Abstract

In this paper, the influence of ion beam sputtering (IBS) process on laser damage resistance as a function of sputtering depth and typical defects which associated with laser damage performance was investigated. Damage test results reveal that the damage resistance of HF etched surface can be further enhanced about 30% by appropriate IBS removal depth (less than ~1000nm). Within this removal depth, the IBS process can remove the redeposited reaction products during HF acid etching process, improve surface quality and reduce chemical structure defects concentration. However, further ion sputtering often results in a decrease rather than an increase of damage threshold with enhanced surface densification and increased chemical structure defects of ODC and NBOHC which generated from sputtering damage. Moreover, the sputtered surface will accelerate the chemical reaction of surface atoms with water molecules. Thus the newly obtained hydroxylation layer rich in highly absorptive products can result in the decrease of laser damage resistance. The study reveals the improvement mechanism by IBS process, and provides both technical guidance and theoretical basis for the optimization of the post-process of fused silica.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica

Feng Shi, Yaoyu Zhong, Yifan Dai, Xiaoqiang Peng, Mingjin Xu, and Tingting Sui
Opt. Express 24(18) 20842-20854 (2016)

Reaction ion etching process for improving laser damage resistance of fused silica optical surface

Laixi Sun, Hongjie Liu, Jin Huang, Xin Ye, Handing Xia, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 24(1) 199-211 (2016)

Evolution mechanism of surface roughness during ion beam sputtering of fused silica

Mingjin Xu, Yifan Dai, Lin Zhou, Xiaoqiang Peng, Shaoshan Chen, and Wenlin Liao
Appl. Opt. 57(20) 5566-5573 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
    [PubMed]
  2. A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
  3. T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
  4. J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
    [PubMed]
  5. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
  6. J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-Laser conditioning for producing UV-Damage-Resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
  7. H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).
  8. J. Néauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
    [PubMed]
  9. M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” Proc. SPIE 7504, 75040L (2009).
  10. T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).
  11. M. Xu, Y. Dai, L. Zhou, F. Shi, W. Wan, X. Xie, and T. Sui, “Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering,” Opt. Mater. 58, 151–157 (2016).
  12. F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
    [PubMed]
  13. T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).
  14. I. D. Boyd and M. L. Falk, “A review of spacecraft material sputtering by hall thruster plumes,” AIAA 37th Joint Propulsion Conference, Salt Lake City 2001–3353 (2001).
  15. C. Jiao, “Study on the material removal mechanisms and fundamental processes for ion beam figuring optical mirrors,” Ph.D. Dissertation, National University of Defense Technology (2008).
  16. T. Sui, “Measurement and Analysis of Laser-induced Damage Characteristics for Ultraviolet Optics,” Master Degree Dissertation, National University of Defense Technology (2015).
  17. Z. L. Wu, P. K. Kuo, Y. S. Lu, and S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).
  18. F. L. Galeener, A. J. Leadbetter, and M. W. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27(2), 1052–1077 (1983).
  19. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76, 367–372 (2003).
  20. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” J. Appl. Phys. 82, 3230–3232 (2003).
  21. A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).
  22. D. L. Griscom, “Defect structure of glass,” J. Non-Cryst. Solids 73, 51–77 (1985).
  23. L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
    [PubMed]
  24. L. M. Cook, “Chemical process in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).
  25. W. Liu, L. Wang, L. Liu, Y. Zhang, and X. Xu, “Determination of hydroxy in quartz glass by infrared spectrology,” J.Bohai Univ. 29(4), 332–335 (2008).
  26. Y. Su, Y. Zhou, W. Huang, and Z. Gu, “Study on reaction kinetics between silica glass and hydrofluoric acid,” J.Chinese Ceram. Soc. 32(3), 287– 293 (2004).
  27. L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
    [PubMed]

2016 (3)

2014 (4)

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[PubMed]

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[PubMed]

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

2011 (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

2010 (1)

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

2009 (3)

J. Néauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[PubMed]

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” Proc. SPIE 7504, 75040L (2009).

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).

2008 (1)

W. Liu, L. Wang, L. Liu, Y. Zhang, and X. Xu, “Determination of hydroxy in quartz glass by infrared spectrology,” J.Bohai Univ. 29(4), 332–335 (2008).

2004 (1)

Y. Su, Y. Zhou, W. Huang, and Z. Gu, “Study on reaction kinetics between silica glass and hydrofluoric acid,” J.Chinese Ceram. Soc. 32(3), 287– 293 (2004).

2003 (3)

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76, 367–372 (2003).

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” J. Appl. Phys. 82, 3230–3232 (2003).

2002 (1)

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-Laser conditioning for producing UV-Damage-Resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).

2000 (1)

L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
[PubMed]

1996 (1)

Z. L. Wu, P. K. Kuo, Y. S. Lu, and S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).

1990 (1)

L. M. Cook, “Chemical process in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).

1985 (1)

D. L. Griscom, “Defect structure of glass,” J. Non-Cryst. Solids 73, 51–77 (1985).

1983 (2)

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).

F. L. Galeener, A. J. Leadbetter, and M. W. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27(2), 1052–1077 (1983).

Akamatsu, S.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

Ambard, C.

Baxamusa, S.

Bude, J.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[PubMed]

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

Bude, J. D.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” Proc. SPIE 7504, 75040L (2009).

Carr, C.

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

Carr, C. W.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

Carr, W.

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76, 367–372 (2003).

Cook, L. M.

L. M. Cook, “Chemical process in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).

Cormont, P.

Cross, D.

Dai, Y.

F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
[PubMed]

M. Xu, Y. Dai, L. Zhou, F. Shi, W. Wan, X. Xie, and T. Sui, “Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering,” Opt. Mater. 58, 151–157 (2016).

Darbois, N.

Demos, S. G.

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” J. Appl. Phys. 82, 3230–3232 (2003).

Destribats, J.

Feit, M.

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” Proc. SPIE 7504, 75040L (2009).

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).

Galeener, F. L.

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).

F. L. Galeener, A. J. Leadbetter, and M. W. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27(2), 1052–1077 (1983).

Geissberger, A. E.

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).

Golini, D.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-Laser conditioning for producing UV-Damage-Resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).

Griscom, D. L.

D. L. Griscom, “Defect structure of glass,” J. Non-Cryst. Solids 73, 51–77 (1985).

Gu, S. T.

Z. L. Wu, P. K. Kuo, Y. S. Lu, and S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).

Gu, Z.

Y. Su, Y. Zhou, W. Huang, and Z. Gu, “Study on reaction kinetics between silica glass and hydrofluoric acid,” J.Chinese Ceram. Soc. 32(3), 287– 293 (2004).

Hirano, M.

L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
[PubMed]

Hosono, H.

L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
[PubMed]

Huang, J.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[PubMed]

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

Huang, W.

Y. Su, Y. Zhou, W. Huang, and Z. Gu, “Study on reaction kinetics between silica glass and hydrofluoric acid,” J.Chinese Ceram. Soc. 32(3), 287– 293 (2004).

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76, 367–372 (2003).

Jiang, X.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[PubMed]

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

Jitsuno, T.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

Kamimura, T.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

Krol, D. M.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76, 367–372 (2003).

Kucheyev, S. O.

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” J. Appl. Phys. 82, 3230–3232 (2003).

Kuo, P. K.

Z. L. Wu, P. K. Kuo, Y. S. Lu, and S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).

Laurence, T.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[PubMed]

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).

Leadbetter, A. J.

F. L. Galeener, A. J. Leadbetter, and M. W. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27(2), 1052–1077 (1983).

Li, Q.

Liu, H.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[PubMed]

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

Liu, L.

W. Liu, L. Wang, L. Liu, Y. Zhang, and X. Xu, “Determination of hydroxy in quartz glass by infrared spectrology,” J.Bohai Univ. 29(4), 332–335 (2008).

Liu, W.

W. Liu, L. Wang, L. Liu, Y. Zhang, and X. Xu, “Determination of hydroxy in quartz glass by infrared spectrology,” J.Bohai Univ. 29(4), 332–335 (2008).

Lu, Y. S.

Z. L. Wu, P. K. Kuo, Y. S. Lu, and S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).

Luitot, C.

Manenkov, A. A.

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).

Menapace, J.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-Laser conditioning for producing UV-Damage-Resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).

Menapace, J. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).

Miller, P.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[PubMed]

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-Laser conditioning for producing UV-Damage-Resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” Proc. SPIE 7504, 75040L (2009).

Monticelli, M.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[PubMed]

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

Motokoshi, S.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

Néauport, J.

Nichols, M.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-Laser conditioning for producing UV-Damage-Resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).

Norton, M.

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

Okamoto, T.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

Parham, T.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-Laser conditioning for producing UV-Damage-Resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).

Penetrante, B.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-Laser conditioning for producing UV-Damage-Resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).

Peng, X.

Peterson, J.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-Laser conditioning for producing UV-Damage-Resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76, 367–372 (2003).

Rondeau, O.

Sakamoto, T.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

Shen, N.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[PubMed]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).

Shi, F.

M. Xu, Y. Dai, L. Zhou, F. Shi, W. Wan, X. Xie, and T. Sui, “Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering,” Opt. Mater. 58, 151–157 (2016).

F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
[PubMed]

Shiba, H.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

Skuja, L.

L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
[PubMed]

Slomba, A.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-Laser conditioning for producing UV-Damage-Resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).

Steele, R.

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

Steele, R. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

Steele, W.

Steele, W. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” Proc. SPIE 7504, 75040L (2009).

Stringfellow, M. W.

F. L. Galeener, A. J. Leadbetter, and M. W. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27(2), 1052–1077 (1983).

Su, Y.

Y. Su, Y. Zhou, W. Huang, and Z. Gu, “Study on reaction kinetics between silica glass and hydrofluoric acid,” J.Chinese Ceram. Soc. 32(3), 287– 293 (2004).

Sui, T.

F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
[PubMed]

M. Xu, Y. Dai, L. Zhou, F. Shi, W. Wan, X. Xie, and T. Sui, “Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering,” Opt. Mater. 58, 151–157 (2016).

Sui, Z.

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

Sun, L.

Suratwala, T.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[PubMed]

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” Proc. SPIE 7504, 75040L (2009).

Wan, W.

M. Xu, Y. Dai, L. Zhou, F. Shi, W. Wan, X. Xie, and T. Sui, “Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering,” Opt. Mater. 58, 151–157 (2016).

Wang, F.

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

Wang, L.

W. Liu, L. Wang, L. Liu, Y. Zhang, and X. Xu, “Determination of hydroxy in quartz glass by infrared spectrology,” J.Bohai Univ. 29(4), 332–335 (2008).

Wong, L.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[PubMed]

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” Proc. SPIE 7504, 75040L (2009).

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).

Wu, W.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[PubMed]

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

Wu, Z. L.

Z. L. Wu, P. K. Kuo, Y. S. Lu, and S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).

Xia, H.

Xie, X.

M. Xu, Y. Dai, L. Zhou, F. Shi, W. Wan, X. Xie, and T. Sui, “Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering,” Opt. Mater. 58, 151–157 (2016).

Xu, M.

M. Xu, Y. Dai, L. Zhou, F. Shi, W. Wan, X. Xie, and T. Sui, “Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering,” Opt. Mater. 58, 151–157 (2016).

F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
[PubMed]

Xu, X.

W. Liu, L. Wang, L. Liu, Y. Zhang, and X. Xu, “Determination of hydroxy in quartz glass by infrared spectrology,” J.Bohai Univ. 29(4), 332–335 (2008).

Yamamoto, M.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

Yamato, I.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

Yang, L.

Ye, X.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[PubMed]

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

Yoshida, K.

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

Zhang, Y.

W. Liu, L. Wang, L. Liu, Y. Zhang, and X. Xu, “Determination of hydroxy in quartz glass by infrared spectrology,” J.Bohai Univ. 29(4), 332–335 (2008).

Zheng, W.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[PubMed]

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

Zhong, Y.

Zhou, L.

M. Xu, Y. Dai, L. Zhou, F. Shi, W. Wan, X. Xie, and T. Sui, “Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering,” Opt. Mater. 58, 151–157 (2016).

Zhou, X.

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

Zhou, Y.

Y. Su, Y. Zhou, W. Huang, and Z. Gu, “Study on reaction kinetics between silica glass and hydrofluoric acid,” J.Chinese Ceram. Soc. 32(3), 287– 293 (2004).

Appl. Phys., A Mater. Sci. Process. (1)

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76, 367–372 (2003).

J. Am. Ceram. Soc. (2)

T. I. Suratwala, P. E. Miller, J. D. Bude, R. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).

T. Suratwala, P. Miller, J. Bude, R. Steele, N. Shen, M. Monticelli, M. Feit, T. Laurence, M. Norton, C. Carr, and L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2010).

J. Appl. Phys. (1)

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” J. Appl. Phys. 82, 3230–3232 (2003).

J. Non-Cryst. Solids (2)

D. L. Griscom, “Defect structure of glass,” J. Non-Cryst. Solids 73, 51–77 (1985).

L. M. Cook, “Chemical process in glass polishing,” J. Non-Cryst. Solids 120, 152–171 (1990).

J.Bohai Univ. (1)

W. Liu, L. Wang, L. Liu, Y. Zhang, and X. Xu, “Determination of hydroxy in quartz glass by infrared spectrology,” J.Bohai Univ. 29(4), 332–335 (2008).

J.Chinese Ceram. Soc. (1)

Y. Su, Y. Zhou, W. Huang, and Z. Gu, “Study on reaction kinetics between silica glass and hydrofluoric acid,” J.Chinese Ceram. Soc. 32(3), 287– 293 (2004).

Opt. Eng. (1)

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).

Opt. Express (5)

Opt. Mater. (2)

M. Xu, Y. Dai, L. Zhou, F. Shi, W. Wan, X. Xie, and T. Sui, “Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering,” Opt. Mater. 58, 151–157 (2016).

H. Liu, X. Ye, X. Zhou, J. Huang, F. Wang, X. Zhou, X. Zhou, W. Wu, X. Jiang, Z. Sui, and W. Zheng, “Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process,” Opt. Mater. 36, 855–860 (2014).

Phys. Rev. B (2)

A. E. Geissberger and F. L. Galeener, “Raman studies of vitreous SiO2 versus fictive temperature,” Phys. Rev. B 28(6), 3266–3271 (1983).

F. L. Galeener, A. J. Leadbetter, and M. W. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27(2), 1052–1077 (1983).

Phys. Rev. Lett. (1)

L. Skuja, M. Hirano, and H. Hosono, “Oxygen-Related Intrinsic Defects in Glassy SiO2: Interstitial Ozone Molecules,” Phys. Rev. Lett. 84(2), 302–305 (2000).
[PubMed]

Proc. SPIE (5)

Z. L. Wu, P. K. Kuo, Y. S. Lu, and S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations,” Proc. SPIE 2714, 294–304 (1996).

T. Kamimura, S. Akamatsu, M. Yamamoto, I. Yamato, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamoto, and K. Yoshida, “Enhancement of surface-damage resistance by removing a subsurface damage in fused silica,” Proc. SPIE 5273, 244–249 (2003).

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-Laser conditioning for producing UV-Damage-Resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).

M. D. Feit, T. I. Suratwala, L. L. Wong, W. A. Steele, P. E. Miller, and J. D. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” Proc. SPIE 7504, 75040L (2009).

Other (3)

I. D. Boyd and M. L. Falk, “A review of spacecraft material sputtering by hall thruster plumes,” AIAA 37th Joint Propulsion Conference, Salt Lake City 2001–3353 (2001).

C. Jiao, “Study on the material removal mechanisms and fundamental processes for ion beam figuring optical mirrors,” Ph.D. Dissertation, National University of Defense Technology (2008).

T. Sui, “Measurement and Analysis of Laser-induced Damage Characteristics for Ultraviolet Optics,” Master Degree Dissertation, National University of Defense Technology (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Sketch map of sputtering damage depth.
Fig. 2
Fig. 2 Simulation result of sputtering damage depth with incidence angle and ion energy.
Fig. 3
Fig. 3 Depth distribution of vacancy number produced by the vertical incidence of Ar + ions.
Fig. 4
Fig. 4 LIDT test results with different removal depths.
Fig. 5
Fig. 5 Micromorphology evolution of fused silica surface.(a) polishing surface; (b) HF etching surface; (c)-(e) surface with IBS removal depth of 400nm, 700nm and 1000nm; (f) roughness change. Image size is 10μm × 10μm.
Fig. 6
Fig. 6 Weak absorption evolution of fused silica surface. (a) polishing surface; (b) HF etching surface; (c)-(e) surface with IBS removal depth of 400nm, 700nm and 1000nm; (f) absorption intensity change. Image size is 3mm × 3mm.
Fig. 7
Fig. 7 Raman spectra of fused silica surface.
Fig. 8
Fig. 8 Fluorescence spectra of fused silica surface.
Fig. 9
Fig. 9 Infrared spectra of fused silica surface.
Fig. 10
Fig. 10 Weak absorption distribution in different regions after different processes.
Fig. 11
Fig. 11 Changes of weak absorption distribution in different processes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d s = d 1 + d 2 =acosθ+3 μ 2 sin 2 θ+ σ 2 cos 2 θ .
(Si O 2 ) x + H 2 O (Si O 2 ) x1 +Si (OH) 4 .

Metrics