S. Mullick, Y. K. Madhukar, S. Roy, and A. K. Nath, “An investigation of energy loss mechanisms in water-jet assisted underwater laser cutting process using an analytical model,” Int. J. Mach. Tools Manuf. 91, 62–75 (2015).

J. Opt. (1)

O. Armbruster, A. Naghilou, H. Pöhl, and W. Kautek, “In-situ and non-destructive focus determination device for high precision laser applications,” J. Opt. 18, 095401 (2016).

Meas. Sci. Technol. (2)

K.-C. Fan, C.-L. Chu, and J.-I. Mou, “Development of a low-cost focusing probe for profile measurement,” Meas. Sci. Technol. 12, 2137–2146 (2001).

W.-Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20, 045902 (2009).

Micromachines (Basel) (1)

B. X. Cao, M. Bae, H. Sohn, J. Choi, Y. Kim, J.-O. Kim, and J. Noh, “Design and performance of a focus-detection system for use in laser micromachining,” Micromachines (Basel) 7(1), 2 (2016).

Microsyst. Technol. (1)

C.-S. Liu, Y.-C. Lin, and P.-H. Hu, “Design and characterization of precise laser-based autofocusing microscope with reduced geometrical fluctuations,” Microsyst. Technol. 19, 1717–1724 (2013).

Opt. Express (6)

Opt. Laser Technol. (1)

D. Wang, X. Ding, T. Zhang, and H. Kuang, “A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications,” Opt. Laser Technol. 45, 190–197 (2012).

Opt. Lasers Eng. (2)

B. X. Cao, P. Hoang, S. Ahn, J.-O. Kim, H. Sohn, and J. Noh, “Real-time detection of focal position of workpiece surface during laser processing using diffractive beam samplers,” Opt. Lasers Eng. 86, 92–97 (2016).

C.-S. Liu and S.-H. Jiang, “Precise autofocusing microscope with rapid response,” Opt. Lasers Eng. 66, 294–300 (2015).

Phys. Procedia (1)

M. Antti, H. Ville, and V. Jorma, “Precise online auto-focus system in high speed laser micromachining applications,” Phys. Procedia 39, 807–813 (2012).

Precis. Eng. (2)

B. X. Cao, P. Le Hoang, S. Ahn, J. O. Kim, and J. Noh, “High-precision detection of focal position on a curved surface for laser processing,” Precis. Eng. 50, 204–210 (2017).

Y. Ito, T. Kizaki, R. Shinomoto, M. Ueki, N. Sugita, and M. Mitsuishi, “High-efficiency and precision cutting of glass by selective laser-assisted milling,” Precis. Eng. 47, 498–507 (2017).

Rev. Sci. Instrum. (2)

H.-G. Rhee, D.-I. Kim, and Y.-W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[PubMed]

J. Luo, Y. Liang, and G. Yang, “Realization of autofocusing system for laser direct writing on non-planar surfaces,” Rev. Sci. Instrum. 83(5), 053102 (2012).
[PubMed]

Sensors (Basel) (1)

B. X. Cao, P. L. Hoang, S. Ahn, J.-O. Kim, H. Kang, and J. Noh, “In-situ real-time focus detection during laser processing using double-hole masks and advanced image sensor software,” Sensors (Basel) 17(7), 1540 (2017).
[PubMed]

Other (1)

A. Weiss, A. Obotnine, and A. Lasinski, “Method and apparatus for the auto-focusing infinity corrected microscopes,” U.S. Patent 7700903 B2 (2010).

Supplementary Material (1)

NameDescription
» Visualization 1       Visualization 1 for manuscript "Automatic real-time focus control system for laser processing using dynamic focusing optical system"

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the dynamic focusing optical system for shifting the fabrication laser focus.
Fig. 2
Fig. 2 Relation between the position of laser focus and position of negative lens for different objective lenses. (a) Objective focal length of 125 mm. (b) Objective focal length of 50 mm. (c) Objective focal length of 10 mm.
Fig. 3
Fig. 3 Transmission of a Gaussian beam through a thin lens [18].
Fig. 4
Fig. 4 Schematic of the transmission of a laser beam through the dynamic focusing system.
Fig. 5
Fig. 5 Setup with only a double-hole panel.
Fig. 6
Fig. 6 Fabrication diameter and variation in beam-spot separation with respect to the target sample’s position along the optical axis [30].
Fig. 7
Fig. 7 Schematic of the combination of dynamic focusing and focus detection systems.
Fig. 8
Fig. 8 Experimental setup.
Fig. 9
Fig. 9 Experimental relations between beam-spot separation and objective lens-sample distance and between dynamic focusing lenses’ separation and objective lens-sample distance.

Tables (1)

Tables Icon

Table 1 Change in focal position and fabrication laser beam spot size as the negative lens is shifted around the initial point

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

w(z)= w o 1+ ( z z R ) 2 .
d 2 f =1+ d 1 f 1 ( d 1 f 1 ) 2 + ( π w o1 2 λf ) 2 d 1 d 1 f d 2 = d 1 f d 1 f .
q= f 2 (h f 1 ) h f 2 f 1 .
u= f(ζq) ζqf =f (f+ f 2 )(h f 1 f 2 ) f 2 (h f 1 ) f 2 (h f 1 f 2 ) f 2 (h f 1 ) =f f 2 2 f(h f 1 f 2 ) f 2 2 , h= f 2 2 f 2 u+ f 2 2 f + f 1 + f 2 .
w o1 2 + ( λ f 1 π w o1 ) 2 = w o 2 ,
w o1 2 + ( λ(h f 1 ) π w o1 ) 2 = w o2 2 + ( λ f 2 (h f 1 ) π w o2 (h f 1 f 2 ) ) 2 ,
w o2 2 + ( λ π w o2 ( f+ f 2 f 2 ( h f 1 ) h f 2 f 1 ) ) 2 = w o3 2 + ( λ π w o3 ( f f 2 2 f( h f 1 f 2 ) f 2 2 ) ) 2 .
I= c ε o E o 2 π w 2 e 2( x 2 + y 2 ) w 2 .
a=2uf.
b= ( 2uf )f 2(fu) .
p= ( ρdb )f' ρdf'b = ( ρd ( 2uf )f 2( uf ) )f' ρdf' ( 2uf )f 2(uf) .
tan( β 2 ) tan( α 2 ) = a b = 2(fu) f ,
tan( γ 2 ) tan( β 2 ) = ρdb p = 2( ρdf' )( uf )( 2uf )f 2( uf )f' .
tan( γ 2 )= 2( ρd f ' )( uf )( 2uf )f f ' f tan( α 2 ).
v=2( pd )tan( γ 2 )= [ 2u( d 2 ( ρf )d+ρf'ff' )2f d 2 +2fρd2ff'ρ f 2 d+ f 2 f' ]l f 2 f' .

Metrics