Abstract

In this paper, a multifunctional artificial electromagnetic surface (AEMS) with integrated radiation and scattering performance is proposed and realized. Different from previous AEMS designs that mainly focus on scattering performance, this AEMS design takes both radiation and scattering properties into consideration in the designing process. Inspired by the design concept of antenna, a feeding structure is added to each AEMS element to achieve radiation performance. Meanwhile, the concerned characteristics of AEMS elements are almost maintained. For achieving wideband low-scattering performance, two different kinds of AEMS elements are designed and arranged in a chessboard configuration. Simulated and measured results prove that our method offers an effective strategy to design multifunctional AEMS that achieve radiation and scattering performance simultaneously.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Shared aperture metasurface with ultra-wideband and wide-angle low-scattering performance

Yuejun Zheng, Xiangyu Cao, Jun Gao, Huanhuan Yang, Yulong Zhou, and Siming Wang
Opt. Mater. Express 7(8) 2706-2714 (2017)

Active metasurface for broadband radiation and integrated low radar cross section

Tong Li, Huanhuan Yang, Qi Li, Chen Zhang, Jiangfeng Han, Lili Cong, Xiangyu Cao, and Jun Gao
Opt. Mater. Express 9(3) 1161-1172 (2019)

Design of bifunctional metasurface based on independent control of transmission and reflection

Yaqiang Zhuang, Guangming Wang, Tong Cai, and Qingfeng Zhang
Opt. Express 26(3) 3594-3603 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).
  2. H. B. Wang and Y. J. Cheng, “Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles,” IEEE Trans. Antenn. Propag. 64(3), 914–922 (2016).
  3. G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24(17), 19372–19387 (2016).
    [PubMed]
  4. J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
    [PubMed]
  5. W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
    [PubMed]
  6. X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105, 121603 (2014).
  7. S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 121903 (2016).
  8. W. Shu, Y. Liu, Y. Ke, X. Ling, Z. Liu, B. Huang, H. Luo, and X. Yin, “Propagation model for vector beams generated by metasurfaces,” Opt. Express 24(18), 21177–21189 (2016).
    [PubMed]
  9. M. U. Afzal and K. P. Esselle, “A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas,” IEEE Trans. Antenn. Propag. 64(1), 276–280 (2016).
  10. Y. J. Huang, L. Yang, J. Li, Y. Wang, and G. J. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109, 054101 (2016).
  11. L. Y. Ji, Y. J. Guo, P. Y. Qin, S. X. Gong, and R. Mittra, “A reconfigurable partially reflective surface (PRS) antenna for beam steering,” IEEE Trans. Antenn. Propag. 63(6), 2387–2395 (2015).
  12. S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).
  13. Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
  14. Y. J. Zheng, X. Y. Cao, J. Gao, H. H. Yang, Y. L. Zhou, and S. M. Wang, “Shared aperture metasurface with ultra-wideband and wide-angle low-scattering performance,” Opt. Mater. Express 7(8), 2706–2714 (2017).
  15. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [PubMed]
  16. P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
    [PubMed]
  17. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [PubMed]
  18. M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).
  19. M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
  20. J. C. I. Galarregui, A. T. Pereda, J. L. M. D. Falcón, I. E. R. Gonzalo, and P. D. Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
  21. W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
  22. S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).
  23. W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
  24. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).
  25. P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6, 20387 (2016).
    [PubMed]
  26. S. Liu and T. J. Cui, “Flexible controls of scattering clouds using coding metasurfaces,” Sci. Rep. 6, 37545 (2016).
    [PubMed]
  27. T. J. Cui, S. Liu, and L. L. Li, “Information entropy of coding metasurface,” Light Sci. Appl. 5, e16172 (2016).
  28. K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm,” Sci. Rep. 4, 5935 (2014).
    [PubMed]
  29. X. Yan, L. Liang, J. Yang, W. Liu, X. Ding, D. Xu, Y. Zhang, T. Cui, and J. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
    [PubMed]
  30. C. Huang, B. Sun, W. Pan, J. Cui, X. Wu, and X. Luo, “Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface,” Sci. Rep. 7, 42302 (2017).
    [PubMed]
  31. K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
    [PubMed]
  32. X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
    [PubMed]
  33. H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
    [PubMed]
  34. Y. Zhao, X. Cao, J. Gao, X. Liu, and S. Li, “Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion,” Opt. Express 24(10), 11208–11217 (2016).
    [PubMed]
  35. Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).
  36. S. X. Zou, J. L. Wei, and X. Man, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 522–524 (2017).
  37. Z. J. Han, W. Song, and X. Q. Sheng, “Gain enhancement and RCS reduction of patch antenna by using polarization-dependent EBG surface,” IEEE Antennas Wirel. Propag. Lett. 16, 1631–1634 (2017).
  38. Y. Liu, K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).
  39. Y. Liu, Y. W. Hao, K. Li, and S. X. Gong, “Wideband and polarization-independent radar cross section reduction using holographic metasurface,” IEEE Antennas Wirel. Propag. Lett. 16, 1028–1031 (2016).
  40. X. L. Kang, J. X. Su, H. Zhang, Z. R. Li, and Y. Q. Yang, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 520–522 (2017).

2017 (6)

J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
[PubMed]

Y. J. Zheng, X. Y. Cao, J. Gao, H. H. Yang, Y. L. Zhou, and S. M. Wang, “Shared aperture metasurface with ultra-wideband and wide-angle low-scattering performance,” Opt. Mater. Express 7(8), 2706–2714 (2017).

C. Huang, B. Sun, W. Pan, J. Cui, X. Wu, and X. Luo, “Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface,” Sci. Rep. 7, 42302 (2017).
[PubMed]

S. X. Zou, J. L. Wei, and X. Man, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 522–524 (2017).

Z. J. Han, W. Song, and X. Q. Sheng, “Gain enhancement and RCS reduction of patch antenna by using polarization-dependent EBG surface,” IEEE Antennas Wirel. Propag. Lett. 16, 1631–1634 (2017).

X. L. Kang, J. X. Su, H. Zhang, Z. R. Li, and Y. Q. Yang, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 520–522 (2017).

2016 (22)

Y. Liu, K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).

Y. Liu, Y. W. Hao, K. Li, and S. X. Gong, “Wideband and polarization-independent radar cross section reduction using holographic metasurface,” IEEE Antennas Wirel. Propag. Lett. 16, 1028–1031 (2016).

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[PubMed]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

Y. Zhao, X. Cao, J. Gao, X. Liu, and S. Li, “Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion,” Opt. Express 24(10), 11208–11217 (2016).
[PubMed]

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6, 20387 (2016).
[PubMed]

S. Liu and T. J. Cui, “Flexible controls of scattering clouds using coding metasurfaces,” Sci. Rep. 6, 37545 (2016).
[PubMed]

T. J. Cui, S. Liu, and L. L. Li, “Information entropy of coding metasurface,” Light Sci. Appl. 5, e16172 (2016).

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).

M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
[PubMed]

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).

H. B. Wang and Y. J. Cheng, “Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles,” IEEE Trans. Antenn. Propag. 64(3), 914–922 (2016).

G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24(17), 19372–19387 (2016).
[PubMed]

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 121903 (2016).

W. Shu, Y. Liu, Y. Ke, X. Ling, Z. Liu, B. Huang, H. Luo, and X. Yin, “Propagation model for vector beams generated by metasurfaces,” Opt. Express 24(18), 21177–21189 (2016).
[PubMed]

M. U. Afzal and K. P. Esselle, “A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas,” IEEE Trans. Antenn. Propag. 64(1), 276–280 (2016).

Y. J. Huang, L. Yang, J. Li, Y. Wang, and G. J. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109, 054101 (2016).

2015 (4)

L. Y. Ji, Y. J. Guo, P. Y. Qin, S. X. Gong, and R. Mittra, “A reconfigurable partially reflective surface (PRS) antenna for beam steering,” IEEE Trans. Antenn. Propag. 63(6), 2387–2395 (2015).

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).

X. Yan, L. Liang, J. Yang, W. Liu, X. Ding, D. Xu, Y. Zhang, T. Cui, and J. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
[PubMed]

2014 (3)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105, 121603 (2014).

2013 (2)

P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
[PubMed]

J. C. I. Galarregui, A. T. Pereda, J. L. M. D. Falcón, I. E. R. Gonzalo, and P. D. Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).

2009 (1)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

2007 (1)

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).

Afzal, M. U.

M. U. Afzal and K. P. Esselle, “A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas,” IEEE Trans. Antenn. Propag. 64(1), 276–280 (2016).

Agarwal, M.

M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).

Alù, A.

P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
[PubMed]

Argyropoulos, C.

P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
[PubMed]

Balanis, C. A.

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).

Bao, D.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Behera, A. K.

M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).

Birtcher, C. R.

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).

Cai, B. G.

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105, 121603 (2014).

Caira, N. W.

Cao, X.

Y. Zhao, X. Cao, J. Gao, X. Liu, and S. Li, “Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion,” Opt. Express 24(10), 11208–11217 (2016).
[PubMed]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

Cao, X. Y.

Y. J. Zheng, X. Y. Cao, J. Gao, H. H. Yang, Y. L. Zhou, and S. M. Wang, “Shared aperture metasurface with ultra-wideband and wide-angle low-scattering performance,” Opt. Mater. Express 7(8), 2706–2714 (2017).

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).

Chen, K.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Chen, P. Y.

P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
[PubMed]

Chen, T. Y.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[PubMed]

Chen, W. G.

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).

Chen, X.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

Cheng, Q.

J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
[PubMed]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

Cheng, Y. J.

H. B. Wang and Y. J. Cheng, “Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles,” IEEE Trans. Antenn. Propag. 64(3), 914–922 (2016).

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[PubMed]

Cui, J.

C. Huang, B. Sun, W. Pan, J. Cui, X. Wu, and X. Luo, “Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface,” Sci. Rep. 7, 42302 (2017).
[PubMed]

Cui, L.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Cui, T.

Cui, T. J.

J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
[PubMed]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[PubMed]

S. Liu and T. J. Cui, “Flexible controls of scattering clouds using coding metasurfaces,” Sci. Rep. 6, 37545 (2016).
[PubMed]

T. J. Cui, S. Liu, and L. L. Li, “Information entropy of coding metasurface,” Light Sci. Appl. 5, e16172 (2016).

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105, 121603 (2014).

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[PubMed]

Ding, X.

Dong, D. S.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

Du, L. L.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Ederra, I.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).

Esmaeli, S. H.

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).

Esselle, K. P.

M. U. Afzal and K. P. Esselle, “A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas,” IEEE Trans. Antenn. Propag. 64(1), 276–280 (2016).

Falcón, J. L. M. D.

J. C. I. Galarregui, A. T. Pereda, J. L. M. D. Falcón, I. E. R. Gonzalo, and P. D. Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).

Feng, Y.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Galarregui, J. C. I.

J. C. I. Galarregui, A. T. Pereda, J. L. M. D. Falcón, I. E. R. Gonzalo, and P. D. Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).

Gao, J.

Y. J. Zheng, X. Y. Cao, J. Gao, H. H. Yang, Y. L. Zhou, and S. M. Wang, “Shared aperture metasurface with ultra-wideband and wide-angle low-scattering performance,” Opt. Mater. Express 7(8), 2706–2714 (2017).

Y. Zhao, X. Cao, J. Gao, X. Liu, and S. Li, “Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion,” Opt. Express 24(10), 11208–11217 (2016).
[PubMed]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).

Gong, S. X.

Y. Liu, K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).

Y. Liu, Y. W. Hao, K. Li, and S. X. Gong, “Wideband and polarization-independent radar cross section reduction using holographic metasurface,” IEEE Antennas Wirel. Propag. Lett. 16, 1028–1031 (2016).

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).

L. Y. Ji, Y. J. Guo, P. Y. Qin, S. X. Gong, and R. Mittra, “A reconfigurable partially reflective surface (PRS) antenna for beam steering,” IEEE Trans. Antenn. Propag. 63(6), 2387–2395 (2015).

Gonzalo, I. E. R.

J. C. I. Galarregui, A. T. Pereda, J. L. M. D. Falcón, I. E. R. Gonzalo, and P. D. Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).

Gonzalo, R.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).

Guo, Y. J.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).

Y. Liu, K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).

L. Y. Ji, Y. J. Guo, P. Y. Qin, S. X. Gong, and R. Mittra, “A reconfigurable partially reflective surface (PRS) antenna for beam steering,” IEEE Trans. Antenn. Propag. 63(6), 2387–2395 (2015).

Han, J. G.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Han, Z. J.

Z. J. Han, W. Song, and X. Q. Sheng, “Gain enhancement and RCS reduction of patch antenna by using polarization-dependent EBG surface,” IEEE Antennas Wirel. Propag. Lett. 16, 1631–1634 (2017).

Hao, Y. W.

Y. Liu, Y. W. Hao, K. Li, and S. X. Gong, “Wideband and polarization-independent radar cross section reduction using holographic metasurface,” IEEE Antennas Wirel. Propag. Lett. 16, 1028–1031 (2016).

Y. Liu, K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).

Huang, B.

Huang, C.

C. Huang, B. Sun, W. Pan, J. Cui, X. Wu, and X. Luo, “Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface,” Sci. Rep. 7, 42302 (2017).
[PubMed]

Huang, Y. J.

Y. J. Huang, L. Yang, J. Li, Y. Wang, and G. J. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109, 054101 (2016).

Iriarte, J. C.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[PubMed]

Ji, L. Y.

L. Y. Ji, Y. J. Guo, P. Y. Qin, S. X. Gong, and R. Mittra, “A reconfigurable partially reflective surface (PRS) antenna for beam steering,” IEEE Trans. Antenn. Propag. 63(6), 2387–2395 (2015).

Jia, S.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6, 20387 (2016).
[PubMed]

Jia, Y. T.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).

Y. Liu, K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).

Jiang, T.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Jiang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Kang, M.

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).

Kang, X. L.

X. L. Kang, J. X. Su, H. Zhang, Z. R. Li, and Y. Q. Yang, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 520–522 (2017).

Ke, Y.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Larouche, S.

Li, J.

Y. J. Huang, L. Yang, J. Li, Y. Wang, and G. J. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109, 054101 (2016).

Li, K.

Y. Liu, Y. W. Hao, K. Li, and S. X. Gong, “Wideband and polarization-independent radar cross section reduction using holographic metasurface,” IEEE Antennas Wirel. Propag. Lett. 16, 1028–1031 (2016).

Y. Liu, K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).

Li, L.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 121903 (2016).

Li, L. L.

T. J. Cui, S. Liu, and L. L. Li, “Information entropy of coding metasurface,” Light Sci. Appl. 5, e16172 (2016).

Li, M.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

Li, S.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

Y. Zhao, X. Cao, J. Gao, X. Liu, and S. Li, “Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion,” Opt. Express 24(10), 11208–11217 (2016).
[PubMed]

Li, Y.

Li, Y. B.

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105, 121603 (2014).

Li, Z. R.

X. L. Kang, J. X. Su, H. Zhang, Z. R. Li, and Y. Q. Yang, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 520–522 (2017).

Liang, L.

Ling, X.

Lipworth, G.

Liu, J.

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[PubMed]

Liu, S.

T. J. Cui, S. Liu, and L. L. Li, “Information entropy of coding metasurface,” Light Sci. Appl. 5, e16172 (2016).

S. Liu and T. J. Cui, “Flexible controls of scattering clouds using coding metasurfaces,” Sci. Rep. 6, 37545 (2016).
[PubMed]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Liu, W.

Liu, X.

Liu, Y.

W. Shu, Y. Liu, Y. Ke, X. Ling, Z. Liu, B. Huang, H. Luo, and X. Yin, “Propagation model for vector beams generated by metasurfaces,” Opt. Express 24(18), 21177–21189 (2016).
[PubMed]

Y. Liu, Y. W. Hao, K. Li, and S. X. Gong, “Wideband and polarization-independent radar cross section reduction using holographic metasurface,” IEEE Antennas Wirel. Propag. Lett. 16, 1028–1031 (2016).

Y. Liu, K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).

Liu, Z.

Luo, H.

Luo, X.

C. Huang, B. Sun, W. Pan, J. Cui, X. Wu, and X. Luo, “Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface,” Sci. Rep. 7, 42302 (2017).
[PubMed]

Ma, H. F.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Maagt, P. D.

J. C. I. Galarregui, A. T. Pereda, J. L. M. D. Falcón, I. E. R. Gonzalo, and P. D. Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).

Man, X.

S. X. Zou, J. L. Wei, and X. Man, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 522–524 (2017).

Meshram, M. K.

M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).

Mittra, R.

L. Y. Ji, Y. J. Guo, P. Y. Qin, S. X. Gong, and R. Mittra, “A reconfigurable partially reflective surface (PRS) antenna for beam steering,” IEEE Trans. Antenn. Propag. 63(6), 2387–2395 (2015).

Mo, W.

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Ouyang, C. M.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Pan, W.

C. Huang, B. Sun, W. Pan, J. Cui, X. Wu, and X. Luo, “Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface,” Sci. Rep. 7, 42302 (2017).
[PubMed]

Paquay, M.

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).

Pereda, A. T.

J. C. I. Galarregui, A. T. Pereda, J. L. M. D. Falcón, I. E. R. Gonzalo, and P. D. Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).

Premaratne, M. L.

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).

Qi, M. Q.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).

Qin, P. Y.

L. Y. Ji, Y. J. Guo, P. Y. Qin, S. X. Gong, and R. Mittra, “A reconfigurable partially reflective surface (PRS) antenna for beam steering,” IEEE Trans. Antenn. Propag. 63(6), 2387–2395 (2015).

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Sedighy, S. H.

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).

Sheng, X. Q.

Z. J. Han, W. Song, and X. Q. Sheng, “Gain enhancement and RCS reduction of patch antenna by using polarization-dependent EBG surface,” IEEE Antennas Wirel. Propag. Lett. 16, 1631–1634 (2017).

Shi, G. M.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 121903 (2016).

Shi, W.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6, 20387 (2016).
[PubMed]

Shi, Y.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 121903 (2016).

Shu, W.

Smith, D. R.

G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24(17), 19372–19387 (2016).
[PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Song, W.

Z. J. Han, W. Song, and X. Q. Sheng, “Gain enhancement and RCS reduction of patch antenna by using polarization-dependent EBG surface,” IEEE Antennas Wirel. Propag. Lett. 16, 1631–1634 (2017).

Su, J. X.

X. L. Kang, J. X. Su, H. Zhang, Z. R. Li, and Y. Q. Yang, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 520–522 (2017).

Su, P.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6, 20387 (2016).
[PubMed]

Sun, B.

C. Huang, B. Sun, W. Pan, J. Cui, X. Wu, and X. Luo, “Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface,” Sci. Rep. 7, 42302 (2017).
[PubMed]

Tang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Wan, X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[PubMed]

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105, 121603 (2014).

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).

Wang, H.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6, 20387 (2016).
[PubMed]

Wang, H. B.

H. B. Wang and Y. J. Cheng, “Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles,” IEEE Trans. Antenn. Propag. 64(3), 914–922 (2016).

Wang, K.

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
[PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

Wang, S. M.

Wang, T. Q.

Wang, Y.

Y. J. Huang, L. Yang, J. Li, Y. Wang, and G. J. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109, 054101 (2016).

Wei, J. L.

S. X. Zou, J. L. Wei, and X. Man, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 522–524 (2017).

Wei, X.

Wen, G. J.

Y. J. Huang, L. Yang, J. Li, Y. Wang, and G. J. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109, 054101 (2016).

Wu, X.

C. Huang, B. Sun, W. Pan, J. Cui, X. Wu, and X. Luo, “Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface,” Sci. Rep. 7, 42302 (2017).
[PubMed]

Xiao, F. J.

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).

Xu, D.

Xu, Q.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Xu, S.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

Yan, X.

Yang, F.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

Yang, H.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

Yang, H. H.

Y. J. Zheng, X. Y. Cao, J. Gao, H. H. Yang, Y. L. Zhou, and S. M. Wang, “Shared aperture metasurface with ultra-wideband and wide-angle low-scattering performance,” Opt. Mater. Express 7(8), 2706–2714 (2017).

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).

Yang, J.

Yang, L.

Y. J. Huang, L. Yang, J. Li, Y. Wang, and G. J. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109, 054101 (2016).

Yang, Y. Q.

X. L. Kang, J. X. Su, H. Zhang, Z. R. Li, and Y. Q. Yang, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 520–522 (2017).

Yang, Z.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Yao, J.

Yin, X.

Yu, S. X.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 121903 (2016).

Yuan, H.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Yuan, W.

Yuan, Z. D.

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).

Zhang, H.

X. L. Kang, J. X. Su, H. Zhang, Z. R. Li, and Y. Q. Yang, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 520–522 (2017).

Zhang, W. L.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Zhang, Y.

Zhao, J.

J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
[PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).

Zhao, Y.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6, 20387 (2016).
[PubMed]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

Y. Zhao, X. Cao, J. Gao, X. Liu, and S. Li, “Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion,” Opt. Express 24(10), 11208–11217 (2016).
[PubMed]

Zheng, Y.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

Zheng, Y. J.

Y. J. Zheng, X. Y. Cao, J. Gao, H. H. Yang, Y. L. Zhou, and S. M. Wang, “Shared aperture metasurface with ultra-wideband and wide-angle low-scattering performance,” Opt. Mater. Express 7(8), 2706–2714 (2017).

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).

Zhou, X. X.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 121903 (2016).

Zhou, X. Y.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

Zhou, Y. L.

Zhu, B.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Zhu, C.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 121903 (2016).

Zhu, W. R.

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).

Zou, S. X.

S. X. Zou, J. L. Wei, and X. Man, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 522–524 (2017).

Appl. Phys. Lett. (4)

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108, 121901 (2016).

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105, 121603 (2014).

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108, 121903 (2016).

Y. J. Huang, L. Yang, J. Li, Y. Wang, and G. J. Wen, “Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna,” Appl. Phys. Lett. 109, 054101 (2016).

Electron. Lett. (4)

M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).

S. X. Zou, J. L. Wei, and X. Man, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 522–524 (2017).

X. L. Kang, J. X. Su, H. Zhang, Z. R. Li, and Y. Q. Yang, “Wideband RCS reduction of patch antenna using PRRS,” Electron. Lett. 53(8), 520–522 (2017).

IEEE Antennas Wirel. Propag. Lett. (3)

Z. J. Han, W. Song, and X. Q. Sheng, “Gain enhancement and RCS reduction of patch antenna by using polarization-dependent EBG surface,” IEEE Antennas Wirel. Propag. Lett. 16, 1631–1634 (2017).

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).

Y. Liu, Y. W. Hao, K. Li, and S. X. Gong, “Wideband and polarization-independent radar cross section reduction using holographic metasurface,” IEEE Antennas Wirel. Propag. Lett. 16, 1028–1031 (2016).

IEEE Trans. Antenn. Propag. (9)

Y. Liu, K. Li, Y. T. Jia, Y. W. Hao, S. X. Gong, and Y. J. Guo, “Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces,” IEEE Trans. Antenn. Propag. 64(1), 326–331 (2016).

M. U. Afzal and K. P. Esselle, “A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas,” IEEE Trans. Antenn. Propag. 64(1), 276–280 (2016).

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).

M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).

J. C. I. Galarregui, A. T. Pereda, J. L. M. D. Falcón, I. E. R. Gonzalo, and P. D. Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).

L. Y. Ji, Y. J. Guo, P. Y. Qin, S. X. Gong, and R. Mittra, “A reconfigurable partially reflective surface (PRS) antenna for beam steering,” IEEE Trans. Antenn. Propag. 63(6), 2387–2395 (2015).

H. B. Wang and Y. J. Cheng, “Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles,” IEEE Trans. Antenn. Propag. 64(3), 914–922 (2016).

Light Sci. Appl. (3)

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. L. Du, X. Wan, W. X. Tang, C. M. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. G. Han, W. L. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5, e16076 (2016).

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).

T. J. Cui, S. Liu, and L. L. Li, “Information entropy of coding metasurface,” Light Sci. Appl. 5, e16172 (2016).

Opt. Express (6)

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Sci. Rep. (7)

C. Huang, B. Sun, W. Pan, J. Cui, X. Wu, and X. Luo, “Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface,” Sci. Rep. 7, 42302 (2017).
[PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6, 20663 (2016).
[PubMed]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6, 35692 (2016).
[PubMed]

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6, 20387 (2016).
[PubMed]

S. Liu and T. J. Cui, “Flexible controls of scattering clouds using coding metasurfaces,” Sci. Rep. 6, 37545 (2016).
[PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm,” Sci. Rep. 4, 5935 (2014).
[PubMed]

Science (1)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic geometry of (a) AEMS element E1 and (b) AEMS element E2. Brassy yellow indicates copper and blue indicates dielectric substrate.
Fig. 2
Fig. 2 Reflection characteristics and radiation properties of AEMS element E1 for different feeding position. Reflection magnitudes under (a) x polarization and (b) y polarization for floquet port excitation. Reflection phases under (c) x polarization and (d) y polarization floquet port excitation. (e) Reflection coefficients S11 for lumped port excitation. Radiation patterns at (f) xoz(E) and (g) yoz(H) plane.
Fig. 3
Fig. 3 Current distributions of E1 at minimum reflection point 5.9GHz. (a) Top and (b) bottom surfaces for x-polarized incidence. (c) Top and (d) bottom surfaces for y-polarized incidence.
Fig. 4
Fig. 4 Reflection characteristics and radiation properties of AEMS elements. (a) Reflection magnitudes. (b) Reflection phases. (c) Reflection coefficients S11. (d) 2D radiation patterns at resonant frequencies. 3D radiation patterns of (e) E1 and (f) E2 at resonant frequencies.
Fig. 5
Fig. 5 Schematic geometry of two kinds of AEMS. The AEMS is arranged in chessboard configuration based on (a) single element and (b) element tile. For easy of description, each element is coded. The coding order is from + x to -x and from –y to y.
Fig. 6
Fig. 6 Radiation properties comparison of the two kinds of AEMS. (a) Reflection coefficients S11 and (b) 2D radiation patterns at 5.8 GHz and 7.04 GHz.
Fig. 7
Fig. 7 3D radiation patterns of AEMS at (a) 5.8 GHz and (b) 7.04 GHz. (c) Current distributions of AEMS at 5.8 GHz.
Fig. 8
Fig. 8 Simulated specular reflection magnitude reduction of AEMS for (a) x- and (b) y-polarized incidence.
Fig. 9
Fig. 9 3D scattering patterns and current distributions of AEMS. 3D scattering patterns for y-polarized incidence at (a) 5.8 GHz, (b) 6.5 GHz and (c) 7.04 GHz and for x-polarized incidence at (d) 5.8 GHz, (e) 6.5 GHz and (f) 7.04 GHz. Current distributions for x-polarized incidence at (g) 5.8 GHz, (h) 6.5 GHz and (i) 7.04 GHz.
Fig. 10
Fig. 10 (a) Fabrication of AEMS. (b) Power divider. (c) The basic measurement setup of reflectivity.
Fig. 11
Fig. 11 Radiation and scattering properties of AEMS. (a) S11. Radiation patterns at (b) 6.1 GHz and (c) 7.3 GHz. (d) Reflection reduction for 0° and 30° incident waves.

Tables (1)

Tables Icon

Table 1 Structural parameters of the basic elements E1 and E2

Metrics