Abstract

Here we design and fabricate a hybrid surface plasmon polarities (SPP) waveguide on the silicon-on-insulator (SOI) photonics platform. The designed hybrid SPP waveguide is composed of a metal ridge, an air gap, and a silicon ridge. We simulate the mode characteristics in the structure and design the waveguide with a wide air gap that can simplify the fabrication process and maintain the advantages of the hybrid SPP mode. The performance of ultrahigh-bandwidth data transmission through the proposed waveguide is then investigated using 161 wavelength-division multiplexing (WDM) channels, each carrying a 11.2-Gbit/s orthogonal frequency-division multiplexing (OFDM) 16-ary quadrature amplitude modulation (16-QAM) signal. The bit-error rates (BERs) of all 161 channels are less than 1e-3. The favorable results show the prospect of on-chip optical interconnection using the proposed hybrid SPP waveguide.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of terabit-scale data transmission in silicon vertical slot waveguides

Chengcheng Gui, Chao Li, Qi Yang, and Jian Wang
Opt. Express 23(8) 9736-9745 (2015)

Transmission of 2.86 Tb/s data stream in silicon subwavelength grating waveguides

Ge Gao, Ming Luo, Xiang Li, Yinglu Zhang, Qingzhong Huang, Yi Wang, Xi Xiao, Qi Yang, and Jinsong Xia
Opt. Express 25(3) 2918-2927 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [PubMed]
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [PubMed]
  5. H. Raether, “Surface plasmons on smooth surfaces,” in Surface plasmons on smooth and rough surfaces and on gratings (Springer, 1988), pp. 4–39.
  6. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
    [PubMed]
  7. H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
    [PubMed]
  8. D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).
  9. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [PubMed]
  11. D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
  12. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
  13. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [PubMed]
  14. H.-S. Chu, Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37(21), 4564–4566 (2012).
    [PubMed]
  15. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
    [PubMed]
  16. Y. Bian and Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21(20), 23907–23920 (2013).
    [PubMed]
  17. H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
  18. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
    [PubMed]
  19. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
    [PubMed]
  20. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
    [PubMed]
  21. X. Guan, H. Wu, Y. Shi, L. Wosinski, and D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38(16), 3005–3008 (2013).
    [PubMed]
  22. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
    [PubMed]
  23. Y. A. Akimov and H. S. Chu, “Plasmon-plasmon interaction: controlling light at nanoscale,” Nanotechnology 23(44), 444004 (2012).
    [PubMed]
  24. J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).
  25. R. Wan, F. Liu, and Y. Huang, “Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Opt. Lett. 35(2), 244–246 (2010).
    [PubMed]
  26. F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).
  27. S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).
  28. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
    [PubMed]
  29. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
  30. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
  31. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
  32. D. A. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
  33. B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).
  34. J. D. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
    [PubMed]
  35. L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).
  36. J. Du, C. Gui, C. Li, Q. Yang, and J. Wang, “Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM),” in Lasers and Electro-Optics (CLEO),2014Conference on, (IEEE, 2014), 1–2.
  37. G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).
  38. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [PubMed]
  39. C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
    [PubMed]
  40. C. Gui, C. Li, Q. Yang, and J. Wang, “Experimental demonstration of silicon vertical slot waveguides for ultra-wide bandwidth 1.8-Tbit/s (161 WDM 11.2-Gbit/s OFDM 16-QAM) data transmission,” in Optical Fibre Technology, 2014 OptoElectronics and Communication Conference and Australian Conference on, (IEEE, 2014), 514–516.

2015 (1)

2013 (2)

2012 (5)

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).

Y. A. Akimov and H. S. Chu, “Plasmon-plasmon interaction: controlling light at nanoscale,” Nanotechnology 23(44), 444004 (2012).
[PubMed]

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
[PubMed]

H.-S. Chu, Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37(21), 4564–4566 (2012).
[PubMed]

2011 (3)

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[PubMed]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).

2010 (7)

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

R. Wan, F. Liu, and Y. Huang, “Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Opt. Lett. 35(2), 244–246 (2010).
[PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[PubMed]

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[PubMed]

2009 (4)

H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

J. D. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[PubMed]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

2008 (3)

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

2007 (2)

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

2006 (3)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[PubMed]

2005 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

2000 (1)

D. A. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).

1998 (1)

1984 (1)

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Aitchison, J. S.

Åkerman, J.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Akimov, Y.

Akimov, Y. A.

Y. A. Akimov and H. S. Chu, “Plasmon-plasmon interaction: controlling light at nanoscale,” Nanotechnology 23(44), 444004 (2012).
[PubMed]

Alam, M. Z.

Albonesi, D. H.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Ambati, M.

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

Athale, R. A.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Bai, P.

H.-S. Chu, Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37(21), 4564–4566 (2012).
[PubMed]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

Bartal, G.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Bergman, K.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).

Bian, Y.

Biberman, A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

Bradley, J. D.

Bramerie, L.

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).

Chan, J.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

Chen, G.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Chen, H.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Chen, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Choi, H.

Chou, C. Y.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Chu, H. S.

Y. A. Akimov and H. S. Chu, “Plasmon-plasmon interaction: controlling light at nanoscale,” Nanotechnology 23(44), 444004 (2012).
[PubMed]

Chu, H.-S.

H.-S. Chu, Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37(21), 4564–4566 (2012).
[PubMed]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

Costa e Silva, M.

Dadap, J. I.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Dai, D.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

Djurišic, A. B.

Driessen, A.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

Elazar, J. M.

Fauchet, P. M.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Friedman, E. G.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Fukui, M.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Gay, M.

Genov, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Genov, D. A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Gong, Q.

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Gramotnev, D. K.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Green, W. M. J.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Guan, X.

Gui, C.

Haraguchi, M.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Haurylau, M.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

He, S.

Hegde, R.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

Hsieh, I. W.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Huang, Y.

Ishikawa, A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Kung, S.-Y.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Kwong, D.

S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).

Kwong, D. L.

Lee, B. G.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Li, C.

Li, E.-P.

H.-S. Chu, Y. Akimov, P. Bai, and E.-P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37(21), 4564–4566 (2012).
[PubMed]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

Li, Q.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[PubMed]

Liow, T. Y.

Lipson, M.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

Lira, H. L.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

Liu, F.

Liu, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Liu, Z.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Lo, G.

S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).

Lo, G. Q.

Lou, F.

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
[PubMed]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Ma, Z.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Majewski, M. L.

Matsuzaki, Y.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Meier, J.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Miller, D. A.

D. A. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).

Mojahedi, M.

Nam, S.

Nelson, N. A.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Ogawa, T.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Okamoto, T.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Osgood, R. M.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Oulton, R. F.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[PubMed]

Pile, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Pile, D. F.

H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Pollnau, M.

Qiu, M.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[PubMed]

Rakic, A. D.

Requicha, A. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

Sekaric, L.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).

Shi, Y.

Simon, J. C.

Song, Y.

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[PubMed]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Sorger, V. J.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Thylen, L.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).

Tian, J.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Tong, L.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Vernon, K. C.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Vlasov, Y. A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

Wan, R.

Wang, J.

Wang, Z.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Wörhoff, K.

Wosinski, L.

Wu, H.

Xia, F.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

Xu, L.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

Yamaguchi, K.

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Yan, M.

Yang, Q.

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[PubMed]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

Zha, C.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

Zhang, J.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

Zhang, S.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

Zhang, W.

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

Zhang, X.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

Zhu, S.

S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[PubMed]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Åkerman, L. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97(23), 231121 (2010).

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).

D. F. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).

IEEE J. Quantum Electron. (1)

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

IEEE J. Sel. Top. Quantum Electron. (2)

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).

D. A. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).

IEEE Photonics Technol. Lett. (3)

B. G. Lee, X. Chen, A. Biberman, X. Liu, I. W. Hsieh, C. Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photonics Technol. Lett. 20(6), 398–400 (2008).

L. Xu, W. Zhang, Q. Li, J. Chan, H. L. Lira, M. Lipson, and K. Bergman, “40-Gb/s DPSK data transmission through a silicon microring switch,” IEEE Photonics Technol. Lett. 24(5), 473 (2012).

S. Zhu, G. Lo, and D. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photonics Technol. Lett. 23(24), 1896–1898 (2011).

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).

Integration (1)

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integration 40(4), 434–446 (2007).

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7), 20–27 (2006).

Nanotechnology (1)

Y. A. Akimov and H. S. Chu, “Plasmon-plasmon interaction: controlling light at nanoscale,” Nanotechnology 23(44), 444004 (2012).
[PubMed]

Nat. Mater. (3)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[PubMed]

Opt. Express (8)

H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[PubMed]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010).
[PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[PubMed]

Y. Bian and Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21(20), 23907–23920 (2013).
[PubMed]

D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
[PubMed]

C. Gui, C. Li, Q. Yang, and J. Wang, “Demonstration of terabit-scale data transmission in silicon vertical slot waveguides,” Opt. Express 23(8), 9736–9745 (2015).
[PubMed]

J. D. Bradley, M. Costa e Silva, M. Gay, L. Bramerie, A. Driessen, K. Wörhoff, J. C. Simon, and M. Pollnau, “170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon,” Opt. Express 17(24), 22201–22208 (2009).
[PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

Proc. IEEE (1)

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[PubMed]

Other (3)

H. Raether, “Surface plasmons on smooth surfaces,” in Surface plasmons on smooth and rough surfaces and on gratings (Springer, 1988), pp. 4–39.

C. Gui, C. Li, Q. Yang, and J. Wang, “Experimental demonstration of silicon vertical slot waveguides for ultra-wide bandwidth 1.8-Tbit/s (161 WDM 11.2-Gbit/s OFDM 16-QAM) data transmission,” in Optical Fibre Technology, 2014 OptoElectronics and Communication Conference and Australian Conference on, (IEEE, 2014), 514–516.

J. Du, C. Gui, C. Li, Q. Yang, and J. Wang, “Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM),” in Lasers and Electro-Optics (CLEO),2014Conference on, (IEEE, 2014), 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Concept of on-chip optical interconnection using hybrid SPP waveguides.
Fig. 2
Fig. 2 (a) A silicon waveguide of permittivity εSi, width w and height h is separated from a metallic ridge of permittivity εm by a nanoscale air gap of permittivity ε0 and width g on the top of BOX layer of permittivity εB. εSi = 11.97, ε0 = 1 and εB = 2.07 (SiO2) at the telecommunications wavelength λ = 1550 nm. The metallic region is gold with a permittivity of −96.96 + 11.5i [38]. (b) The calculated distributions of electric field x component |Ex| of the hybrid SPP mode with different waveguide width w and air gap g at h = 220 nm.
Fig. 3
Fig. 3 (a) The effective index of the hybrid SPP mode for a range of air gap widths g and strip silicon waveguide widths w. (b) The loss of the hybrid SPP mode obtained from the imaginary part of the modal effective index as functions of gap widths g and strip silicon waveguide widths w. (c) The SPP mode character |b|2 varies with air gap widths g and strip silicon waveguide widths w. When air gap width g and strip silicon waveguide width w becomes shorter, the hybrid SPP mode is more SPP-like. While the hybrid SPP mode is more dielectric-like with longer air gap width g and strip silicon waveguide width w.
Fig. 4
Fig. 4 (a) Schematic of two tapers with gradually changed width of strip silicon waveguides connecting the proposed hybrid SPP waveguide with input/output dielectric waveguides. (b) Finite difference time domain (FDTD) simulations showing the electric field x component Ex in the propagation direction corresponding to a plane cutting through the center of the hybrid SPP waveguide perpendicular to the y-direction, 110 nm above the silica surface at wavelength λ = 1550 nm. The hybrid SPP waveguide has a length L = 10 μm containing two 2.5 μm long tapers with varying width from 500 nm to 300 nm. The input light source is launched in the TE silicon waveguide mode at the input position. Two cross sections perpendicular to the propagation direction are respectively added at w = 500 nm and 300 nm in the hybrid SPP waveguide to record the mode distribution. (c) The simulated dependence of normalized transmission through the hybrid SPP waveguide on wavelength and length of tapers Ltap.
Fig. 5
Fig. 5 (a) Schematic of fabrication process of the proposed hybrid SPP waveguide. (b) Optical micrograph of a completed hybrid SPP waveguide device. The fabricated hybrid SPP waveguide is in the center of each device. Two vertical coupling gratings are located at opposite ends of each device to couple light between optical fiber and waveguide. (c) Scanning electron micrograph of a hybrid SPP waveguide with length L = 20 μm. The white circle indicates the area needing to be shown more details. (d) Scanning electron micrograph of air gap details with silicon waveguide width w = 270.5 nm and gap width g = 46.6 nm. (e) Scanning electron micrograph of a vertical coupling grating. (f) Simulated electric field component Ex in the propagation direction corresponding to a plane cutting through the center of the hybrid SPP waveguide with w = 270.5 nm and g = 46.6 nm perpendicular to the y-direction. (g) The simulated transmission loss through the hybrid SPP waveguide with w = 270.5 nm and g = 46.6 nm.
Fig. 6
Fig. 6 Experiment setup for terabit-scale data transmission in hybrid SPP waveguides. ECL: external cavity laser, PC: polarization controller, WSS: wavelength selective switch, PM: phase modulator, PMOC: polarization maintain optical coupler, AWG: arbitrary waveform generator, EDFA: erbium-doped fiber amplifier, VOA: variable optical attenuator.
Fig. 7
Fig. 7 (a) Output spectrum for the 1.8-Tbit/s OFDM 16-QAM signals. The gray area indicates the details of spectrum needing to be displayed. (b) Details of output spectrum from wavelength λ = 1548 nm to 1552 nm. (c) Bit-error rate (BER) performance and received optical signal-to-noise ratio (OSNR) versus wavelength through a 10 μm long hybrid SPP waveguide. There are 161 channels in total, ranging from 1532.76 nm to 1564.76 nm with an interval of 0.204 nm. The gray area marks the details of BER and received OSNR needing to be shown. (d) Details of BER and received OSNR versus wavelength from λ = 1548 nm to 1552 nm. (e) BER vs. Received OSNR for two channels (λ1 = 1548.195 nm, λ2 = 1551.801 nm) of OFDM 16-QAM data transmitting through 10 μm, 20 μm hybrid SPP waveguide, respectively. (f) The measured 16-QAM constellation of back-to-back (B-to-B). (g)-(j) The measured 16-QAM constellation in the channel of λ = 1533.90 nm, 1549.28 nm, 1552.89 nm and 1565.84 nm, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ψ = a Ψ d + b Ψ S P P
| b | 2 = n h y b n d 2 n h y b n d n S P P

Metrics