Abstract

To achieve the high-precision measurement of the inner surface profile of a laser inertial confinement fusion (ICF) capsule, a new laser differential confocal ICF target measurement method with high axial resolution and an anti-surface reflectivity capability is proposed for the inner surface profile of an ICF capsule. First, this method uses the laser differential confocal measurement system to radially measure the inner and outer surfaces of an ICF capsule located in the center of the rotary shaft, respectively, and it uses the measured location parameters of the inner and outer surfaces of the ICF capsule and the refractive index of the ICF capsule to obtain the geometrical parameters of the inner surface trigger point by ray tracing. Secondly, it rotates the capsule using a high-precision rotation system, and uses the laser differential confocal measuring system to scan and measure the inner surface profile of the equatorial section of the capsule. Then, it rotates the capsule to the other equatorial section using the auxiliary rotary system, and uses the laser differential confocal measuring system to measure the inner surface profile of other equatorial section of the capsule. Finally, all of the inner surface profile data obtained on each equatorial section are reconstructed to obtain the three-dimensional (3D) profile information of the capsule’s inner surface. For the first time, this proposed method achieves the high-precision nondestructive measurement of the inner surface profile of an ICF capsule. Theoretical analyses and preliminary experiments indicate that the repetitive measurement obtained using the proposed method for the inner surface profile of the capsule can reach 15 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-precision laser differential confocal measurement method for multi-geometric parameters of inner and outer spherical surfaces of laser fusion capsules

Xianxian Ma, Lirong Qiu, Yun Wang, Mengshuang Lu, and Weiqian Zhao
Opt. Express 28(7) 9913-9928 (2020)

Rapid measurement and compensation method of eccentricity in automatic profile measurement of the ICF capsule

Shaobai Li, Yun Wang, Qi Wang, Xianxian Ma, Longxiao Wang, Weiqian Zhao, and Xusheng Zhang
Appl. Opt. 57(14) 3761-3769 (2018)

Laser differential confocal radius measurement method for the cylindrical surfaces

Lirong Qiu, Yang Xiao, and Weiqian Zhao
Opt. Express 24(11) 12013-12025 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Brumfiel, “Laser lab shifts focus to warheads,” Nature 491(7423), 170–171 (2012).
    [PubMed]
  2. O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
    [PubMed]
  3. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
    [PubMed]
  4. P. W. Mckenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).
  5. A. I. Nikitenko and S. M. Tolokonnikov, “Optimal ‘Tomography’ of 2-layered targets:3D parameters reconstruction from shadow images,” Fus. Sci. Technol. 51(4), 705–716 (2007).
  6. Project Staff, “Inertial Confinement Fusion Target Component Fabrication and Technology Development Support, Annual Report to the U.S. Department of Energy,” General Atomics Report GA-A23240(1999).
  7. R. L. Mceachern, C. E. Moore, and R. J. Wallace, “The design, performance, and application of an atomic force microscope-based profilometer,” Vac. Sci. Technol. 13(3), 983–989 (1995).
  8. R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing Shell Wall Fluctuations,” Fus. Sci. Technol. 38(1), 132–135 (2000).
  9. D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, S. J. Verbridge, M. D. Wittman, and W. Seka, “Three-Dimensional Characterization of Spherical Cryogenic Targets Using Ray Trace Analysis of Multiple Shadowgraph Views,” Fus. Sci. Technol. 51(4), 717–726 (2007).
  10. K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).
  11. F. Wang, J. Tan, and W. Zhao, “Optical probe using confocal technique for surface profile,” Proc. SPIE 4222, 194–197 (2000).
  12. W. Zhao, J. Tan, and L. Qiu, “Differential confocal scanning detection method with high spatial resolution,” Patent. China. CN 1527026A(2004).
  13. L. Qiu, D. Liu, W. Zhao, H. Cui, and Z. Sheng, “Real-time laser differential confocal microscopy without sample reflectivity effects,” Opt. Express 22(18), 21626–21640 (2014).
    [PubMed]
  14. W. Zhao, J. Tan, and L. Qiu, “Bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express 12(21), 5013–5021 (2004).
    [PubMed]
  15. W. Zhao, J. Guo, L. Qiu, Y. Wang, J. Meng, and D. Gao, “Low transmittance ICF capsule geometric parameters measurement using laser differential confocal technique,” Opt. Commun. 292, 62–67 (2013).
  16. W. Zhao, J. Tan, Z. Xue, and S. Fu, “SEST: A new error separation technique for ultra-high precision roundness measurement,” Meas. Sci. Technol. 16(3), 833 (2005).
  17. L. Cao and B. Wang, Roundness Measurement and Verification Techniques (National Defense Industry, 1998).
  18. L. Xu, J. Tan, and J. Zhang, “Evaluation of longitude sphericity error measurement,” J. Harbin Institute Technology 33(5), 620–624 (2001).
  19. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambrige University, 1999).

2014 (3)

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).

L. Qiu, D. Liu, W. Zhao, H. Cui, and Z. Sheng, “Real-time laser differential confocal microscopy without sample reflectivity effects,” Opt. Express 22(18), 21626–21640 (2014).
[PubMed]

2013 (1)

W. Zhao, J. Guo, L. Qiu, Y. Wang, J. Meng, and D. Gao, “Low transmittance ICF capsule geometric parameters measurement using laser differential confocal technique,” Opt. Commun. 292, 62–67 (2013).

2012 (1)

G. Brumfiel, “Laser lab shifts focus to warheads,” Nature 491(7423), 170–171 (2012).
[PubMed]

2007 (3)

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[PubMed]

A. I. Nikitenko and S. M. Tolokonnikov, “Optimal ‘Tomography’ of 2-layered targets:3D parameters reconstruction from shadow images,” Fus. Sci. Technol. 51(4), 705–716 (2007).

D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, S. J. Verbridge, M. D. Wittman, and W. Seka, “Three-Dimensional Characterization of Spherical Cryogenic Targets Using Ray Trace Analysis of Multiple Shadowgraph Views,” Fus. Sci. Technol. 51(4), 717–726 (2007).

2005 (1)

W. Zhao, J. Tan, Z. Xue, and S. Fu, “SEST: A new error separation technique for ultra-high precision roundness measurement,” Meas. Sci. Technol. 16(3), 833 (2005).

2004 (1)

2001 (2)

L. Xu, J. Tan, and J. Zhang, “Evaluation of longitude sphericity error measurement,” J. Harbin Institute Technology 33(5), 620–624 (2001).

P. W. Mckenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).

2000 (2)

R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing Shell Wall Fluctuations,” Fus. Sci. Technol. 38(1), 132–135 (2000).

F. Wang, J. Tan, and W. Zhao, “Optical probe using confocal technique for surface profile,” Proc. SPIE 4222, 194–197 (2000).

1995 (1)

R. L. Mceachern, C. E. Moore, and R. J. Wallace, “The design, performance, and application of an atomic force microscope-based profilometer,” Vac. Sci. Technol. 13(3), 983–989 (1995).

Auerbach, J. M.

Berzak Hopkins, L. F.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Betti, R.

P. W. Mckenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).

Bowers, M. W.

Brumfiel, G.

G. Brumfiel, “Laser lab shifts focus to warheads,” Nature 491(7423), 170–171 (2012).
[PubMed]

Callahan, D. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Casey, D. T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Celliers, P. M.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Cerjan, C.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Craxton, R. S.

D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, S. J. Verbridge, M. D. Wittman, and W. Seka, “Three-Dimensional Characterization of Spherical Cryogenic Targets Using Ray Trace Analysis of Multiple Shadowgraph Views,” Fus. Sci. Technol. 51(4), 717–726 (2007).

Cui, H.

Dewald, E. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Dittrich, T. R.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Dixit, S. N.

Döppner, T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Edgell, D. H.

D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, S. J. Verbridge, M. D. Wittman, and W. Seka, “Three-Dimensional Characterization of Spherical Cryogenic Targets Using Ray Trace Analysis of Multiple Shadowgraph Views,” Fus. Sci. Technol. 51(4), 717–726 (2007).

Elasky, L. M.

D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, S. J. Verbridge, M. D. Wittman, and W. Seka, “Three-Dimensional Characterization of Spherical Cryogenic Targets Using Ray Trace Analysis of Multiple Shadowgraph Views,” Fus. Sci. Technol. 51(4), 717–726 (2007).

Erbert, G. V.

Fu, S.

W. Zhao, J. Tan, Z. Xue, and S. Fu, “SEST: A new error separation technique for ultra-high precision roundness measurement,” Meas. Sci. Technol. 16(3), 833 (2005).

Gao, D.

W. Zhao, J. Guo, L. Qiu, Y. Wang, J. Meng, and D. Gao, “Low transmittance ICF capsule geometric parameters measurement using laser differential confocal technique,” Opt. Commun. 292, 62–67 (2013).

Gibson, J.

R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing Shell Wall Fluctuations,” Fus. Sci. Technol. 38(1), 132–135 (2000).

Goncharov, V. N.

P. W. Mckenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).

Guo, J.

W. Zhao, J. Guo, L. Qiu, Y. Wang, J. Meng, and D. Gao, “Low transmittance ICF capsule geometric parameters measurement using laser differential confocal technique,” Opt. Commun. 292, 62–67 (2013).

Harding, D. R.

D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, S. J. Verbridge, M. D. Wittman, and W. Seka, “Three-Dimensional Characterization of Spherical Cryogenic Targets Using Ray Trace Analysis of Multiple Shadowgraph Views,” Fus. Sci. Technol. 51(4), 717–726 (2007).

Haynam, C. A.

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Hinkel, D. E.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Hurricane, O. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Jancaitis, K. S.

Kline, J. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Le Pape, S.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Lei, H.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).

Li, J.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).

Lin, W.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).

Liu, D.

Liu, Y.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).

Ma, T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

MacPhee, A. G.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Manes, K. R.

Marshall, C. D.

McCrory, R. L.

P. W. Mckenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).

Mceachern, R. L.

R. L. Mceachern, C. E. Moore, and R. J. Wallace, “The design, performance, and application of an atomic force microscope-based profilometer,” Vac. Sci. Technol. 13(3), 983–989 (1995).

Mckenty, P. W.

P. W. Mckenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).

Mehta, N. C.

Menapace, J.

Meng, J.

W. Zhao, J. Guo, L. Qiu, Y. Wang, J. Meng, and D. Gao, “Low transmittance ICF capsule geometric parameters measurement using laser differential confocal technique,” Opt. Commun. 292, 62–67 (2013).

Milovich, J. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Moore, C. E.

R. L. Mceachern, C. E. Moore, and R. J. Wallace, “The design, performance, and application of an atomic force microscope-based profilometer,” Vac. Sci. Technol. 13(3), 983–989 (1995).

Moses, E.

Mroczkowski, T.

R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing Shell Wall Fluctuations,” Fus. Sci. Technol. 38(1), 132–135 (2000).

Murray, J. R.

Nikitenko, A. I.

A. I. Nikitenko and S. M. Tolokonnikov, “Optimal ‘Tomography’ of 2-layered targets:3D parameters reconstruction from shadow images,” Fus. Sci. Technol. 51(4), 705–716 (2007).

Nostrand, M. C.

Orth, C. D.

Pak, A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Park, H. S.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Patel, P. K.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Patterson, R.

Qi, X.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).

Qiu, L.

Remington, B. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Sacks, R. A.

Salmonson, J. D.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Seka, W.

D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, S. J. Verbridge, M. D. Wittman, and W. Seka, “Three-Dimensional Characterization of Spherical Cryogenic Targets Using Ray Trace Analysis of Multiple Shadowgraph Views,” Fus. Sci. Technol. 51(4), 717–726 (2007).

Shaw, M. J.

Sheng, Z.

Skupsky, S.

P. W. Mckenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).

Spaeth, M.

Springer, P. T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Stephens, R. B.

R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing Shell Wall Fluctuations,” Fus. Sci. Technol. 38(1), 132–135 (2000).

Sutton, S. B.

Tan, J.

W. Zhao, J. Tan, Z. Xue, and S. Fu, “SEST: A new error separation technique for ultra-high precision roundness measurement,” Meas. Sci. Technol. 16(3), 833 (2005).

W. Zhao, J. Tan, and L. Qiu, “Bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express 12(21), 5013–5021 (2004).
[PubMed]

L. Xu, J. Tan, and J. Zhang, “Evaluation of longitude sphericity error measurement,” J. Harbin Institute Technology 33(5), 620–624 (2001).

F. Wang, J. Tan, and W. Zhao, “Optical probe using confocal technique for surface profile,” Proc. SPIE 4222, 194–197 (2000).

Tang, Y.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).

Tolokonnikov, S. M.

A. I. Nikitenko and S. M. Tolokonnikov, “Optimal ‘Tomography’ of 2-layered targets:3D parameters reconstruction from shadow images,” Fus. Sci. Technol. 51(4), 705–716 (2007).

Tommasini, R.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Town, R. P. J.

P. W. Mckenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).

Van Wonterghem, B. M.

Verbridge, S. J.

D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, S. J. Verbridge, M. D. Wittman, and W. Seka, “Three-Dimensional Characterization of Spherical Cryogenic Targets Using Ray Trace Analysis of Multiple Shadowgraph Views,” Fus. Sci. Technol. 51(4), 717–726 (2007).

Wallace, R. J.

R. L. Mceachern, C. E. Moore, and R. J. Wallace, “The design, performance, and application of an atomic force microscope-based profilometer,” Vac. Sci. Technol. 13(3), 983–989 (1995).

Wang, F.

F. Wang, J. Tan, and W. Zhao, “Optical probe using confocal technique for surface profile,” Proc. SPIE 4222, 194–197 (2000).

Wang, K.

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).

Wang, Y.

W. Zhao, J. Guo, L. Qiu, Y. Wang, J. Meng, and D. Gao, “Low transmittance ICF capsule geometric parameters measurement using laser differential confocal technique,” Opt. Commun. 292, 62–67 (2013).

Wegner, P. J.

White, R. K.

Widmayer, C. C.

Williams, W. H.

Wittman, M. D.

D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, S. J. Verbridge, M. D. Wittman, and W. Seka, “Three-Dimensional Characterization of Spherical Cryogenic Targets Using Ray Trace Analysis of Multiple Shadowgraph Views,” Fus. Sci. Technol. 51(4), 717–726 (2007).

Xu, L.

L. Xu, J. Tan, and J. Zhang, “Evaluation of longitude sphericity error measurement,” J. Harbin Institute Technology 33(5), 620–624 (2001).

Xue, Z.

W. Zhao, J. Tan, Z. Xue, and S. Fu, “SEST: A new error separation technique for ultra-high precision roundness measurement,” Meas. Sci. Technol. 16(3), 833 (2005).

Yang, S. T.

Zhang, J.

L. Xu, J. Tan, and J. Zhang, “Evaluation of longitude sphericity error measurement,” J. Harbin Institute Technology 33(5), 620–624 (2001).

Zhao, W.

L. Qiu, D. Liu, W. Zhao, H. Cui, and Z. Sheng, “Real-time laser differential confocal microscopy without sample reflectivity effects,” Opt. Express 22(18), 21626–21640 (2014).
[PubMed]

W. Zhao, J. Guo, L. Qiu, Y. Wang, J. Meng, and D. Gao, “Low transmittance ICF capsule geometric parameters measurement using laser differential confocal technique,” Opt. Commun. 292, 62–67 (2013).

W. Zhao, J. Tan, Z. Xue, and S. Fu, “SEST: A new error separation technique for ultra-high precision roundness measurement,” Meas. Sci. Technol. 16(3), 833 (2005).

W. Zhao, J. Tan, and L. Qiu, “Bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express 12(21), 5013–5021 (2004).
[PubMed]

F. Wang, J. Tan, and W. Zhao, “Optical probe using confocal technique for surface profile,” Proc. SPIE 4222, 194–197 (2000).

Appl. Opt. (1)

Fus. Sci. Technol. (3)

A. I. Nikitenko and S. M. Tolokonnikov, “Optimal ‘Tomography’ of 2-layered targets:3D parameters reconstruction from shadow images,” Fus. Sci. Technol. 51(4), 705–716 (2007).

R. B. Stephens, T. Mroczkowski, and J. Gibson, “Seeing Shell Wall Fluctuations,” Fus. Sci. Technol. 38(1), 132–135 (2000).

D. H. Edgell, R. S. Craxton, L. M. Elasky, D. R. Harding, S. J. Verbridge, M. D. Wittman, and W. Seka, “Three-Dimensional Characterization of Spherical Cryogenic Targets Using Ray Trace Analysis of Multiple Shadowgraph Views,” Fus. Sci. Technol. 51(4), 717–726 (2007).

J. Harbin Institute Technology (1)

L. Xu, J. Tan, and J. Zhang, “Evaluation of longitude sphericity error measurement,” J. Harbin Institute Technology 33(5), 620–624 (2001).

Meas. Sci. Technol. (1)

W. Zhao, J. Tan, Z. Xue, and S. Fu, “SEST: A new error separation technique for ultra-high precision roundness measurement,” Meas. Sci. Technol. 16(3), 833 (2005).

Nature (2)

G. Brumfiel, “Laser lab shifts focus to warheads,” Nature 491(7423), 170–171 (2012).
[PubMed]

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H. S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[PubMed]

Opt. Commun. (2)

K. Wang, H. Lei, J. Li, W. Lin, X. Qi, Y. Tang, and Y. Liu, “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).

W. Zhao, J. Guo, L. Qiu, Y. Wang, J. Meng, and D. Gao, “Low transmittance ICF capsule geometric parameters measurement using laser differential confocal technique,” Opt. Commun. 292, 62–67 (2013).

Opt. Express (2)

Phys. Plasmas (1)

P. W. Mckenty, V. N. Goncharov, R. P. J. Town, S. Skupsky, R. Betti, and R. L. McCrory, “Analysis of a direct-drive ignition capsule designed for the National Ignition Facility,” Phys. Plasmas 8(5), 2315–2322 (2001).

Proc. SPIE (1)

F. Wang, J. Tan, and W. Zhao, “Optical probe using confocal technique for surface profile,” Proc. SPIE 4222, 194–197 (2000).

Vac. Sci. Technol. (1)

R. L. Mceachern, C. E. Moore, and R. J. Wallace, “The design, performance, and application of an atomic force microscope-based profilometer,” Vac. Sci. Technol. 13(3), 983–989 (1995).

Other (4)

Project Staff, “Inertial Confinement Fusion Target Component Fabrication and Technology Development Support, Annual Report to the U.S. Department of Energy,” General Atomics Report GA-A23240(1999).

W. Zhao, J. Tan, and L. Qiu, “Differential confocal scanning detection method with high spatial resolution,” Patent. China. CN 1527026A(2004).

L. Cao and B. Wang, Roundness Measurement and Verification Techniques (National Defense Industry, 1998).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambrige University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Laser differential confocal inner surface profile measurement principle of ICF capsule.
Fig. 2
Fig. 2 The property curves for different offset uM. (a) Laser differential confocal axial response curve ID(u,uM). (b) Axial resolution curve Δu.
Fig. 3
Fig. 3 Anti-reflectivity differential confocal curve when uM = 5.5.
Fig. 4
Fig. 4 Calculation of shell thickness using the ray-tracing technique.
Fig. 5
Fig. 5 3D profile measurement scheme of the capsule’s inner surface.
Fig. 6
Fig. 6 Effect of primary spherical aberration. (a) Focusing curves. (b) Axial resolution.
Fig. 7
Fig. 7 Effect of primary astigmatism. (a) Focusing curves. (b) Axial resolution.
Fig. 8
Fig. 8 Analysis of effect of capsule eccentricity adjustment error.
Fig. 9
Fig. 9 (a) Laser differential confocal inner-surface profile measurement system for ICF capsule. (b) LDCS.
Fig. 10
Fig. 10 Test of the LDCS properties. (a) Axial focusing curve. (b) Axial resolution.
Fig. 11
Fig. 11 Measured inner-profile data curve of capsule equatorial section.
Fig. 12
Fig. 12 (a) Inner- profile data after compensation. (b) Roundness evaluation result.
Fig. 13
Fig. 13 Repeated measurements of the inner-surface profile. (a) Roundness evaluation results. (b) Shape of inner profile.
Fig. 14
Fig. 14 3D reconstructed profile of the capsule’s inner surface.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I ( u , u M ) = | 1 π 0 2 π 0 1 e j ρ 2 ( u + u M / 2 ) ρ d ρ d θ | 2 | 1 π 0 2 π 0 1 e j ρ 2 ( u - u M / 2 ) ρ d ρ d θ | 2 , = [ sin ( ( 2 u + u M ) / 4 ) ( 2 u + u M ) / 4 ] 2 [ sin ( ( 2 u u M ) / 4 ) ( 2 u u M ) / 4 ] 2
u = λ N A 2 z , and u M = λ N A 2 M .
I D ( u , u M ) = I B ( u , + u M ) I B ( u , u M ) I B ( u , + u M ) + I B ( u , u M ) = [ sin ( ( 2 u + u M ) / 4 ) ( 2 u + u M ) / 4 ] 2 [ sin ( ( 2 u u M ) / 4 ) ( 2 u u M ) / 4 ] 2 [ sin ( ( 2 u + u M ) / 4 ) ( 2 u + u M ) / 4 ] 2 + [ sin ( ( 2 u u M ) / 4 ) ( 2 u u M ) / 4 ] 2 .
Δ u = λ 2 π N A 2 S N R | I D ( u , u M ) u | u = 0 .
Δ u = λ 3.32 × N A 2 × S N R = 0.405 3.32 × 0.80 2 × 200 μm 9.52 × 10 4 μm .
Δ v 1 = 0.436 λ N A = 0.436 × 0.405 0.80 μm 0.221 μm .
T 0 = Z B Z A .
T a v g = 0 arcsin ( N A ) T ( n , R , T 0 , β ) d β arc sin ( N A ) ,
T ( n , R , T 0 , β ) = R + 1 n × sin β × ( T 0 - R ) sin [ β + arc sin ( T 0 - R R × sin β ) - arc sin ( 1 n × T 0 - R R × sin β ) ] .
Z C = Z A + T a v g .
D 1 ( i ) = D 10 + k = 1 N 1 [ p k cos ( 2 k i π / N ) + q k sin ( 2 k i π / N ) ] .
D 1 ( i ) = D 1 ( i ) D 10 [ p 1 cos ( 2 i π / N ) + q 1 sin ( 2 i π / N ) ] ,
{ p 1 = 2 N i = 1 N D 1 ( i ) cos ( 2 i π / N ) , q 1 = 2 N i = 1 N D 1 ( i ) sin ( 2 i π / N ) , D 10 = 1 N i = 1 N D 1 ( i ) } .
ϕ ( ρ , θ ) A 040 ρ 4 + A 022 ρ 2 cos 2 θ + A 120 ρ 2
I D B ( u , u M , 0 , ϕ ) = | 1 π 0 2 π 0 1 e j ρ 2 ( u + u M / 2 ) e 4 π j A 040 ρ 4 / λ ρ d ρ d θ | 2 | 1 π 0 2 π 0 1 e j ρ 2 ( u - u M / 2 ) e 4 π j A 040 ρ 4 / λ ρ d ρ d θ | 2 | 1 π 0 2 π 0 1 e j ρ 2 ( u + u M / 2 ) e 4 π j A 040 ρ 4 / λ ρ d ρ d θ | 2 + | 1 π 0 2 π 0 1 e j ρ 2 ( u - u M / 2 ) e 4 π j A 040 ρ 4 / λ ρ d ρ d θ | 2 .
I D B ( u , u M , 0 , ϕ ) = | 1 π 0 2 π 0 1 e j ρ 2 ( u + u M / 2 ) e 4 π j A 022 ρ 2 c o s 2 θ / λ ρ d ρ d θ | 2 | 1 π 0 2 π 0 1 e j ρ 2 ( u - u M / 2 ) e 4 π j A 022 ρ 2 c o s 2 θ / λ ρ d ρ d θ | 2 | 1 π 0 2 π 0 1 e j ρ 2 ( u + u M / 2 ) e 4 π j A 022 ρ 2 c o s 2 θ / λ ρ d ρ d θ | 2 + | 1 π 0 2 π 0 1 e j ρ 2 ( u - u M / 2 ) e 4 π j A 022 ρ 2 c o s 2 θ / λ ρ d ρ d θ | 2 .
Δ A i = r - r cos { θ + φ i + arc sin [ b r cos ( θ + φ i ) ] } cos ( θ + φ i ) .
Δ t i = R r R cos { θ + φ i + arc sin [ b R cos ( θ + φ i ) ] } cos ( θ + φ i ) . + r cos { θ + φ i + arc sin [ b r cos ( θ + φ i ) ] } cos ( θ + φ i )

Metrics