Abstract

The metasurfaces have recently been demonstrated to provide full control of the phase responses of electromagnetic (EM) wave scattering over subwavelength scales, enabling a wide range of practical applications. Here, we propose a comprehensive scheme for the efficient and flexible design of metasurface Salisbury screen (MSS) capable of absorbing the impinging EM wave in an ultra-wide frequency band. We show that properly designed reflective metasurface can be used to substitute the metallic ground of conventional Salisbury screen for generating diverse resonances in a desirable way, thus providing large controllability over the absorption bandwidth. Based on this concept, we establish an equivalent circuit model to qualitatively analysis the resonances in MSS and design algorithms to optimize the overall performance of the MSS. Experiments have been carried out to demonstrate that the absorption bandwidth from 6 GHz to 30 GHz with an efficiency higher than 85% can be achieved by the proposal, which is apparently much larger than that of conventional Salisbury screen (7 GHz - 17 GHz). The proposed concept of MSS could offer opportunities for flexibly designing thin electromagnetic absorbers with simultaneously ultra-wide bandwidth, polarization insensitivity, and wide incident angle, exhibiting promising potentials for many applications such as in EM compatibility, stealth technique, etc.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optically transparent metasurface Salisbury screen with wideband microwave absorption

Tianshu Li, Ke Chen, Guowen Ding, Junming Zhao, Tian Jiang, and Yijun Feng
Opt. Express 26(26) 34384-34395 (2018)

Ultra-broadband terahertz absorption using bi-metasurfaces based multiplexed resonances

Delin Jia, Jia Xu, and Xiaomei Yu
Opt. Express 26(20) 26227-26234 (2018)

Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies

Yannan Jiang, Lei Wang, Jiao Wang, Charles Nwakanma Akwuruoha, and Weiping Cao
Opt. Express 25(22) 27616-27623 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
    [PubMed]
  2. Y. Ra’Di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
  3. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section: Its Prediction, Measurement and Reduction (Artech House, 1986).
  4. K. J. Vinoy and K. M. Jha, Radar Absorbing Materials (Kluwer, 1996).
  5. S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163 (2014).
  6. K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230 (2000).
  7. Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microw. Theory Tech. 19(1), 65–72 (1971).
  8. M. R. Meshram, N. K. Agrawal, B. Sinha, and P. S. Misra, “Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber,” J. Magn. Magn. Mater. 271(2), 207–214 (2004).
  9. W. Salisbury and W. Winfield, U.S. patent 2,599,944 (10 June 1952).
  10. R. L. Fante and M. T. Mccormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (2002).
  11. L. J. Du Toit, “Design of Jauman absorbers,” IEEE Antennas Propag. Mag. 36(6), 17–25 (1994).
  12. L. J. Du Toit and J. H. Cloete, “Electric screen Jauman absorber design algorithms,” IEEE Trans. Microw. Theory Tech. 44(12), 2238–2245 (1996).
  13. E. F. Knott, “The Two-Sheet Capacitive Jaumann Absorber,” IEEE Trans. Antenn. Propag. 43(11), 1339 (1995).
  14. S. Chakravarty, R. Mittra, and N. R. Williams, “On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media,” IEEE Trans. Microw. Theory Tech. 49(6), 1050–1059 (2001).
  15. B. A. Munk, P. Munk, and J. Pryor, “On Designing Jaumann and Circuit Analog Absorbers (CA Absorbers) for Oblique Angle of Incidence,” IEEE Trans. Antenn. Propag. 55(1), 186–193 (2007).
  16. F. Costa and A. Monorchio, “Multiband electromagnetic wave absorber based on reactive impedance ground planes,” IET Microw. Antennas Propag. 4(11), 1720–1727 (2010).
  17. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
  18. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2011).
  19. C. Mias and J. H. Yap, “A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid,” IEEE Trans. Antenn. Propag. 55(7), 1955–1962 (2007).
  20. X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, “Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory,” J. Opt. 17(5), 55101 (2015).
  21. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [PubMed]
  22. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [PubMed]
  23. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
  24. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
    [PubMed]
  25. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
    [PubMed]
  26. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [PubMed]
  27. X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
    [PubMed]
  28. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).
  29. S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
  30. H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin to orbital angular momentum conversion in metasurface,” Adv. Mater. 29(6), 1604252 (2017).
    [PubMed]
  31. M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-dispersive off-axis Meta-Lenses for compact high resolution spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
    [PubMed]
  32. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
    [PubMed]
  33. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1997).
  34. S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012).
    [PubMed]
  35. D. Bertsimas and J. Tsitsiklis, “Simulated Annealing,” Stat. Sci. 8(1), 10–15 (1993).
  36. K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
    [PubMed]
  37. J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
    [PubMed]
  38. L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).
  39. S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 77 (2013).
  40. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
  41. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 772 (2017).
  42. Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022 (2013).
  43. F. Costa and A. Monorchio, “Electromagnetic Absorbers based on High-Impedance Surfaces: From ultra-narrowband to ultra-wideband absorption,” Adv. Electromagn. 1(3), 7 (2012).

2017 (4)

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin to orbital angular momentum conversion in metasurface,” Adv. Mater. 29(6), 1604252 (2017).
[PubMed]

J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
[PubMed]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 772 (2017).

2016 (3)

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-dispersive off-axis Meta-Lenses for compact high resolution spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[PubMed]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).

2015 (4)

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

Y. Ra’Di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).

X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, “Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory,” J. Opt. 17(5), 55101 (2015).

2014 (2)

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).

S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163 (2014).

2013 (6)

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 77 (2013).

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[PubMed]

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[PubMed]

Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022 (2013).

2012 (6)

F. Costa and A. Monorchio, “Electromagnetic Absorbers based on High-Impedance Surfaces: From ultra-narrowband to ultra-wideband absorption,” Adv. Electromagn. 1(3), 7 (2012).

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
[PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[PubMed]

S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012).
[PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

2011 (2)

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2011).

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

2010 (1)

F. Costa and A. Monorchio, “Multiband electromagnetic wave absorber based on reactive impedance ground planes,” IET Microw. Antennas Propag. 4(11), 1720–1727 (2010).

2007 (2)

B. A. Munk, P. Munk, and J. Pryor, “On Designing Jaumann and Circuit Analog Absorbers (CA Absorbers) for Oblique Angle of Incidence,” IEEE Trans. Antenn. Propag. 55(1), 186–193 (2007).

C. Mias and J. H. Yap, “A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid,” IEEE Trans. Antenn. Propag. 55(7), 1955–1962 (2007).

2004 (1)

M. R. Meshram, N. K. Agrawal, B. Sinha, and P. S. Misra, “Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber,” J. Magn. Magn. Mater. 271(2), 207–214 (2004).

2002 (1)

R. L. Fante and M. T. Mccormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (2002).

2001 (1)

S. Chakravarty, R. Mittra, and N. R. Williams, “On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media,” IEEE Trans. Microw. Theory Tech. 49(6), 1050–1059 (2001).

2000 (1)

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230 (2000).

1996 (1)

L. J. Du Toit and J. H. Cloete, “Electric screen Jauman absorber design algorithms,” IEEE Trans. Microw. Theory Tech. 44(12), 2238–2245 (1996).

1995 (1)

E. F. Knott, “The Two-Sheet Capacitive Jaumann Absorber,” IEEE Trans. Antenn. Propag. 43(11), 1339 (1995).

1994 (1)

L. J. Du Toit, “Design of Jauman absorbers,” IEEE Antennas Propag. Mag. 36(6), 17–25 (1994).

1993 (1)

D. Bertsimas and J. Tsitsiklis, “Simulated Annealing,” Stat. Sci. 8(1), 10–15 (1993).

1971 (1)

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microw. Theory Tech. 19(1), 65–72 (1971).

Agrawal, N. K.

M. R. Meshram, N. K. Agrawal, B. Sinha, and P. S. Misra, “Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber,” J. Magn. Magn. Mater. 271(2), 207–214 (2004).

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Alù, A.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

Bertsimas, D.

D. Bertsimas and J. Tsitsiklis, “Simulated Annealing,” Stat. Sci. 8(1), 10–15 (1993).

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[PubMed]

Bozhevolnyi, S. I.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[PubMed]

Capasso, F.

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-dispersive off-axis Meta-Lenses for compact high resolution spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Chakravarty, S.

S. Chakravarty, R. Mittra, and N. R. Williams, “On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media,” IEEE Trans. Microw. Theory Tech. 49(6), 1050–1059 (2001).

Chen, H.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).

Chen, H. B.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

Chen, K.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Chen, P.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).

Chen, W. T.

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-dispersive off-axis Meta-Lenses for compact high resolution spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[PubMed]

Cheng, Q.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 772 (2017).

J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
[PubMed]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

Cloete, J. H.

L. J. Du Toit and J. H. Cloete, “Electric screen Jauman absorber design algorithms,” IEEE Trans. Microw. Theory Tech. 44(12), 2238–2245 (1996).

Costa, F.

S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163 (2014).

F. Costa and A. Monorchio, “Electromagnetic Absorbers based on High-Impedance Surfaces: From ultra-narrowband to ultra-wideband absorption,” Adv. Electromagn. 1(3), 7 (2012).

F. Costa and A. Monorchio, “Multiband electromagnetic wave absorber based on reactive impedance ground planes,” IET Microw. Antennas Propag. 4(11), 1720–1727 (2010).

Cui, L.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Cui, T. J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 772 (2017).

J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
[PubMed]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2011).

Das, S.

S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012).
[PubMed]

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2011).

Ding, X.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

Du Toit, L. J.

L. J. Du Toit and J. H. Cloete, “Electric screen Jauman absorber design algorithms,” IEEE Trans. Microw. Theory Tech. 44(12), 2238–2245 (1996).

L. J. Du Toit, “Design of Jauman absorbers,” IEEE Antennas Propag. Mag. 36(6), 17–25 (1994).

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[PubMed]

Eriksen, R. L.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[PubMed]

Fante, R. L.

R. L. Fante and M. T. Mccormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (2002).

Feng, Q.

Feng, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Gao, L. H.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2011).

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Genovesi, S.

S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163 (2014).

Ghosh, S.

S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012).
[PubMed]

Gu, S.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 77 (2013).

Guo, L.

X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, “Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory,” J. Opt. 17(5), 55101 (2015).

Guo, W.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin to orbital angular momentum conversion in metasurface,” Adv. Mater. 29(6), 1604252 (2017).
[PubMed]

Han, J.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin to orbital angular momentum conversion in metasurface,” Adv. Mater. 29(6), 1604252 (2017).
[PubMed]

He, Q.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2011).

He, X.

X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, “Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory,” J. Opt. 17(5), 55101 (2015).

Hu, C.

Huang, C.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
[PubMed]

Huang, X.

X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, “Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory,” J. Opt. 17(5), 55101 (2015).

Huangfu, J.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[PubMed]

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).

Islam, S. M.

S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012).
[PubMed]

Jiang, T.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Jiang, W. X.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2011).

Kang, M.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin to orbital angular momentum conversion in metasurface,” Adv. Mater. 29(6), 1604252 (2017).
[PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-dispersive off-axis Meta-Lenses for compact high resolution spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[PubMed]

Kildishev, A. V.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[PubMed]

Kim, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

Knott, E. F.

E. F. Knott, “The Two-Sheet Capacitive Jaumann Absorber,” IEEE Trans. Antenn. Propag. 43(11), 1339 (1995).

Li, H.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[PubMed]

Li, L.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

Li, Y.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin to orbital angular momentum conversion in metasurface,” Adv. Mater. 29(6), 1604252 (2017).
[PubMed]

Liu, S.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Luo, X.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
[PubMed]

Lv, C.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin to orbital angular momentum conversion in metasurface,” Adv. Mater. 29(6), 1604252 (2017).
[PubMed]

Ma, H. F.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

Ma, S. J.

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

Ma, X.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
[PubMed]

Ma, Y.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).

Mccormack, M. T.

R. L. Fante and M. T. Mccormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (2002).

Meshram, M. R.

M. R. Meshram, N. K. Agrawal, B. Sinha, and P. S. Misra, “Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber,” J. Magn. Magn. Mater. 271(2), 207–214 (2004).

Mias, C.

C. Mias and J. H. Yap, “A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid,” IEEE Trans. Antenn. Propag. 55(7), 1955–1962 (2007).

Misra, P. S.

M. R. Meshram, N. K. Agrawal, B. Sinha, and P. S. Misra, “Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber,” J. Magn. Magn. Mater. 271(2), 207–214 (2004).

Mittra, R.

S. Chakravarty, R. Mittra, and N. R. Williams, “On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media,” IEEE Trans. Microw. Theory Tech. 49(6), 1050–1059 (2001).

Monorchio, A.

S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163 (2014).

F. Costa and A. Monorchio, “Electromagnetic Absorbers based on High-Impedance Surfaces: From ultra-narrowband to ultra-wideband absorption,” Adv. Electromagn. 1(3), 7 (2012).

F. Costa and A. Monorchio, “Multiband electromagnetic wave absorber based on reactive impedance ground planes,” IET Microw. Antennas Propag. 4(11), 1720–1727 (2010).

Monticone, F.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

Munk, B. A.

B. A. Munk, P. Munk, and J. Pryor, “On Designing Jaumann and Circuit Analog Absorbers (CA Absorbers) for Oblique Angle of Incidence,” IEEE Trans. Antenn. Propag. 55(1), 186–193 (2007).

Munk, P.

B. A. Munk, P. Munk, and J. Pryor, “On Designing Jaumann and Circuit Analog Absorbers (CA Absorbers) for Oblique Angle of Incidence,” IEEE Trans. Antenn. Propag. 55(1), 186–193 (2007).

Naito, Y.

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microw. Theory Tech. 19(1), 65–72 (1971).

Ni, X.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[PubMed]

Nielsen, M. G.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[PubMed]

Oh, J.

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-dispersive off-axis Meta-Lenses for compact high resolution spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Pors, A.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[PubMed]

Pryor, J.

B. A. Munk, P. Munk, and J. Pryor, “On Designing Jaumann and Circuit Analog Absorbers (CA Absorbers) for Oblique Angle of Incidence,” IEEE Trans. Antenn. Propag. 55(1), 186–193 (2007).

Pu, M.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
[PubMed]

Qiu, C. W.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

Ra’Di, Y.

Y. Ra’Di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).

Ran, L.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[PubMed]

Roy, S.

S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012).
[PubMed]

Rozanov, K. N.

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230 (2000).

Shalaev, V. M.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[PubMed]

Shang, Y.

Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022 (2013).

Shen, Z.

Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022 (2013).

Shi, G.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).

Shi, Y.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).

Simovski, C. R.

Y. Ra’Di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).

Sinha, B.

M. R. Meshram, N. K. Agrawal, B. Sinha, and P. S. Misra, “Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber,” J. Magn. Magn. Mater. 271(2), 207–214 (2004).

Su, B.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 77 (2013).

Suetake, K.

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microw. Theory Tech. 19(1), 65–72 (1971).

Suganthan, P. N.

S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012).
[PubMed]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Tretyakov, S. A.

Y. Ra’Di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).

Tsitsiklis, J.

D. Bertsimas and J. Tsitsiklis, “Simulated Annealing,” Stat. Sci. 8(1), 10–15 (1993).

Wang, C.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).

Wang, T. Q.

Wang, Y.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).

Wang, Z.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Williams, N. R.

S. Chakravarty, R. Mittra, and N. R. Williams, “On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media,” IEEE Trans. Microw. Theory Tech. 49(6), 1050–1059 (2001).

Xiao, B.

X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, “Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory,” J. Opt. 17(5), 55101 (2015).

Xiao, S.

Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022 (2013).

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

Xu, K.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[PubMed]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

Yang, H.

X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, “Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory,” J. Opt. 17(5), 55101 (2015).

Yang, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 772 (2017).

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

Yang, Z.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Yap, J. H.

C. Mias and J. H. Yap, “A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid,” IEEE Trans. Antenn. Propag. 55(7), 1955–1962 (2007).

Ye, D.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[PubMed]

Yi, Y.

X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, “Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory,” J. Opt. 17(5), 55101 (2015).

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

Yu, S.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).

Yuan, W.

Zhang, C.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 772 (2017).

Zhang, H.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin to orbital angular momentum conversion in metasurface,” Adv. Mater. 29(6), 1604252 (2017).
[PubMed]

Zhang, L.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

Zhang, S.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

Zhang, W.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin to orbital angular momentum conversion in metasurface,” Adv. Mater. 29(6), 1604252 (2017).
[PubMed]

Zhang, X.

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin to orbital angular momentum conversion in metasurface,” Adv. Mater. 29(6), 1604252 (2017).
[PubMed]

Zhao, J.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 772 (2017).

J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
[PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

Zhao, X.

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 77 (2013).

Zhao, Z.

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).

Zhou, L.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

Zhu, B.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Zhu, C.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).

Zhu, J.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).

Adv. Electromagn. (1)

F. Costa and A. Monorchio, “Electromagnetic Absorbers based on High-Impedance Surfaces: From ultra-narrowband to ultra-wideband absorption,” Adv. Electromagn. 1(3), 7 (2012).

Adv. Mater. (3)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[PubMed]

H. Zhang, M. Kang, X. Zhang, W. Guo, C. Lv, Y. Li, W. Zhang, and J. Han, “Coherent control of optical spin to orbital angular momentum conversion in metasurface,” Adv. Mater. 29(6), 1604252 (2017).
[PubMed]

Appl. Phys. Lett. (6)

M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, and X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013).

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2011).

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 772 (2017).

IEEE Antennas Propag. Mag. (1)

L. J. Du Toit, “Design of Jauman absorbers,” IEEE Antennas Propag. Mag. 36(6), 17–25 (1994).

IEEE Trans. Antenn. Propag. (7)

E. F. Knott, “The Two-Sheet Capacitive Jaumann Absorber,” IEEE Trans. Antenn. Propag. 43(11), 1339 (1995).

C. Mias and J. H. Yap, “A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid,” IEEE Trans. Antenn. Propag. 55(7), 1955–1962 (2007).

S. Genovesi, F. Costa, and A. Monorchio, “Wideband radar cross section reduction of slot antennas arrays,” IEEE Trans. Antenn. Propag. 62(1), 163 (2014).

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230 (2000).

B. A. Munk, P. Munk, and J. Pryor, “On Designing Jaumann and Circuit Analog Absorbers (CA Absorbers) for Oblique Angle of Incidence,” IEEE Trans. Antenn. Propag. 55(1), 186–193 (2007).

R. L. Fante and M. T. Mccormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (2002).

Y. Shang, Z. Shen, and S. Xiao, “On the design of single-layer circuit analog absorber using double-square-loop array,” IEEE Trans. Antenn. Propag. 61(12), 6022 (2013).

IEEE Trans. Microw. Theory Tech. (3)

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microw. Theory Tech. 19(1), 65–72 (1971).

S. Chakravarty, R. Mittra, and N. R. Williams, “On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media,” IEEE Trans. Microw. Theory Tech. 49(6), 1050–1059 (2001).

L. J. Du Toit and J. H. Cloete, “Electric screen Jauman absorber design algorithms,” IEEE Trans. Microw. Theory Tech. 44(12), 2238–2245 (1996).

IEEE Trans. Syst. Man Cybern. B Cybern. (1)

S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012).
[PubMed]

IET Microw. Antennas Propag. (1)

F. Costa and A. Monorchio, “Multiband electromagnetic wave absorber based on reactive impedance ground planes,” IET Microw. Antennas Propag. 4(11), 1720–1727 (2010).

J. Appl. Phys. (1)

S. Gu, B. Su, and X. Zhao, “Planar isotropic broadband metamaterial absorber,” J. Appl. Phys. 114(16), 77 (2013).

J. Magn. Magn. Mater. (1)

M. R. Meshram, N. K. Agrawal, B. Sinha, and P. S. Misra, “Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber,” J. Magn. Magn. Mater. 271(2), 207–214 (2004).

J. Opt. (1)

X. Huang, X. He, L. Guo, Y. Yi, B. Xiao, and H. Yang, “Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory,” J. Opt. 17(5), 55101 (2015).

Light Sci. Appl. (2)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).

L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, and H. F. Ma, “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light Sci. Appl. 4(9), e324 (2015).

Nano Lett. (2)

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[PubMed]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-dispersive off-axis Meta-Lenses for compact high resolution spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[PubMed]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[PubMed]

Opt. Express (2)

Phys. Rev. Appl. (1)

Y. Ra’Di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).

Phys. Rev. Lett. (1)

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[PubMed]

Sci. Rep. (1)

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[PubMed]

Stat. Sci. (1)

D. Bertsimas and J. Tsitsiklis, “Simulated Annealing,” Stat. Sci. 8(1), 10–15 (1993).

Other (4)

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1997).

E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section: Its Prediction, Measurement and Reduction (Artech House, 1986).

K. J. Vinoy and K. M. Jha, Radar Absorbing Materials (Kluwer, 1996).

W. Salisbury and W. Winfield, U.S. patent 2,599,944 (10 June 1952).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the CSS with total thickness l, and (b) its reflection curve. (c) Schematic of the MSS with metasurface ground comprising four different kinds of metasurface elements. Each color represents a kind of metasurface element. (d) The colored reflection curves correspond to the four colored elements in Fig. 1(c), respectively. Each curve represents the role that the element plays in the contribution to the overall reflection curve of the MSS, which is conceptually depicted by the dash line as a collective result of the reflection curves from these elements. The marks on the curves are the MSS resonant modes. For convenience, we denote each resonance frequency as fi,j where the subscript “i” represents the element type and “j” corresponds to the jth MSS resonance. The thickness of the metasurface is denoted by h and the separation between the resistive sheet and the metasurface is denoted by d. The total thickness of the CSS or MSS is l. (e) Schematic layout of the MSS based on the metasurface comprising optimized distribution of four metasurface elements with arbitrarily designable reflection phases. (f) The equivalent circuit model of the MSS-element with controllable ZL dictated by the metasurface pattern.
Fig. 2
Fig. 2 The configuration of (a) element “1”, (b) element “2”, (c) element “3” and (d) element “4”. Reflection phases and the reflection coefficients of the corresponding MSS element are shown on the right panel. The dashed lines represent φ   n ( f  ) = 4fπd/c  2nπ, n = 0,1. For clear view of the metasurface elements, the resistive sheets are not shown in the figures. The MSS resonance occurs when the dashed line intersects with the phase curve of metasurface element, and at these frequencies the incident energy are dissipated on the resistive sheet, leading to nulls of the reflection curves of the MSS elements.
Fig. 3
Fig. 3 Normalized electric-field scattering patterns in the E-plane with and without optimization procedure at (a) 8 GHz, (b) 14 GHz, (c) 22 GHz and (d) 30 GHz, respectively. The insets are the optimized 3D backward scattering patterns with calibration to the backward scattering of a same-sized metallic slab.
Fig. 4
Fig. 4 Photographs of the fabricated (a) metasurface and (b) resistive sheet. Measured, simulated and theoretically optimized backward reflection for the normal incidence with (c) x-polarization, (d) y-polarization. (e) Measured frequency-dependent absorption of the MSS and CSS under the illumination of normal incidence. (f) The measured E-plane scattering pattern of the MSS under the illumination of normal incidence, with calibration to the reflection of metallic slab at normal incidence.
Fig. 5
Fig. 5 Measured specular reflection for TE-polarized oblique incidence with electric field along (a) x- (b) y-direction, and TM-polarized oblique incidence with magnetic field along (c) x- (d) y-direction.
Fig. 6
Fig. 6 An array composed of N × N MSS elements with periodicity a is shined bythe plane wave with an incident angle α. (a) The schematic of an array constituted by MSS elements exposed to the incoming plane wave with wave vector along e i . The far-field scattering at the direction e i is analyzed. The near-field reflection of the MSS element under the incidence with TE polarization and TM polarization are shown in (b) and (c), respectively.

Tables (1)

Tables Icon

Table 1 Comparison with other electromagnetic absorbers

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

( Z L η 0 )/( Z L + η 0 )= e jψ( f ) ,
Γ(f)= 1 e j(2 β 0 dψ(f)) 3 e j(2 β 0 dψ(f)) +1 .
4π f n d/cψ( f n )=2nπ,n=0,1,2
| E s (f) |=k E 0 a 2 4πr g(θ,φ)| m=1 M n=1 N Γ m,n (f) e jk( sin( θ )cos(φ )ma+sin( θ )sin( φ )na) |
g(θ,φ)=( 1+cos( θ ) ) sin( k a 2 sin( θ )cos( φ ) ) k a 2 sin( θ )cos( φ ) sin( k a 2 sin( θ )sin( φ ) ) k a 2 sin( θ )sin( φ ) .
F(layout)= k=1 K Max θ,φ [ | E s ( f k ,θ,φ)| | E sm ( f k ,0,0)| ] ,
d min | λ min λ max ln| R(λ) |dλ | 2 π 2 ,
E i = E 0 e jk(sin(α)y+cos(α)z) x ^ ,
H i = E 0 η 0 e jk( sin(α)y+cos(α)z ) ( sin(α) z ^ cos(α) y ^ ),
E r = Γ p,q E 0 e jk( sin( α )y+cos( α )z ) x ^ ,
H r = Γ p,q E 0 η 0 e jk( sin(α)y+cos(α)z ) ( sin(α) z ^ +cos(α) y ^ ),
J e = z ^ × H r | s = Γ p,q E 0 η 0 e jksin(α)y cos( α ) x ^ ,
J m = z ^ × E r | s = Γ p,q E 0 e jksin(α)y y ^ ,
A e = 1 4πr e jk(r e s r ) J e ds'= p,q Γ p,q E 0 cos( α ) e jkr 4πr η 0 Ι(θ,φ,α,p,q) x ^ ,
A m = 1 4πr e jk(r e s r ) J m ds'= p,q Γ p,q E 0 e jkr 4πr Ι(θ,φ,α,p,q) y ^ ,
Ι(θ,φ,α,p,q)= qa (q+1)a pa (p+1)a e jk(sin(θ)cos(φ) x +sin(θ)sin(φ) y +sin(α) y ) d x d y .
E s =jk e s × A m jω μ 0 ( A e ( e s A e ) e s ) =jk(cos(φ)( cos(θ)cos(α)+1 ) θ ^ sin(φ)( cos(θ)+cos(α) ) φ ^ ) p,q Γ p,q E 0 e jkr 4πr Ι(θ,φ,α,p,q).
E s =jk(sin(φ)(cos(θ)+cos(α)) θ ^ +cos(φ)(cos(θ)cos(α)+1) φ ^ ) p,q Γ p,q E 0 e jkr 4πr Ι(θ,φ,α,p,q) .
Ι(θ,φ,0,p,q)= e jk(sin(θ)cos(φ)(p+1/2)a+sin(θ)sin(φ)(q+1/2)a) f(θ,φ),
f(θ,φ)= sin( k a 2 sin(θ)cos(φ) ) k a 2 sin(θ)cos(φ) sin( k a 2 sin(θ)sin(φ) ) k a 2 sin(θ)sin(φ) .
| E s |=k E 0 a 2 (1+cos(θ)) 4πr f(θ,φ)| p,q Γ p,q e jk(sin(θ)cos(φ)(p+1/2)a+sin(θ)sin(φ)(q+1/2)a) | =k E 0 a 2 (1+cos(θ)) 4πr sin( k a 2 sin(θ)cos(φ) ) k a 2 sin(θ)cos(φ) sin( k a 2 sin(θ)sin(φ) ) k a 2 sin(θ)sin(φ) · . | p,q Γ p,q e jk(sin(θ)cos(φ)pa+sin(θ)sin(φ)qa) |

Metrics