Abstract

A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668−742 nm when the azimuth angle varies from 30° to 90°.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable two-dimensional optical filter based on guided-mode resonance

Atefe Taheri and Mehrdad Shokooh-Saremi
J. Opt. Soc. Am. A 36(7) 1109-1116 (2019)

Tunable phase detection sensitivity of transmitted-type guided-mode resonance sensor in a heterodyne interferometer

Wen-Kai Kuo, Ning-Chi Huang, Hsueh-Ping Weng, and Hsin-Her Yu
Opt. Express 22(19) 22968-22973 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
  2. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [PubMed]
  3. M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color fFilters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
  4. N. L. Privorotskaya, C. J. Choi, B. T. Cunningham, and W. P. King, “Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161, 66–71 (2010).
  5. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13(5), 993–1005 (1996).
  6. S. Boonruang, A. Greenwell, and M. G. Moharam, “Multiline two-dimensional guided-mode resonant filters,” Appl. Opt. 45(22), 5740–5747 (2006).
    [PubMed]
  7. M. Shokooh-Saremi and R. Magnusson, “Properties of two-dimensional resonant reflectors with zero-contrast gratings,” Opt. Lett. 39(24), 6958–6961 (2014).
    [PubMed]
  8. A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).
  9. Y. Kanamori, T. Ozaki, and K. Hane, “Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings,” Opt. Express 22(21), 25663–25672 (2014).
    [PubMed]
  10. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Adv. Funct. Mater. 20, 2053–2062 (2010).
  11. W. K. Kuo and Y. Q. Luo, “Implementation of guided-mode resonance optical filter using two-step nanoimprinting process,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JTh2A.67.
  12. M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
    [PubMed]
  13. R. Yukino, P. K. Sahoo, J. Sharma, T. Takamura, J. Joseph, and A. Sandhu, “Wide wavelength range tunable one-dimensional silicon nitride nanograting guided mode resonance filter based on azimuthal rotation,” AIP Adv. 7, 015313 (2017).
  14. S. Boonruang, A. Greenwell, and M. G. Moharam, “Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence,” Appl. Opt. 46(33), 7982–7992 (2007).
    [PubMed]

2017 (1)

R. Yukino, P. K. Sahoo, J. Sharma, T. Takamura, J. Joseph, and A. Sandhu, “Wide wavelength range tunable one-dimensional silicon nitride nanograting guided mode resonance filter based on azimuthal rotation,” AIP Adv. 7, 015313 (2017).

2014 (3)

2012 (1)

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color fFilters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).

2010 (3)

N. L. Privorotskaya, C. J. Choi, B. T. Cunningham, and W. P. King, “Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161, 66–71 (2010).

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Adv. Funct. Mater. 20, 2053–2062 (2010).

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).

2007 (1)

2006 (1)

1996 (1)

1993 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).

Arguel, P.

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).

Bonnefont, S.

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).

Boonruang, S.

Brunner, R.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Adv. Funct. Mater. 20, 2053–2062 (2010).

Chan Shin Yu, K.

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).

Choi, C. J.

N. L. Privorotskaya, C. J. Choi, B. T. Cunningham, and W. P. King, “Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161, 66–71 (2010).

Cunningham, B. T.

N. L. Privorotskaya, C. J. Choi, B. T. Cunningham, and W. P. King, “Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161, 66–71 (2010).

Daran, E.

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).

Fehrembach, A.-L.

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).

Gauthier-Lafaye, O.

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).

Gosele, U.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Adv. Funct. Mater. 20, 2053–2062 (2010).

Greenwell, A.

Hane, K.

Helgert, M.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Adv. Funct. Mater. 20, 2053–2062 (2010).

Heyroth, F.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Adv. Funct. Mater. 20, 2053–2062 (2010).

Joseph, J.

R. Yukino, P. K. Sahoo, J. Sharma, T. Takamura, J. Joseph, and A. Sandhu, “Wide wavelength range tunable one-dimensional silicon nitride nanograting guided mode resonance filter based on azimuthal rotation,” AIP Adv. 7, 015313 (2017).

Kanamori, Y.

Khaleque, T.

King, W. P.

N. L. Privorotskaya, C. J. Choi, B. T. Cunningham, and W. P. King, “Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161, 66–71 (2010).

Knez, M.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Adv. Funct. Mater. 20, 2053–2062 (2010).

Lozes-Dupuy, F.

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).

Magnusson, R.

Moharam, M. G.

Monmayrant, A.

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).

Morris, G. M.

Ozaki, T.

Peng, S.

Privorotskaya, N. L.

N. L. Privorotskaya, C. J. Choi, B. T. Cunningham, and W. P. King, “Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161, 66–71 (2010).

Sahoo, P. K.

R. Yukino, P. K. Sahoo, J. Sharma, T. Takamura, J. Joseph, and A. Sandhu, “Wide wavelength range tunable one-dimensional silicon nitride nanograting guided mode resonance filter based on azimuthal rotation,” AIP Adv. 7, 015313 (2017).

Sandhu, A.

R. Yukino, P. K. Sahoo, J. Sharma, T. Takamura, J. Joseph, and A. Sandhu, “Wide wavelength range tunable one-dimensional silicon nitride nanograting guided mode resonance filter based on azimuthal rotation,” AIP Adv. 7, 015313 (2017).

Sentenac, A.

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).

Sharma, J.

R. Yukino, P. K. Sahoo, J. Sharma, T. Takamura, J. Joseph, and A. Sandhu, “Wide wavelength range tunable one-dimensional silicon nitride nanograting guided mode resonance filter based on azimuthal rotation,” AIP Adv. 7, 015313 (2017).

Shokooh-Saremi, M.

Szeghalmi, A.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Adv. Funct. Mater. 20, 2053–2062 (2010).

Takamura, T.

R. Yukino, P. K. Sahoo, J. Sharma, T. Takamura, J. Joseph, and A. Sandhu, “Wide wavelength range tunable one-dimensional silicon nitride nanograting guided mode resonance filter based on azimuthal rotation,” AIP Adv. 7, 015313 (2017).

Uddin, M. J.

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[PubMed]

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color fFilters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).

Yukino, R.

R. Yukino, P. K. Sahoo, J. Sharma, T. Takamura, J. Joseph, and A. Sandhu, “Wide wavelength range tunable one-dimensional silicon nitride nanograting guided mode resonance filter based on azimuthal rotation,” AIP Adv. 7, 015313 (2017).

Adv. Funct. Mater. (1)

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable Guided-Mode Resonance Grating Filter,” Adv. Funct. Mater. 20, 2053–2062 (2010).

AIP Adv. (1)

R. Yukino, P. K. Sahoo, J. Sharma, T. Takamura, J. Joseph, and A. Sandhu, “Wide wavelength range tunable one-dimensional silicon nitride nanograting guided mode resonance filter based on azimuthal rotation,” AIP Adv. 7, 015313 (2017).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).

IEEE Photonics Technol. Lett. (1)

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color fFilters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (1)

Opt. Soc. Am. A (1)

A.-L. Fehrembach, O. Gauthier-Lafaye, K. Chan Shin Yu, A. Monmayrant, S. Bonnefont, E. Daran, P. Arguel, F. Lozes-Dupuy, and A. Sentenac, “Measurement and modeling of 2D hexagonal resonant-grating filter performance,” Opt. Soc. Am. A 27(7), 1535–1540 (2010).

Sens. Actuators A Phys. (1)

N. L. Privorotskaya, C. J. Choi, B. T. Cunningham, and W. P. King, “Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators A Phys. 161, 66–71 (2010).

Other (1)

W. K. Kuo and Y. Q. Luo, “Implementation of guided-mode resonance optical filter using two-step nanoimprinting process,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JTh2A.67.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Two-step nanoimprinting process.
Fig. 2
Fig. 2 Homemade nanoimprint machine adapted from a hot pressing machine.
Fig. 3
Fig. 3 Schematic of the finial GMR filter device with 90°-crossing structure and cross section view of the x-z plane as the coordinate defined in the figure. The angle of incidence θ and azimuth angle ϕ are defined in the figure.
Fig. 4
Fig. 4 AFM images (left) and their profile curves (right) along the two scanning lines (white solid lines) of the devices with three different crossing angles, (a) 30°, (b) 60°, and (c) 90°.
Fig. 5
Fig. 5 3D (top) and 2D (top view of the 3D) (bottom) schematics to indicate x-axis directions for defining azimuth angle of three GMR filter devices: (a) 30°-, (b) 60°-, and (c) 90°-crossing angles.
Fig. 6
Fig. 6 Reflective resonance wavelength measurement system
Fig. 7
Fig. 7 Measurement (left) and simulation (right) results of the three devices with three different crossing angles: (a) 30°, (b) 60°, and (c) 90°
Fig. 8
Fig. 8 Summarized plots of the resonance wavelengths in the measurement and simulation results of Fig. 7 for the device with 60°-crossing structure.

Tables (1)

Tables Icon

Table 1 List of ideal/measured pitches of the scanning lines along different azimuth angles for three crossing structures.

Metrics