Abstract

We report a method for effective fabrication of Bragg gratings in all-silica photonic crystal fibers (PCF). The problem of cladding-hole scattering in PCF grating inscription is avoided by selectively inflating a section of PCF, resulting a locally suspended-core fiber (SCF) region with relatively simple cladding structure. Hence, the inscription laser can laterally access to the core region with little loss. In the SCF regions with core diameter ranging from 2 to 4.5 μm, first-order Bragg gratings are fabricated by use of a phase mask and a focused infrared femtosecond laser with pulse energy as low as ~200 μJ. For the same grating period, samples with different core sizes exhibit different resonant wavelengths and spectral properties, which would enable a range of applications in grating-integrated PCF sensors and devices.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical modeling of femtosecond laser inscribed IR gratings in photonic crystal fibers

Tigran Baghdasaryan, Thomas Geernaert, Hugo Thienpont, and Francis Berghmans
Opt. Express 23(2) 709-723 (2015)

Temperature-insensitivity gas pressure sensor based on inflated long period fiber grating inscribed in photonic crystal fiber

Xiaoyong Zhong, Yiping Wang, Changrui Liao, Shen Liu, Jian Tang, and Qiao Wang
Opt. Lett. 40(8) 1791-1794 (2015)

IR femtosecond pulsed laser-based fiber Bragg grating inscription in a photonic crystal fiber using a phase mask and a short focal length lens

Tigran Baghdasaryan, Thomas Geernart, Adriana Morana, Emmanuel Marin, Sylvain Girard, Mariusz Makara, Paweł Mergo, Hugo Thienpont, and Francis Berghmans
Opt. Express 26(11) 14741-14751 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [PubMed]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” Lightwave Technology. Journalism 15, 1442–1463 (1997).
  3. F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8, 27–52 (2014).
  4. L. Fu, G. Marshall, J. Bolger, P. Steinvurzel, E. Mägi, M. Withford, and B. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638–640 (2005).
  5. N. Groothoff, I. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, “Bragg gratings in air-silica structured fibers,” Opt. Lett. 28(4), 233–235 (2003).
    [PubMed]
  6. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
    [PubMed]
  7. S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18, 1837–1839 (2006).
  8. H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270, 207–210 (2007).
  9. M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photonics Rev. 7, 439–443 (2013).
  10. C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2016).
  11. N. N. David, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18, R1 (2007).
  12. C. Wang, W. Jin, C. Liao, J. Ma, W. Jin, F. Yang, H. L. Ho, and Y. Wang, “Highly birefringent suspended-core photonic microcells for refractive-index sensing,” Appl. Phys. Lett. 105, 061105 (2014).
  13. J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
    [PubMed]
  14. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).
  15. C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, and X. Shi, “Suspended core photonic microcells for sensing and device applications,” Opt. Lett. 38(11), 1881–1883 (2013).
    [PubMed]

2016 (1)

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2016).

2014 (2)

C. Wang, W. Jin, C. Liao, J. Ma, W. Jin, F. Yang, H. L. Ho, and Y. Wang, “Highly birefringent suspended-core photonic microcells for refractive-index sensing,” Appl. Phys. Lett. 105, 061105 (2014).

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8, 27–52 (2014).

2013 (2)

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photonics Rev. 7, 439–443 (2013).

C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, and X. Shi, “Suspended core photonic microcells for sensing and device applications,” Opt. Lett. 38(11), 1881–1883 (2013).
[PubMed]

2012 (1)

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[PubMed]

2011 (1)

2010 (1)

2007 (3)

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270, 207–210 (2007).

G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
[PubMed]

N. N. David, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18, R1 (2007).

2006 (1)

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18, 1837–1839 (2006).

2005 (1)

L. Fu, G. Marshall, J. Bolger, P. Steinvurzel, E. Mägi, M. Withford, and B. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638–640 (2005).

2003 (1)

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” Lightwave Technology. Journalism 15, 1442–1463 (1997).

Asatryan, A. A.

Askins, C.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” Lightwave Technology. Journalism 15, 1442–1463 (1997).

Baghdasaryan, T.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8, 27–52 (2014).

Berghmans, F.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8, 27–52 (2014).

Bolger, J.

L. Fu, G. Marshall, J. Bolger, P. Steinvurzel, E. Mägi, M. Withford, and B. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638–640 (2005).

Botten, L. C.

Brambilla, G.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[PubMed]

Broeng, J.

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18, 1837–1839 (2006).

Buckley, E.

Canning, I.

Canning, J.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270, 207–210 (2007).

Childs, P.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photonics Rev. 7, 439–443 (2013).

David, N. N.

N. N. David, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18, R1 (2007).

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” Lightwave Technology. Journalism 15, 1442–1463 (1997).

Ding, H.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18, 1837–1839 (2006).

Ding, M.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[PubMed]

Eggleton, B.

L. Fu, G. Marshall, J. Bolger, P. Steinvurzel, E. Mägi, M. Withford, and B. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638–640 (2005).

Feng, J.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[PubMed]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” Lightwave Technology. Journalism 15, 1442–1463 (1997).

Fu, L.

L. Fu, G. Marshall, J. Bolger, P. Steinvurzel, E. Mägi, M. Withford, and B. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638–640 (2005).

Geernaert, T.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8, 27–52 (2014).

Grobnic, D.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18, 1837–1839 (2006).

Groothoff, N.

Hansen, K.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270, 207–210 (2007).

Ho, H. L.

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2016).

C. Wang, W. Jin, C. Liao, J. Ma, W. Jin, F. Yang, H. L. Ho, and Y. Wang, “Highly birefringent suspended-core photonic microcells for refractive-index sensing,” Appl. Phys. Lett. 105, 061105 (2014).

C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, and X. Shi, “Suspended core photonic microcells for sensing and device applications,” Opt. Lett. 38(11), 1881–1883 (2013).
[PubMed]

Jin, W.

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2016).

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2016).

C. Wang, W. Jin, C. Liao, J. Ma, W. Jin, F. Yang, H. L. Ho, and Y. Wang, “Highly birefringent suspended-core photonic microcells for refractive-index sensing,” Appl. Phys. Lett. 105, 061105 (2014).

C. Wang, W. Jin, C. Liao, J. Ma, W. Jin, F. Yang, H. L. Ho, and Y. Wang, “Highly birefringent suspended-core photonic microcells for refractive-index sensing,” Appl. Phys. Lett. 105, 061105 (2014).

C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, and X. Shi, “Suspended core photonic microcells for sensing and device applications,” Opt. Lett. 38(11), 1881–1883 (2013).
[PubMed]

Jovanovic, N.

Ju, J.

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2016).

Kan, D. J.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” Lightwave Technology. Journalism 15, 1442–1463 (1997).

Konstantaki, M.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photonics Rev. 7, 439–443 (2013).

Koo, K.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” Lightwave Technology. Journalism 15, 1442–1463 (1997).

Kou, J.-L.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[PubMed]

Lægsgaard, J.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270, 207–210 (2007).

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” Lightwave Technology. Journalism 15, 1442–1463 (1997).

Liao, C.

C. Wang, W. Jin, C. Liao, J. Ma, W. Jin, F. Yang, H. L. Ho, and Y. Wang, “Highly birefringent suspended-core photonic microcells for refractive-index sensing,” Appl. Phys. Lett. 105, 061105 (2014).

Lu, P.

Lu, Y.-Q.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[PubMed]

Lyttikainen, K.

Ma, J.

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2016).

C. Wang, W. Jin, C. Liao, J. Ma, W. Jin, F. Yang, H. L. Ho, and Y. Wang, “Highly birefringent suspended-core photonic microcells for refractive-index sensing,” Appl. Phys. Lett. 105, 061105 (2014).

C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, and X. Shi, “Suspended core photonic microcells for sensing and device applications,” Opt. Lett. 38(11), 1881–1883 (2013).
[PubMed]

Mägi, E.

L. Fu, G. Marshall, J. Bolger, P. Steinvurzel, E. Mägi, M. Withford, and B. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638–640 (2005).

Marshall, G.

L. Fu, G. Marshall, J. Bolger, P. Steinvurzel, E. Mägi, M. Withford, and B. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638–640 (2005).

Marshall, G. D.

Mihailov, S. J.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18, 1837–1839 (2006).

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” Lightwave Technology. Journalism 15, 1442–1463 (1997).

Pissadakis, S.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photonics Rev. 7, 439–443 (2013).

Putnam, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” Lightwave Technology. Journalism 15, 1442–1463 (1997).

Shi, X.

Smelser, C. W.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18, 1837–1839 (2006).

Sørensen, H. R.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270, 207–210 (2007).

Sozzi, M.

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photonics Rev. 7, 439–443 (2013).

Steel, M. J.

Steinvurzel, P.

L. Fu, G. Marshall, J. Bolger, P. Steinvurzel, E. Mägi, M. Withford, and B. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638–640 (2005).

Thienpont, H.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8, 27–52 (2014).

Varming, P.

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270, 207–210 (2007).

Walker, R. B.

Wang, C.

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2016).

C. Wang, W. Jin, C. Liao, J. Ma, W. Jin, F. Yang, H. L. Ho, and Y. Wang, “Highly birefringent suspended-core photonic microcells for refractive-index sensing,” Appl. Phys. Lett. 105, 061105 (2014).

C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, and X. Shi, “Suspended core photonic microcells for sensing and device applications,” Opt. Lett. 38(11), 1881–1883 (2013).
[PubMed]

Wang, Y.

C. Wang, W. Jin, C. Liao, J. Ma, W. Jin, F. Yang, H. L. Ho, and Y. Wang, “Highly birefringent suspended-core photonic microcells for refractive-index sensing,” Appl. Phys. Lett. 105, 061105 (2014).

C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, and X. Shi, “Suspended core photonic microcells for sensing and device applications,” Opt. Lett. 38(11), 1881–1883 (2013).
[PubMed]

Williams, R. J.

Withford, M.

L. Fu, G. Marshall, J. Bolger, P. Steinvurzel, E. Mägi, M. Withford, and B. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638–640 (2005).

Withford, M. J.

Xu, F.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[PubMed]

Yang, F.

C. Wang, W. Jin, C. Liao, J. Ma, W. Jin, F. Yang, H. L. Ho, and Y. Wang, “Highly birefringent suspended-core photonic microcells for refractive-index sensing,” Appl. Phys. Lett. 105, 061105 (2014).

Zagari, J.

Appl. Phys. Lett. (1)

C. Wang, W. Jin, C. Liao, J. Ma, W. Jin, F. Yang, H. L. Ho, and Y. Wang, “Highly birefringent suspended-core photonic microcells for refractive-index sensing,” Appl. Phys. Lett. 105, 061105 (2014).

Electron. Lett. (1)

L. Fu, G. Marshall, J. Bolger, P. Steinvurzel, E. Mägi, M. Withford, and B. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41, 638–640 (2005).

IEEE Photonics Technol. Lett. (1)

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, “Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers,” IEEE Photonics Technol. Lett. 18, 1837–1839 (2006).

Laser Photonics Rev. (2)

M. Konstantaki, P. Childs, M. Sozzi, and S. Pissadakis, “Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers,” Laser Photonics Rev. 7, 439–443 (2013).

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8, 27–52 (2014).

Lightwave Technology. Journalism (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” Lightwave Technology. Journalism 15, 1442–1463 (1997).

Meas. Sci. Technol. (1)

N. N. David, “Multi-photon high-excitation-energy approach to fibre grating inscription,” Meas. Sci. Technol. 18, R1 (2007).

Measurement (1)

C. Wang, W. Jin, W. Jin, J. Ju, J. Ma, and H. L. Ho, “Evanescent-field photonic microcells and their applications in sensing,” Measurement 79, 172–181 (2016).

Opt. Commun. (1)

H. R. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibres for grating writing,” Opt. Commun. 270, 207–210 (2007).

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Sensors (Basel) (1)

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors (Basel) 12(7), 8861–8876 (2012).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematics of cross-sectional structures of (a) a PCF and (b) a selectively inflated PCF for Bragg grating inscription. The left and right figures are respectively the cross-sections perpendicular to and along the fiber axis.
Fig. 2
Fig. 2 (a) Cross-sectional micrographs of a three-hole SCF sample made by the selective inflation technique. Side-view micrograph of a SCF region (b) before and (c) after an additional flattening process.
Fig. 3
Fig. 3 (a) Schematic of the experiment setup for FBGs inscription in the three-hole SCF region. Images of grating samples inscribed by use of cylindrical lens with focus length of (b) 50 mm and (c) 120 mm respectively.
Fig. 4
Fig. 4 (a) Spectra of Bragg grating built in a SCF region with core diameter of ~3.3 μm. (b) The grating depth, loss and exposure time of grating samples with different resonant wavelengths.
Fig. 5
Fig. 5 The transmission and reflection spectra of two FBG samples fabricated in SCF region with core diameter of (a) 2 μm and (b) 4.5 μm respectively.
Fig. 6
Fig. 6 (a) Model of the core region of a three-hole SC-PMC. (b-d) Simulated energy profile and electrical field distribution of (b) the fundamental mode, (c) a first group higher order mode, and (d) the fundamental mode of the core region with two struts.
Fig. 7
Fig. 7 (a) The calculated and measured Bragg resonant wavelength and power ratio of evanescent field of the three-hole SCF as functions of core diameter at the wavelength of 1550 nm. (b) The calculated RI sensitivity of the grating as functions of core diameter.
Fig. 8
Fig. 8 (a) The response of sample-1 to the environmental temperature changes, inset: the transmission spectra of the sample-1 at different temperatures, (b) The spectral response of sample-2 to different axial tensile strains.
Fig. 9
Fig. 9 The measured reflection spectra of sample-3 when the whole is filled with liquids with different RIs. Inset: the grating dip wavelength as function of ambient index.

Metrics