Abstract

As the counterpart of electric and magnetic dipoles, the toroidal dipole is of paramount importance in the flourishing fields of metamaterials and Nanophotonics, and has therefore been getting much attention recently. Here, we demonstrate that a toroidal dipole can be formed in (dielectric core)@(plasmonic shell) nanostructures as the core refractive index is increased. For nanostructures with relatively large core refractive indices, polarized charge oscillation can be induced in the core by the oscillation of free electrons in the shell. These two oscillations create a toroidal dipole in the nanostructure. The formation of a toroidal dipole induces a scattering dip and a new absorption peak spectrally close to the created scattering dip. We also show that the toroidal dipole-induced absorption and scattering dip become weaker as the imaginary part of the core refractive index is increased. To the best of our knowledge, this is the first observation that the absorption becomes weaker with the increase of the imaginary part of the refractive index. Moreover, because almost all of the electric and magnetic fields are concentrated within the nanostructure, the toroidal dipole-induced scattering dip and absorption peak show resonance wavelength that is independent of the refractive index of the surrounding medium. Such an invariable property can be used as optical references or marks.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient second harmonic generation in gold–silicon core–shell nanostructures

Zhong-Jian Yang, Qian Zhao, Yan-Hui Deng, Dou Zhang, and Jun He
Opt. Express 26(5) 5835-5844 (2018)

Reconfigurable optical forces induced by tunable mode interference in gold core-silicon shell nanoparticles

Zheng-Xun Xiang, Xiang-Shi Kong, Xu-Bo Hu, Hai-Tao Xu, Yong-Bing Long, and Hai-Dong Deng
Opt. Mater. Express 9(3) 1105-1117 (2019)

Broadband zero backward scattering by all-dielectric core-shell nanoparticles

Runmin Li, Xin Zhou, Mingcheng Panmai, Jin Xiang, Haiying Liu, Min Ouyang, Haihua Fan, Qiaofeng Dai, and Zhongchao Wei
Opt. Express 26(22) 28891-28901 (2018)

References

  • View by:
  • |
  • |
  • |

  1. I. B. Zel’dovich, “Electromagnetic interaction with parity violation,” J. Exp. Theor. Phys. 33, 1531–1533 (1957).
  2. V. M. Dubovik, L. A. Tosunyan, and V. V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Sov. Phys. JETP 63(2), 344–351 (1986).
  3. A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: finite-difference time-domain modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036603 (2005).
    [PubMed]
  4. G. N. Afanasiev and V. M. Dubovik, “Some remarkable charge-current configurations,” Phys. Part. Nucl. 29(4), 366–391 (1998).
  5. G. N. Afanasiev, “Simplest sources of electromagnetic fields as a tool for testing the reciprocity-like theorems,” J. Phys. D 34(4), 539–559 (2001).
  6. K. Sawada and N. Nagaosa, “Optical magnetoelectric effect in multiferroic materials: evidence for a Lorentz force acting on a ray of light,” Phys. Rev. Lett. 95(23), 237402 (2005).
    [PubMed]
  7. I. I. Naumov, L. Bellaiche, and H. Fu, “Unusual phase transitions in ferroelectric nanodisks and nanorods,” Nature 432(7018), 737–740 (2004).
    [PubMed]
  8. L. Ungur, S. K. Langley, T. N. Hooper, B. Moubaraki, E. K. Brechin, K. S. Murray, and L. F. Chibotaru, “Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring,” J. Am. Chem. Soc. 134(45), 18554–18557 (2012).
    [PubMed]
  9. A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular anapole moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).
  10. V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187(4), 145–202 (1990).
  11. E. E. Radescu and G. Vaman, “Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4 Pt 2B), 046609 (2002).
    [PubMed]
  12. V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1983).
  14. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
    [PubMed]
  15. Z.-G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
    [PubMed]
  16. Y.-W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y.-F. Chau, N. I. Zheludev, and D. P. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20(2), 1760–1768 (2012).
    [PubMed]
  17. A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).
  18. Q. Zhang, J. J. Xiao, X. M. Zhang, D. Han, and L. Gao, “Core–shell-structured dielectric–metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).
  19. A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
    [PubMed]
  20. W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole-induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
  21. W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
    [PubMed]
  22. W. Liu, J. Shi, B. Lei, H. Hu, and A. E. Miroshnichenko, “Efficient excitation and tuning of toroidal dipoles within individual homogenous nanoparticles,” Opt. Express 23(19), 24738–24747 (2015).
    [PubMed]
  23. Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
    [PubMed]
  24. C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129(8), 084706 (2008).
    [PubMed]
  25. J. Sinzig and M. Quinten, “Scattering and absorption by spherical multilayer particles,” Appl. Phys. A Mater. Sci. Process. 58(2), 157–162 (1994).
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  28. B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B 77(3), 035440 (2008).
  29. S. Zhang, R. Jiang, Y.-M. Xie, Q. Ruan, B. Yang, J. Wang, and H.-Q. Lin, “Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties,” Adv. Mater. 27(45), 7432–7439 (2015).
    [PubMed]
  30. Z.-J. Yang, R. B. Jiang, X. L. Zhuo, Y.-M. Xie, J. F. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).
  31. B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34(7), 896–898 (2009).
    [PubMed]
  32. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
    [PubMed]
  33. S. Guo, X. Li, J. Zhu, T. Tong, and B. Wei, “Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability,” Small 12(41), 5692–5701 (2016).
    [PubMed]
  34. X. H. Li, S. H. Guo, C. X. Kan, J. M. Zhu, T. T. Tong, S. L. Ke, W. C. H. Choy, and B. Q. Wei, “Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect,” Nano Energy 30, 549–558 (2016).

2017 (2)

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[PubMed]

Z.-J. Yang, R. B. Jiang, X. L. Zhuo, Y.-M. Xie, J. F. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).

2016 (2)

S. Guo, X. Li, J. Zhu, T. Tong, and B. Wei, “Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability,” Small 12(41), 5692–5701 (2016).
[PubMed]

X. H. Li, S. H. Guo, C. X. Kan, J. M. Zhu, T. T. Tong, S. L. Ke, W. C. H. Choy, and B. Q. Wei, “Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect,” Nano Energy 30, 549–558 (2016).

2015 (7)

S. Zhang, R. Jiang, Y.-M. Xie, Q. Ruan, B. Yang, J. Wang, and H.-Q. Lin, “Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[PubMed]

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Han, and L. Gao, “Core–shell-structured dielectric–metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[PubMed]

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole-induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[PubMed]

W. Liu, J. Shi, B. Lei, H. Hu, and A. E. Miroshnichenko, “Efficient excitation and tuning of toroidal dipoles within individual homogenous nanoparticles,” Opt. Express 23(19), 24738–24747 (2015).
[PubMed]

2014 (1)

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).

2012 (3)

2011 (1)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[PubMed]

2010 (1)

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

2009 (1)

2008 (2)

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B 77(3), 035440 (2008).

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129(8), 084706 (2008).
[PubMed]

2005 (2)

K. Sawada and N. Nagaosa, “Optical magnetoelectric effect in multiferroic materials: evidence for a Lorentz force acting on a ray of light,” Phys. Rev. Lett. 95(23), 237402 (2005).
[PubMed]

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: finite-difference time-domain modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036603 (2005).
[PubMed]

2004 (1)

I. I. Naumov, L. Bellaiche, and H. Fu, “Unusual phase transitions in ferroelectric nanodisks and nanorods,” Nature 432(7018), 737–740 (2004).
[PubMed]

2002 (1)

E. E. Radescu and G. Vaman, “Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4 Pt 2B), 046609 (2002).
[PubMed]

2001 (1)

G. N. Afanasiev, “Simplest sources of electromagnetic fields as a tool for testing the reciprocity-like theorems,” J. Phys. D 34(4), 539–559 (2001).

1998 (2)

A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular anapole moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).

G. N. Afanasiev and V. M. Dubovik, “Some remarkable charge-current configurations,” Phys. Part. Nucl. 29(4), 366–391 (1998).

1994 (1)

J. Sinzig and M. Quinten, “Scattering and absorption by spherical multilayer particles,” Appl. Phys. A Mater. Sci. Process. 58(2), 157–162 (1994).

1990 (1)

V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187(4), 145–202 (1990).

1986 (1)

V. M. Dubovik, L. A. Tosunyan, and V. V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Sov. Phys. JETP 63(2), 344–351 (1986).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

1957 (1)

I. B. Zel’dovich, “Electromagnetic interaction with parity violation,” J. Exp. Theor. Phys. 33, 1531–1533 (1957).

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[PubMed]

Afanasiev, G. N.

G. N. Afanasiev, “Simplest sources of electromagnetic fields as a tool for testing the reciprocity-like theorems,” J. Phys. D 34(4), 539–559 (2001).

G. N. Afanasiev and V. M. Dubovik, “Some remarkable charge-current configurations,” Phys. Part. Nucl. 29(4), 366–391 (1998).

Ali, T. A.

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129(8), 084706 (2008).
[PubMed]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[PubMed]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[PubMed]

Bakker, R. M.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[PubMed]

Basharin, A. A.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Bellaiche, L.

I. I. Naumov, L. Bellaiche, and H. Fu, “Unusual phase transitions in ferroelectric nanodisks and nanorods,” Nature 432(7018), 737–740 (2004).
[PubMed]

Boardman, A. D.

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: finite-difference time-domain modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036603 (2005).
[PubMed]

Borghs, G.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B 77(3), 035440 (2008).

Brandl, D. W.

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129(8), 084706 (2008).
[PubMed]

Brechin, E. K.

L. Ungur, S. K. Langley, T. N. Hooper, B. Moubaraki, E. K. Brechin, K. S. Murray, and L. F. Chibotaru, “Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring,” J. Am. Chem. Soc. 134(45), 18554–18557 (2012).
[PubMed]

Ceulemans, A.

A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular anapole moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).

Chau, Y.-F.

Chen, S.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[PubMed]

Chen, W. T.

Chibotaru, L. F.

L. Ungur, S. K. Langley, T. N. Hooper, B. Moubaraki, E. K. Brechin, K. S. Murray, and L. F. Chibotaru, “Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring,” J. Am. Chem. Soc. 134(45), 18554–18557 (2012).
[PubMed]

A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular anapole moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).

Chichkov, B. N.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[PubMed]

Chipouline, A.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[PubMed]

Choy, W. C. H.

X. H. Li, S. H. Guo, C. X. Kan, J. M. Zhu, T. T. Tong, S. L. Ke, W. C. H. Choy, and B. Q. Wei, “Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect,” Nano Energy 30, 549–558 (2016).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

Cui, A.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[PubMed]

Dong, Z.-G.

Du, S.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[PubMed]

Dubovik, V. M.

G. N. Afanasiev and V. M. Dubovik, “Some remarkable charge-current configurations,” Phys. Part. Nucl. 29(4), 366–391 (1998).

V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187(4), 145–202 (1990).

V. M. Dubovik, L. A. Tosunyan, and V. V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Sov. Phys. JETP 63(2), 344–351 (1986).

Dutta, C. M.

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129(8), 084706 (2008).
[PubMed]

Economou, E. N.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Evlyukhin, A. B.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[PubMed]

Fan, Y.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[PubMed]

Fedotov, V.

Fedotov, V. A.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: finite-difference time-domain modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036603 (2005).
[PubMed]

Fowler, P. W.

A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular anapole moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).

Fu, H.

I. I. Naumov, L. Bellaiche, and H. Fu, “Unusual phase transitions in ferroelectric nanodisks and nanorods,” Nature 432(7018), 737–740 (2004).
[PubMed]

Gao, L.

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Han, and L. Gao, “Core–shell-structured dielectric–metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).

Gu, C.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[PubMed]

Guo, S.

S. Guo, X. Li, J. Zhu, T. Tong, and B. Wei, “Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability,” Small 12(41), 5692–5701 (2016).
[PubMed]

Guo, S. H.

X. H. Li, S. H. Guo, C. X. Kan, J. M. Zhu, T. T. Tong, S. L. Ke, W. C. H. Choy, and B. Q. Wei, “Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect,” Nano Energy 30, 549–558 (2016).

Han, D.

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Han, and L. Gao, “Core–shell-structured dielectric–metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).

Ho, Y. Z.

Hooper, T. N.

L. Ungur, S. K. Langley, T. N. Hooper, B. Moubaraki, E. K. Brechin, K. S. Murray, and L. F. Chibotaru, “Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring,” J. Am. Chem. Soc. 134(45), 18554–18557 (2012).
[PubMed]

Hu, H.

Huang, Y.-W.

Jiang, R.

S. Zhang, R. Jiang, Y.-M. Xie, Q. Ruan, B. Yang, J. Wang, and H.-Q. Lin, “Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[PubMed]

Jiang, R. B.

Z.-J. Yang, R. B. Jiang, X. L. Zhuo, Y.-M. Xie, J. F. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

Kaelberer, T.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

Kafesaki, M.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Kan, C. X.

X. H. Li, S. H. Guo, C. X. Kan, J. M. Zhu, T. T. Tong, S. L. Ke, W. C. H. Choy, and B. Q. Wei, “Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect,” Nano Energy 30, 549–558 (2016).

Ke, S. L.

X. H. Li, S. H. Guo, C. X. Kan, J. M. Zhu, T. T. Tong, S. L. Ke, W. C. H. Choy, and B. Q. Wei, “Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect,” Nano Energy 30, 549–558 (2016).

Khanadeyev, V. A.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B 77(3), 035440 (2008).

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[PubMed]

Khlebtsov, B. N.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B 77(3), 035440 (2008).

Khlebtsov, N. G.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B 77(3), 035440 (2008).

Kivshar, Y. S.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[PubMed]

Kuznetsov, A. I.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[PubMed]

Langley, S. K.

L. Ungur, S. K. Langley, T. N. Hooper, B. Moubaraki, E. K. Brechin, K. S. Murray, and L. F. Chibotaru, “Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring,” J. Am. Chem. Soc. 134(45), 18554–18557 (2012).
[PubMed]

Lee, L. P.

Lei, B.

Li, J.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[PubMed]

Li, W.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[PubMed]

Li, X.

S. Guo, X. Li, J. Zhu, T. Tong, and B. Wei, “Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability,” Small 12(41), 5692–5701 (2016).
[PubMed]

Li, X. H.

X. H. Li, S. H. Guo, C. X. Kan, J. M. Zhu, T. T. Tong, S. L. Ke, W. C. H. Choy, and B. Q. Wei, “Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect,” Nano Energy 30, 549–558 (2016).

Li, Z.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[PubMed]

Lin, H.-Q.

Z.-J. Yang, R. B. Jiang, X. L. Zhuo, Y.-M. Xie, J. F. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).

S. Zhang, R. Jiang, Y.-M. Xie, Q. Ruan, B. Yang, J. Wang, and H.-Q. Lin, “Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[PubMed]

Liu, W.

Liu, Z.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[PubMed]

Luk’yanchuk, B.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[PubMed]

Mackowski, D. W.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B 77(3), 035440 (2008).

Marinov, K.

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: finite-difference time-domain modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036603 (2005).
[PubMed]

Miroshnichenko, A. E.

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole-induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[PubMed]

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[PubMed]

W. Liu, J. Shi, B. Lei, H. Hu, and A. E. Miroshnichenko, “Efficient excitation and tuning of toroidal dipoles within individual homogenous nanoparticles,” Opt. Express 23(19), 24738–24747 (2015).
[PubMed]

Moubaraki, B.

L. Ungur, S. K. Langley, T. N. Hooper, B. Moubaraki, E. K. Brechin, K. S. Murray, and L. F. Chibotaru, “Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring,” J. Am. Chem. Soc. 134(45), 18554–18557 (2012).
[PubMed]

Murray, K. S.

L. Ungur, S. K. Langley, T. N. Hooper, B. Moubaraki, E. K. Brechin, K. S. Murray, and L. F. Chibotaru, “Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring,” J. Am. Chem. Soc. 134(45), 18554–18557 (2012).
[PubMed]

Nagaosa, N.

K. Sawada and N. Nagaosa, “Optical magnetoelectric effect in multiferroic materials: evidence for a Lorentz force acting on a ray of light,” Phys. Rev. Lett. 95(23), 237402 (2005).
[PubMed]

Naumov, I. I.

I. I. Naumov, L. Bellaiche, and H. Fu, “Unusual phase transitions in ferroelectric nanodisks and nanorods,” Nature 432(7018), 737–740 (2004).
[PubMed]

Ni, P.

Nordlander, P.

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129(8), 084706 (2008).
[PubMed]

Papasimakis, N.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

Park, T.-H.

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129(8), 084706 (2008).
[PubMed]

Quinten, M.

J. Sinzig and M. Quinten, “Scattering and absorption by spherical multilayer particles,” Appl. Phys. A Mater. Sci. Process. 58(2), 157–162 (1994).

Radescu, E. E.

E. E. Radescu and G. Vaman, “Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4 Pt 2B), 046609 (2002).
[PubMed]

Ross, B. M.

Ruan, Q.

S. Zhang, R. Jiang, Y.-M. Xie, Q. Ruan, B. Yang, J. Wang, and H.-Q. Lin, “Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[PubMed]

Savinov, V.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).

Y.-W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y.-F. Chau, N. I. Zheludev, and D. P. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20(2), 1760–1768 (2012).
[PubMed]

Sawada, K.

K. Sawada and N. Nagaosa, “Optical magnetoelectric effect in multiferroic materials: evidence for a Lorentz force acting on a ray of light,” Phys. Rev. Lett. 95(23), 237402 (2005).
[PubMed]

Shi, J.

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[PubMed]

Sinzig, J.

J. Sinzig and M. Quinten, “Scattering and absorption by spherical multilayer particles,” Appl. Phys. A Mater. Sci. Process. 58(2), 157–162 (1994).

Soukoulis, C. M.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Tong, T.

S. Guo, X. Li, J. Zhu, T. Tong, and B. Wei, “Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability,” Small 12(41), 5692–5701 (2016).
[PubMed]

Tong, T. T.

X. H. Li, S. H. Guo, C. X. Kan, J. M. Zhu, T. T. Tong, S. L. Ke, W. C. H. Choy, and B. Q. Wei, “Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect,” Nano Energy 30, 549–558 (2016).

Tosunyan, L. A.

V. M. Dubovik, L. A. Tosunyan, and V. V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Sov. Phys. JETP 63(2), 344–351 (1986).

Tsai, D. P.

Y.-W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y.-F. Chau, N. I. Zheludev, and D. P. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20(2), 1760–1768 (2012).
[PubMed]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

Tugushev, V. V.

V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187(4), 145–202 (1990).

V. M. Dubovik, L. A. Tosunyan, and V. V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Sov. Phys. JETP 63(2), 344–351 (1986).

Ungur, L.

L. Ungur, S. K. Langley, T. N. Hooper, B. Moubaraki, E. K. Brechin, K. S. Murray, and L. F. Chibotaru, “Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring,” J. Am. Chem. Soc. 134(45), 18554–18557 (2012).
[PubMed]

Vaman, G.

E. E. Radescu and G. Vaman, “Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4 Pt 2B), 046609 (2002).
[PubMed]

Wang, J.

S. Zhang, R. Jiang, Y.-M. Xie, Q. Ruan, B. Yang, J. Wang, and H.-Q. Lin, “Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[PubMed]

Wang, J. F.

Z.-J. Yang, R. B. Jiang, X. L. Zhuo, Y.-M. Xie, J. F. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).

Wei, B.

S. Guo, X. Li, J. Zhu, T. Tong, and B. Wei, “Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability,” Small 12(41), 5692–5701 (2016).
[PubMed]

Wei, B. Q.

X. H. Li, S. H. Guo, C. X. Kan, J. M. Zhu, T. T. Tong, S. L. Ke, W. C. H. Choy, and B. Q. Wei, “Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect,” Nano Energy 30, 549–558 (2016).

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[PubMed]

Wu, P. C.

Xiao, J. J.

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Han, and L. Gao, “Core–shell-structured dielectric–metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).

Xie, Y.-M.

Z.-J. Yang, R. B. Jiang, X. L. Zhuo, Y.-M. Xie, J. F. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).

S. Zhang, R. Jiang, Y.-M. Xie, Q. Ruan, B. Yang, J. Wang, and H.-Q. Lin, “Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[PubMed]

Yang, B.

S. Zhang, R. Jiang, Y.-M. Xie, Q. Ruan, B. Yang, J. Wang, and H.-Q. Lin, “Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[PubMed]

Yang, Z.-J.

Z.-J. Yang, R. B. Jiang, X. L. Zhuo, Y.-M. Xie, J. F. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[PubMed]

Ye, J.

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B 77(3), 035440 (2008).

Yin, X.

Yu, Y. F.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[PubMed]

Zel’dovich, I. B.

I. B. Zel’dovich, “Electromagnetic interaction with parity violation,” J. Exp. Theor. Phys. 33, 1531–1533 (1957).

Zhang, J.

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole-induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[PubMed]

Zhang, Q.

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Han, and L. Gao, “Core–shell-structured dielectric–metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).

Zhang, S.

S. Zhang, R. Jiang, Y.-M. Xie, Q. Ruan, B. Yang, J. Wang, and H.-Q. Lin, “Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[PubMed]

Zhang, X.

Zhang, X. M.

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Han, and L. Gao, “Core–shell-structured dielectric–metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).

Zheludev, N.

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: finite-difference time-domain modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036603 (2005).
[PubMed]

Zheludev, N. I.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).

Y.-W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y.-F. Chau, N. I. Zheludev, and D. P. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20(2), 1760–1768 (2012).
[PubMed]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

Zhu, J.

S. Guo, X. Li, J. Zhu, T. Tong, and B. Wei, “Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability,” Small 12(41), 5692–5701 (2016).
[PubMed]

Z.-G. Dong, P. Ni, J. Zhu, X. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
[PubMed]

Zhu, J. M.

X. H. Li, S. H. Guo, C. X. Kan, J. M. Zhu, T. T. Tong, S. L. Ke, W. C. H. Choy, and B. Q. Wei, “Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect,” Nano Energy 30, 549–558 (2016).

Zhuo, X. L.

Z.-J. Yang, R. B. Jiang, X. L. Zhuo, Y.-M. Xie, J. F. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).

ACS Photonics (1)

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Han, and L. Gao, “Core–shell-structured dielectric–metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).

Adv. Mater. (2)

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[PubMed]

S. Zhang, R. Jiang, Y.-M. Xie, Q. Ruan, B. Yang, J. Wang, and H.-Q. Lin, “Colloidal moderate-refractive-index Cu2O nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties,” Adv. Mater. 27(45), 7432–7439 (2015).
[PubMed]

Appl. Phys. A Mater. Sci. Process. (1)

J. Sinzig and M. Quinten, “Scattering and absorption by spherical multilayer particles,” Appl. Phys. A Mater. Sci. Process. 58(2), 157–162 (1994).

J. Am. Chem. Soc. (1)

L. Ungur, S. K. Langley, T. N. Hooper, B. Moubaraki, E. K. Brechin, K. S. Murray, and L. F. Chibotaru, “Net toroidal magnetic moment in the ground state of a {Dy6}-triethanolamine ring,” J. Am. Chem. Soc. 134(45), 18554–18557 (2012).
[PubMed]

J. Chem. Phys. (1)

C. M. Dutta, T. A. Ali, D. W. Brandl, T.-H. Park, and P. Nordlander, “Plasmonic properties of a metallic torus,” J. Chem. Phys. 129(8), 084706 (2008).
[PubMed]

J. Exp. Theor. Phys. (1)

I. B. Zel’dovich, “Electromagnetic interaction with parity violation,” J. Exp. Theor. Phys. 33, 1531–1533 (1957).

J. Phys. D (1)

G. N. Afanasiev, “Simplest sources of electromagnetic fields as a tool for testing the reciprocity-like theorems,” J. Phys. D 34(4), 539–559 (2001).

Laser Photonics Rev. (1)

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole-induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).

Nano Energy (1)

X. H. Li, S. H. Guo, C. X. Kan, J. M. Zhu, T. T. Tong, S. L. Ke, W. C. H. Choy, and B. Q. Wei, “Au multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect,” Nano Energy 30, 549–558 (2016).

Nat. Commun. (1)

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, and Y. S. Kivshar, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6, 8069 (2015).
[PubMed]

Nat. Mater. (1)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[PubMed]

Nature (1)

I. I. Naumov, L. Bellaiche, and H. Fu, “Unusual phase transitions in ferroelectric nanodisks and nanorods,” Nature 432(7018), 737–740 (2004).
[PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Part. Nucl. (1)

G. N. Afanasiev and V. M. Dubovik, “Some remarkable charge-current configurations,” Phys. Part. Nucl. 29(4), 366–391 (1998).

Phys. Rep. (2)

V. M. Dubovik and V. V. Tugushev, “Toroid moments in electrodynamics and solid-state physics,” Phys. Rep. 187(4), 145–202 (1990).

Z.-J. Yang, R. B. Jiang, X. L. Zhuo, Y.-M. Xie, J. F. Wang, and H.-Q. Lin, “Dielectric nanoresonators for light manipulation,” Phys. Rep. 701, 1–50 (2017).

Phys. Rev. B (3)

B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, D. W. Mackowski, G. Borghs, and N. G. Khlebtsov, “Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells,” Phys. Rev. B 77(3), 035440 (2008).

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B 89(20), 205112 (2014).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

E. E. Radescu and G. Vaman, “Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4 Pt 2B), 046609 (2002).
[PubMed]

A. D. Boardman, K. Marinov, N. Zheludev, and V. A. Fedotov, “Dispersion properties of nonradiating configurations: finite-difference time-domain modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3 Pt 2), 036603 (2005).
[PubMed]

Phys. Rev. Lett. (2)

K. Sawada and N. Nagaosa, “Optical magnetoelectric effect in multiferroic materials: evidence for a Lorentz force acting on a ray of light,” Phys. Rev. Lett. 95(23), 237402 (2005).
[PubMed]

A. Ceulemans, L. F. Chibotaru, and P. W. Fowler, “Molecular anapole moments,” Phys. Rev. Lett. 80(9), 1861–1864 (1998).

Phys. Rev. X (1)

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5(1), 011036 (2015).

Science (1)

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[PubMed]

Small (1)

S. Guo, X. Li, J. Zhu, T. Tong, and B. Wei, “Au NPs@MoS2 sub-micrometer sphere-ZnO nanorod hybrid structures for efficient photocatalytic hydrogen evolution with excellent stability,” Small 12(41), 5692–5701 (2016).
[PubMed]

Sov. Phys. JETP (1)

V. M. Dubovik, L. A. Tosunyan, and V. V. Tugushev, “Axial toroidal moments in electrodynamics and solid-state physics,” Sov. Phys. JETP 63(2), 344–351 (1986).

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1983).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the electromagnetic resonances of (dielectric core)@(plasmonic shell) nanostructures with different core refractive indices. The red circle arrows schematically show the electric currents produced by the free electron oscillation in the shell. The blue arrow schematically displays the electric current created by the polarization charge oscillation in the core. When the core has a relatively high refractive index, toroidal dipole is created by the currents induced by free electric and polarized charge oscillations. The formation of toroidal dipole gives rise to a scattering dip and a new absorption peak.
Fig. 2
Fig. 2 Electromagnetic resonances of a dielectric nanosphere, a Au nanoshell and the (dielectric core)@(Au shell) nanostructure. (a) Optical cross-sections of a dielectric nanosphere with radius of 50 nm and refractive index of 3.0. (b) Optical cross-sections of a Au nanoshell with inner and outer radii of 50 and 100 nm, respectively. (c) Optical cross-sections of the nanostructures formed with the dielectric nanosphere shown in (a) and the Au nanoshell shown in (b). (d) Near-field electric field distribution of the core@shell nanostructure at the two resonance peaks and the dip. (e) Near-field magnetic field distribution of core@shell nanostructure at the two resonance peaks and the dip. The electric and magnetic field are monitored in the plane across the center of the nanostructure. The electric and magnetic field are normalized to the incident field. The dashed circles in (d) and (e) stand for the interface between the core and the shell.
Fig. 3
Fig. 3 Evolution of electromagnetic resonances of the (dielectric core)@(Au shell) nanostructure with core radius of 50 nm and shell thickness of 50 nm with respect to the refractive index of core. (a) Scattering cross-section. (b) Absorption cross-section. (c) Extinction cross-section. (d) Scattering cross-section at the dip position (black circle) and the ratio of the scattering cross-section at the dip position to the scattering cross-section at the same wavelength but with core refractive index of 1 (blue square). (e) Absorption cross-section at the new induced absorption peak. (f) Extinction cross-section at the dip position (black circle) and the ratio of the extinction cross-section at the dip position to the extinction cross-section at the same wavelength but with core refractive index of 1 (blue square).
Fig. 4
Fig. 4 Magnetic field distribution of core@shell nanostructures with different core refractive indices. The nanostructures have a core radius of 50 nm and a Au shell thickness of 50 nm. (a) Schematic of the excitation condition. (b−f) Magnetic field distributions at the low energy resonance peak of nanostructures with core refractive indices of 1, 1.5, 2, 2.5 and 3, respectively. (g−i) Magnetic field distributions at the resonance dip of nanostructures with core refractive indices of 2, 2.5 and 3, respectively. All fields in (b−i) are monitored in x-y plane across the center of the nanostructures. The color bars in (c−i) are the same as that in (b). The dashed circles stand for the interface between the core and the shell.
Fig. 5
Fig. 5 Evolution of electromagnetic resonances of the (dielectric core)@(Au shell) nanostructure with respect to the imaginary part of core refractive index. (a) Scattering cross-section. (b) Absorption cross-section. (c) Extinction cross-section. The nanostructure has a core radius of 50 nm and shell thickness of 50 nm. The real part of core refractive index is 3.0.
Fig. 6
Fig. 6 Optical response of the (dielectric core)@(Au shell) nanostructures to the refractive index of surrounding medium. (a) Scattering spectra. (b) Absorption spectra. (c) Extinction spectra. The core has a radius of 50 nm and refractive index of 3.0. The shell has a thickness of 50 nm.
Fig. 7
Fig. 7 Optical cross-sections of (dielectric core)@(Ag shell) nanostructures with core diameter of 80 nm and shell thickness of 40 nm. (a) Evolution of scattering cross-section with the increase of core refractive index. (b) Evolution of absorption cross-section with the increase of core refractive index. (c) Evolution of extinction cross-section with the increase of core refractive index.

Metrics