Abstract

The effect of various design and material parameters on the efficiency of stimulated emission-based luminescent solar concentrators (SELSCs) is studied numerically using a 4-level luminescent material containing concentrator. It is shown that the most efficient SELSCs have emission wavelengths of 1.5-1.8 µm, with a strong dependence on the Stokes shift. Depending on the parameters of the system, spontaneous emission is shown to nevertheless account for a significant fraction of potential energy generation. Assuming a propagation loss constant of −0.1m−1, and a refractive index of 1.5, the optimal length of an SELSC is found to be ~1.5m. Given these losses and an efficiency target of 10% greater than traditional LSCs, the required material emission linewidth varies from 10 to 100nm, with maximum thicknesses of 3-30 µm. Further, when reflection and propagation losses are considered, a single laser pass is preferred over multiple passes. It is also shown that SELSCs are significantly less sensitive to luminescent quantum efficiency when compared to conventional LSCs due to the increased radiative emission rate.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of stimulated emission based luminescent solar concentrators

MD Rejvi Kaysir, Simon Fleming, and Alexander Argyros
Opt. Express 24(26) A1546-A1559 (2016)

Luminescent solar concentrators utilizing stimulated emission

MD Rejvi Kaysir, Simon Fleming, Rowan W. MacQueen, Timothy W. Schmidt, and Alexander Argyros
Opt. Express 24(6) A497-A505 (2016)

Quantifying self-absorption losses in luminescent solar concentrators

Otmar M. ten Kate, Koen M. Hooning, and Erik van der Kolk
Appl. Opt. 53(23) 5238-5245 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt. 18(18), 3090–3110 (1979).
    [PubMed]
  2. M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).
  3. D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).
    [PubMed]
  4. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).
  5. G. D. Gutierrez, I. Coropceanu, M. G. Bawendi, and T. M. Swager, “A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers,” Adv. Mater. 28(3), 497–501 (2016).
    [PubMed]
  6. I. Coropceanu and M. G. Bawendi, “Core/Shell Quantum Dot Based Luminescent Solar Concentrators with Reduced Reabsorption and Enhanced Efficiency,” Nano Lett. 14(7), 4097–4101 (2014).
    [PubMed]
  7. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5, 694–701 (2011).
  8. H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5, 5798 (2012).
  9. L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors,” ACS Photonics 3, 278–285 (2016).
  10. T. Ohkubo, T. Yabe, K. Yoshida, S. Uchida, T. Funatsu, B. Bagheri, T. Oishi, K. Daito, M. Ishioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80 W laser irradiated by a Fresnel lens,” Opt. Lett. 34(2), 175–177 (2009).
    [PubMed]
  11. D. Liang and J. Almeida, “Highly efficient solar-pumped Nd : YAG laser,” Opt. Express 19, 26399–26405 (2011).
  12. S. Payziyev and K. Makhmudov, “Solar pumped Nd:YAG laser efficiency enhancement using Cr:LiCAF frequency down-shifter,” Opt. Commun. 380, 57–60 (2016).
  13. H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, and M. Ishigame, “A Solar-Pumped cw 18 W Nd:YAG Laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).
  14. D. Liang, J. Almeida, C. R. Vistas, and E. Guillot, “Solar-pumped Nd:YAG laser with 31.5W/m2 multimode and 7.9W/m2 TEM00-mode collection efficiencies,” Sol. Energy Mater. Sol. Cells 159, 435–439 (2017).
  15. M. Lando, J. Kagan, B. Linyekin, and V. Dobrusin, “A solar-pumped Nd:YAG laser in the high collection efficiency regime,” Opt. Commun. 222, 371–381 (2003).
  16. O. B. Danilov, A. P. Zhevlakov, and M. S. Yur’ev, “Optically (solar) pumped oxygen-iodine lasers,” Opt. Spectrosc. 117, 145–151 (2014).
  17. S. Johnson, F. Küppers, and S. Pau, “Efficiency of continuous-wave solar pumped semiconductor lasers,” Opt. Laser Technol. 47, 194–198 (2013).
  18. T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).
  19. C. B. Roxlo and E. Yablonovitch, “Thermodynamics of daylight-pumped lasers,” Opt. Lett. 8(5), 271–273 (1983).
    [PubMed]
  20. J. P. Morgan, P. M. Chang, and S. H. S. Myrskog, “Stimulated Emission Luminescent Light-Guide Solar Concentrators,” U.S. patent WO 2010/102408 A1 (2010).
  21. J. P. Morgan and P. Dufour, “Pulsed stimulated emission luminescent photovoltaic solar concentrator,” U.S. patent US 2014/0319377 A1 (2014).
  22. M. R. Kaysir, S. Fleming, R. W. MacQueen, T. W. Schmidt, and A. Argyros, “Luminescent solar concentrators utilizing stimulated emission,” Opt. Express 24(6), A497–A505 (2016).
    [PubMed]
  23. M. R. Kaysir, S. Fleming, and A. Argyros, “Modeling of stimulated emission based luminescent solar concentrators,” Opt. Express 24(26), A1546–A1559 (2016).
    [PubMed]
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).
  25. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500 (1980).
  26. T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% Continuous-Wave Wallplug Efficiency From 1.53 M M-Emitting Broad-Area Diode Lasers,” Appl. Phys. Lett. 105, 4893576 (2014).
  27. P. L. Pernas and E. Cantelar, “Emission and Absorption Cross-Section Calculation of Rare Earth Doped Materials for Applications to Integrated Optic Devices,” Phys. Scr. 93, 93 (2005).
  28. C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
  29. K. Gong, J. E. Martin, L. E. Shea-Rohwer, P. Lu, and D. F. Kelley, “Radiative lifetimes of zincblende CdSe/CdS quantum dots,” J. Phys. Chem. C 119, 2231–2238 (2015).
  30. R. Hull and INSPEC (Information service), Properties of Crystalline Silicon (INSPEC, the Institution of Electrical Engineers, 1999).
  31. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).
  32. J. Planelles-Aragó, E. Cordoncillo, R. S. Ferreira, L. D. Carlos, and P. Escribano, “Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS → lanthanide energy transfer mechanisms,” J. Mater. Chem. 21, 1162 (2011).
  33. N. Daldosso and L. Pavesi, “Nanosilicon photonics,” Laser Photonics Rev. 3, 508–534 (2009).
  34. S. V. Eliseeva and J. C. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
    [PubMed]
  35. E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
    [PubMed]

2017 (1)

D. Liang, J. Almeida, C. R. Vistas, and E. Guillot, “Solar-pumped Nd:YAG laser with 31.5W/m2 multimode and 7.9W/m2 TEM00-mode collection efficiencies,” Sol. Energy Mater. Sol. Cells 159, 435–439 (2017).

2016 (5)

M. R. Kaysir, S. Fleming, R. W. MacQueen, T. W. Schmidt, and A. Argyros, “Luminescent solar concentrators utilizing stimulated emission,” Opt. Express 24(6), A497–A505 (2016).
[PubMed]

M. R. Kaysir, S. Fleming, and A. Argyros, “Modeling of stimulated emission based luminescent solar concentrators,” Opt. Express 24(26), A1546–A1559 (2016).
[PubMed]

G. D. Gutierrez, I. Coropceanu, M. G. Bawendi, and T. M. Swager, “A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers,” Adv. Mater. 28(3), 497–501 (2016).
[PubMed]

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors,” ACS Photonics 3, 278–285 (2016).

S. Payziyev and K. Makhmudov, “Solar pumped Nd:YAG laser efficiency enhancement using Cr:LiCAF frequency down-shifter,” Opt. Commun. 380, 57–60 (2016).

2015 (1)

K. Gong, J. E. Martin, L. E. Shea-Rohwer, P. Lu, and D. F. Kelley, “Radiative lifetimes of zincblende CdSe/CdS quantum dots,” J. Phys. Chem. C 119, 2231–2238 (2015).

2014 (4)

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% Continuous-Wave Wallplug Efficiency From 1.53 M M-Emitting Broad-Area Diode Lasers,” Appl. Phys. Lett. 105, 4893576 (2014).

O. B. Danilov, A. P. Zhevlakov, and M. S. Yur’ev, “Optically (solar) pumped oxygen-iodine lasers,” Opt. Spectrosc. 117, 145–151 (2014).

I. Coropceanu and M. G. Bawendi, “Core/Shell Quantum Dot Based Luminescent Solar Concentrators with Reduced Reabsorption and Enhanced Efficiency,” Nano Lett. 14(7), 4097–4101 (2014).
[PubMed]

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).

2013 (1)

S. Johnson, F. Küppers, and S. Pau, “Efficiency of continuous-wave solar pumped semiconductor lasers,” Opt. Laser Technol. 47, 194–198 (2013).

2012 (3)

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5, 5798 (2012).

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).
[PubMed]

2011 (3)

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5, 694–701 (2011).

D. Liang and J. Almeida, “Highly efficient solar-pumped Nd : YAG laser,” Opt. Express 19, 26399–26405 (2011).

J. Planelles-Aragó, E. Cordoncillo, R. S. Ferreira, L. D. Carlos, and P. Escribano, “Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS → lanthanide energy transfer mechanisms,” J. Mater. Chem. 21, 1162 (2011).

2010 (1)

S. V. Eliseeva and J. C. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[PubMed]

2009 (2)

2007 (1)

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

2006 (1)

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

2005 (1)

P. L. Pernas and E. Cantelar, “Emission and Absorption Cross-Section Calculation of Rare Earth Doped Materials for Applications to Integrated Optic Devices,” Phys. Scr. 93, 93 (2005).

2003 (1)

M. Lando, J. Kagan, B. Linyekin, and V. Dobrusin, “A solar-pumped Nd:YAG laser in the high collection efficiency regime,” Opt. Commun. 222, 371–381 (2003).

2002 (1)

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).

1984 (1)

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, and M. Ishigame, “A Solar-Pumped cw 18 W Nd:YAG Laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).

1983 (1)

1980 (1)

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500 (1980).

1979 (1)

Alivisatos, A. P.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors,” ACS Photonics 3, 278–285 (2016).

Almeida, J.

D. Liang, J. Almeida, C. R. Vistas, and E. Guillot, “Solar-pumped Nd:YAG laser with 31.5W/m2 multimode and 7.9W/m2 TEM00-mode collection efficiencies,” Sol. Energy Mater. Sol. Cells 159, 435–439 (2017).

D. Liang and J. Almeida, “Highly efficient solar-pumped Nd : YAG laser,” Opt. Express 19, 26399–26405 (2011).

Arashi, H.

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, and M. Ishigame, “A Solar-Pumped cw 18 W Nd:YAG Laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).

Argyros, A.

Baasandash, C.

T. Ohkubo, T. Yabe, K. Yoshida, S. Uchida, T. Funatsu, B. Bagheri, T. Oishi, K. Daito, M. Ishioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80 W laser irradiated by a Fresnel lens,” Opt. Lett. 34(2), 175–177 (2009).
[PubMed]

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Bagheri, B.

Bashouti, M.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

Batchelder, J. S.

Bawendi, M. G.

G. D. Gutierrez, I. Coropceanu, M. G. Bawendi, and T. M. Swager, “A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers,” Adv. Mater. 28(3), 497–501 (2016).
[PubMed]

I. Coropceanu and M. G. Bawendi, “Core/Shell Quantum Dot Based Luminescent Solar Concentrators with Reduced Reabsorption and Enhanced Efficiency,” Nano Lett. 14(7), 4097–4101 (2014).
[PubMed]

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).

Behgol, B.

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Beverina, L.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).

Botez, D.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% Continuous-Wave Wallplug Efficiency From 1.53 M M-Emitting Broad-Area Diode Lasers,” Appl. Phys. Lett. 105, 4893576 (2014).

Broer, D. J.

Bronstein, N. D.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors,” ACS Photonics 3, 278–285 (2016).

Brovelli, S.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).

Brumer, M.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

Bünzli, J. C.

S. V. Eliseeva and J. C. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[PubMed]

Burshtein, Z.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

Cantelar, E.

P. L. Pernas and E. Cantelar, “Emission and Absorption Cross-Section Calculation of Rare Earth Doped Materials for Applications to Integrated Optic Devices,” Phys. Scr. 93, 93 (2005).

Carlos, L. D.

J. Planelles-Aragó, E. Cordoncillo, R. S. Ferreira, L. D. Carlos, and P. Escribano, “Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS → lanthanide energy transfer mechanisms,” J. Mater. Chem. 21, 1162 (2011).

Cole, T.

Colombo, A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).

Cordoncillo, E.

J. Planelles-Aragó, E. Cordoncillo, R. S. Ferreira, L. D. Carlos, and P. Escribano, “Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS → lanthanide energy transfer mechanisms,” J. Mater. Chem. 21, 1162 (2011).

Coropceanu, I.

G. D. Gutierrez, I. Coropceanu, M. G. Bawendi, and T. M. Swager, “A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers,” Adv. Mater. 28(3), 497–501 (2016).
[PubMed]

I. Coropceanu and M. G. Bawendi, “Core/Shell Quantum Dot Based Luminescent Solar Concentrators with Reduced Reabsorption and Enhanced Efficiency,” Nano Lett. 14(7), 4097–4101 (2014).
[PubMed]

Daito, K.

T. Ohkubo, T. Yabe, K. Yoshida, S. Uchida, T. Funatsu, B. Bagheri, T. Oishi, K. Daito, M. Ishioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80 W laser irradiated by a Fresnel lens,” Opt. Lett. 34(2), 175–177 (2009).
[PubMed]

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Daldosso, N.

N. Daldosso and L. Pavesi, “Nanosilicon photonics,” Laser Photonics Rev. 3, 508–534 (2009).

Danilov, O. B.

O. B. Danilov, A. P. Zhevlakov, and M. S. Yur’ev, “Optically (solar) pumped oxygen-iodine lasers,” Opt. Spectrosc. 117, 145–151 (2014).

Darling, S. B.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5, 5798 (2012).

de Boer, D. K. G.

Debije, M. G.

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).
[PubMed]

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).

Dobrusin, V.

M. Lando, J. Kagan, B. Linyekin, and V. Dobrusin, “A solar-pumped Nd:YAG laser in the high collection efficiency regime,” Opt. Commun. 222, 371–381 (2003).

Eliseeva, S. V.

S. V. Eliseeva and J. C. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[PubMed]

Escribano, P.

J. Planelles-Aragó, E. Cordoncillo, R. S. Ferreira, L. D. Carlos, and P. Escribano, “Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS → lanthanide energy transfer mechanisms,” J. Mater. Chem. 21, 1162 (2011).

Ferreira, R. S.

J. Planelles-Aragó, E. Cordoncillo, R. S. Ferreira, L. D. Carlos, and P. Escribano, “Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS → lanthanide energy transfer mechanisms,” J. Mater. Chem. 21, 1162 (2011).

Fleming, S.

Funatsu, T.

T. Ohkubo, T. Yabe, K. Yoshida, S. Uchida, T. Funatsu, B. Bagheri, T. Oishi, K. Daito, M. Ishioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80 W laser irradiated by a Fresnel lens,” Opt. Lett. 34(2), 175–177 (2009).
[PubMed]

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Galstad, C.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% Continuous-Wave Wallplug Efficiency From 1.53 M M-Emitting Broad-Area Diode Lasers,” Appl. Phys. Lett. 105, 4893576 (2014).

Galun, E.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

Garrod, T.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% Continuous-Wave Wallplug Efficiency From 1.53 M M-Emitting Broad-Area Diode Lasers,” Appl. Phys. Lett. 105, 4893576 (2014).

Giebink, N. C.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5, 694–701 (2011).

Gong, K.

K. Gong, J. E. Martin, L. E. Shea-Rohwer, P. Lu, and D. F. Kelley, “Radiative lifetimes of zincblende CdSe/CdS quantum dots,” J. Phys. Chem. C 119, 2231–2238 (2015).

Guillot, E.

D. Liang, J. Almeida, C. R. Vistas, and E. Guillot, “Solar-pumped Nd:YAG laser with 31.5W/m2 multimode and 7.9W/m2 TEM00-mode collection efficiencies,” Sol. Energy Mater. Sol. Cells 159, 435–439 (2017).

Gutierrez, G. D.

G. D. Gutierrez, I. Coropceanu, M. G. Bawendi, and T. M. Swager, “A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers,” Adv. Mater. 28(3), 497–501 (2016).
[PubMed]

Henry, C. H.

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500 (1980).

Hernandez-Noyola, H.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5, 5798 (2012).

Holt, R. J.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5, 5798 (2012).

Ishigame, M.

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, and M. Ishigame, “A Solar-Pumped cw 18 W Nd:YAG Laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).

Ishioka, M.

Johnson, S.

S. Johnson, F. Küppers, and S. Pau, “Efficiency of continuous-wave solar pumped semiconductor lasers,” Opt. Laser Technol. 47, 194–198 (2013).

Kagan, J.

M. Lando, J. Kagan, B. Linyekin, and V. Dobrusin, “A solar-pumped Nd:YAG laser in the high collection efficiency regime,” Opt. Commun. 222, 371–381 (2003).

Kaimai, A.

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, and M. Ishigame, “A Solar-Pumped cw 18 W Nd:YAG Laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).

Kato, K.

Kaysir, M. R.

Kelley, D. F.

K. Gong, J. E. Martin, L. E. Shea-Rohwer, P. Lu, and D. F. Kelley, “Radiative lifetimes of zincblende CdSe/CdS quantum dots,” J. Phys. Chem. C 119, 2231–2238 (2015).

Keur, W.

Kido, K.

Kigel, A.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

Klaus, M.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% Continuous-Wave Wallplug Efficiency From 1.53 M M-Emitting Broad-Area Diode Lasers,” Appl. Phys. Lett. 105, 4893576 (2014).

Klimov, V. I.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).

Küppers, F.

S. Johnson, F. Küppers, and S. Pau, “Efficiency of continuous-wave solar pumped semiconductor lasers,” Opt. Laser Technol. 47, 194–198 (2013).

Lando, M.

M. Lando, J. Kagan, B. Linyekin, and V. Dobrusin, “A solar-pumped Nd:YAG laser in the high collection efficiency regime,” Opt. Commun. 222, 371–381 (2003).

Le Quang, A. Q.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

Leatherdale, C. A.

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).

Ledoux-Rak, I.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

Li, L.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors,” ACS Photonics 3, 278–285 (2016).

Liang, D.

D. Liang, J. Almeida, C. R. Vistas, and E. Guillot, “Solar-pumped Nd:YAG laser with 31.5W/m2 multimode and 7.9W/m2 TEM00-mode collection efficiencies,” Sol. Energy Mater. Sol. Cells 159, 435–439 (2017).

D. Liang and J. Almeida, “Highly efficient solar-pumped Nd : YAG laser,” Opt. Express 19, 26399–26405 (2011).

Lifshitz, E.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

Linyekin, B.

M. Lando, J. Kagan, B. Linyekin, and V. Dobrusin, “A solar-pumped Nd:YAG laser in the high collection efficiency regime,” Opt. Commun. 222, 371–381 (2003).

Lorenzon, M.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).

Lu, P.

K. Gong, J. E. Martin, L. E. Shea-Rohwer, P. Lu, and D. F. Kelley, “Radiative lifetimes of zincblende CdSe/CdS quantum dots,” J. Phys. Chem. C 119, 2231–2238 (2015).

Mabuti, A.

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

MacQueen, R. W.

Makhmudov, K.

S. Payziyev and K. Makhmudov, “Solar pumped Nd:YAG laser efficiency enhancement using Cr:LiCAF frequency down-shifter,” Opt. Commun. 380, 57–60 (2016).

Martin, J. E.

K. Gong, J. E. Martin, L. E. Shea-Rohwer, P. Lu, and D. F. Kelley, “Radiative lifetimes of zincblende CdSe/CdS quantum dots,” J. Phys. Chem. C 119, 2231–2238 (2015).

Mawst, L.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% Continuous-Wave Wallplug Efficiency From 1.53 M M-Emitting Broad-Area Diode Lasers,” Appl. Phys. Lett. 105, 4893576 (2014).

Meijerink, A.

Meinardi, F.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).

Mikulec, F. V.

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).

Motokoshi, S.

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Nakagawa, K.

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Nakatsuka, M.

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Nakayama, Y.

T. Ohkubo, T. Yabe, K. Yoshida, S. Uchida, T. Funatsu, B. Bagheri, T. Oishi, K. Daito, M. Ishioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80 W laser irradiated by a Fresnel lens,” Opt. Lett. 34(2), 175–177 (2009).
[PubMed]

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Nuzzo, R. G.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors,” ACS Photonics 3, 278–285 (2016).

Ohkubo, T.

T. Ohkubo, T. Yabe, K. Yoshida, S. Uchida, T. Funatsu, B. Bagheri, T. Oishi, K. Daito, M. Ishioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80 W laser irradiated by a Fresnel lens,” Opt. Lett. 34(2), 175–177 (2009).
[PubMed]

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Oishi, T.

T. Ohkubo, T. Yabe, K. Yoshida, S. Uchida, T. Funatsu, B. Bagheri, T. Oishi, K. Daito, M. Ishioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80 W laser irradiated by a Fresnel lens,” Opt. Lett. 34(2), 175–177 (2009).
[PubMed]

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Oka, Y.

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, and M. Ishigame, “A Solar-Pumped cw 18 W Nd:YAG Laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).

Okamoto, Y.

Olson, D.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% Continuous-Wave Wallplug Efficiency From 1.53 M M-Emitting Broad-Area Diode Lasers,” Appl. Phys. Lett. 105, 4893576 (2014).

Oyama, A.

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Pau, S.

S. Johnson, F. Küppers, and S. Pau, “Efficiency of continuous-wave solar pumped semiconductor lasers,” Opt. Laser Technol. 47, 194–198 (2013).

Pavesi, L.

N. Daldosso and L. Pavesi, “Nanosilicon photonics,” Laser Photonics Rev. 3, 508–534 (2009).

Payziyev, S.

S. Payziyev and K. Makhmudov, “Solar pumped Nd:YAG laser efficiency enhancement using Cr:LiCAF frequency down-shifter,” Opt. Commun. 380, 57–60 (2016).

Pernas, P. L.

P. L. Pernas and E. Cantelar, “Emission and Absorption Cross-Section Calculation of Rare Earth Doped Materials for Applications to Integrated Optic Devices,” Phys. Scr. 93, 93 (2005).

Planelles-Aragó, J.

J. Planelles-Aragó, E. Cordoncillo, R. S. Ferreira, L. D. Carlos, and P. Escribano, “Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS → lanthanide energy transfer mechanisms,” J. Mater. Chem. 21, 1162 (2011).

Potterveld, D. H.

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5, 5798 (2012).

Ronda, C. R.

Roxlo, C. B.

Sasahara, N.

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, and M. Ishigame, “A Solar-Pumped cw 18 W Nd:YAG Laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).

Sashchiuk, A.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

Sato, Y.

T. Ohkubo, T. Yabe, K. Yoshida, S. Uchida, T. Funatsu, B. Bagheri, T. Oishi, K. Daito, M. Ishioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80 W laser irradiated by a Fresnel lens,” Opt. Lett. 34(2), 175–177 (2009).
[PubMed]

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Schmidt, T. W.

Shea-Rohwer, L. E.

K. Gong, J. E. Martin, L. E. Shea-Rohwer, P. Lu, and D. F. Kelley, “Radiative lifetimes of zincblende CdSe/CdS quantum dots,” J. Phys. Chem. C 119, 2231–2238 (2015).

Simonutti, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).

Sirota, M.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

Swager, T. M.

G. D. Gutierrez, I. Coropceanu, M. G. Bawendi, and T. M. Swager, “A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers,” Adv. Mater. 28(3), 497–501 (2016).
[PubMed]

Uchida, S.

T. Ohkubo, T. Yabe, K. Yoshida, S. Uchida, T. Funatsu, B. Bagheri, T. Oishi, K. Daito, M. Ishioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80 W laser irradiated by a Fresnel lens,” Opt. Lett. 34(2), 175–177 (2009).
[PubMed]

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Velizhanin, K. A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).

Verbunt, P. P. C.

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).

D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(10), A395–A405 (2012).
[PubMed]

Vistas, C. R.

D. Liang, J. Almeida, C. R. Vistas, and E. Guillot, “Solar-pumped Nd:YAG laser with 31.5W/m2 multimode and 7.9W/m2 TEM00-mode collection efficiencies,” Sol. Energy Mater. Sol. Cells 159, 435–439 (2017).

Viswanatha, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).

Wasielewski, M. R.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5, 694–701 (2011).

Wiederrecht, G. P.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5, 694–701 (2011).

Woo, W. K.

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).

Xu, L.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors,” ACS Photonics 3, 278–285 (2016).

Yabe, T.

T. Ohkubo, T. Yabe, K. Yoshida, S. Uchida, T. Funatsu, B. Bagheri, T. Oishi, K. Daito, M. Ishioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80 W laser irradiated by a Fresnel lens,” Opt. Lett. 34(2), 175–177 (2009).
[PubMed]

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Yablonovitch, E.

Yanagitani, T.

Yao, Y.

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors,” ACS Photonics 3, 278–285 (2016).

Yasunaga, N.

Yoshida, K.

T. Ohkubo, T. Yabe, K. Yoshida, S. Uchida, T. Funatsu, B. Bagheri, T. Oishi, K. Daito, M. Ishioka, Y. Nakayama, N. Yasunaga, K. Kido, Y. Sato, C. Baasandash, K. Kato, T. Yanagitani, and Y. Okamoto, “Solar-pumped 80 W laser irradiated by a Fresnel lens,” Opt. Lett. 34(2), 175–177 (2009).
[PubMed]

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Yoshida, M.

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

Yur’ev, M. S.

O. B. Danilov, A. P. Zhevlakov, and M. S. Yur’ev, “Optically (solar) pumped oxygen-iodine lasers,” Opt. Spectrosc. 117, 145–151 (2014).

Zenner, C.

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% Continuous-Wave Wallplug Efficiency From 1.53 M M-Emitting Broad-Area Diode Lasers,” Appl. Phys. Lett. 105, 4893576 (2014).

Zewail, A. H.

Zhevlakov, A. P.

O. B. Danilov, A. P. Zhevlakov, and M. S. Yur’ev, “Optically (solar) pumped oxygen-iodine lasers,” Opt. Spectrosc. 117, 145–151 (2014).

Zyss, J.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

ACS Photonics (1)

L. Xu, Y. Yao, N. D. Bronstein, L. Li, A. P. Alivisatos, and R. G. Nuzzo, “Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors,” ACS Photonics 3, 278–285 (2016).

Adv. Energy Mater. (1)

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012).

Adv. Mater. (1)

G. D. Gutierrez, I. Coropceanu, M. G. Bawendi, and T. M. Swager, “A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers,” Adv. Mater. 28(3), 497–501 (2016).
[PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, “High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium,” Appl. Phys. Lett. 90, 2005–2008 (2007).

T. Garrod, D. Olson, M. Klaus, C. Zenner, C. Galstad, L. Mawst, and D. Botez, “50% Continuous-Wave Wallplug Efficiency From 1.53 M M-Emitting Broad-Area Diode Lasers,” Appl. Phys. Lett. 105, 4893576 (2014).

Chem. Soc. Rev. (1)

S. V. Eliseeva and J. C. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2010).
[PubMed]

Energy Environ. Sci. (1)

H. Hernandez-Noyola, D. H. Potterveld, R. J. Holt, and S. B. Darling, “Optimizing luminescent solar concentrator design,” Energy Environ. Sci. 5, 5798 (2012).

J. Appl. Phys. (1)

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51, 4494–4500 (1980).

J. Mater. Chem. (1)

J. Planelles-Aragó, E. Cordoncillo, R. S. Ferreira, L. D. Carlos, and P. Escribano, “Synthesis, characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS → lanthanide energy transfer mechanisms,” J. Mater. Chem. 21, 1162 (2011).

J. Phys. Chem. B (2)

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell nanocrystal quantum dots and their applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[PubMed]

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).

J. Phys. Chem. C (1)

K. Gong, J. E. Martin, L. E. Shea-Rohwer, P. Lu, and D. F. Kelley, “Radiative lifetimes of zincblende CdSe/CdS quantum dots,” J. Phys. Chem. C 119, 2231–2238 (2015).

Jpn. J. Appl. Phys. (1)

H. Arashi, Y. Oka, N. Sasahara, A. Kaimai, and M. Ishigame, “A Solar-Pumped cw 18 W Nd:YAG Laser,” Jpn. J. Appl. Phys. 23, 1051–1053 (1984).

Laser Photonics Rev. (1)

N. Daldosso and L. Pavesi, “Nanosilicon photonics,” Laser Photonics Rev. 3, 508–534 (2009).

Nano Lett. (1)

I. Coropceanu and M. G. Bawendi, “Core/Shell Quantum Dot Based Luminescent Solar Concentrators with Reduced Reabsorption and Enhanced Efficiency,” Nano Lett. 14(7), 4097–4101 (2014).
[PubMed]

Nat. Photonics (2)

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5, 694–701 (2011).

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on /`Stokes-shift-engineered/’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8, 392–399 (2014).

Opt. Commun. (2)

M. Lando, J. Kagan, B. Linyekin, and V. Dobrusin, “A solar-pumped Nd:YAG laser in the high collection efficiency regime,” Opt. Commun. 222, 371–381 (2003).

S. Payziyev and K. Makhmudov, “Solar pumped Nd:YAG laser efficiency enhancement using Cr:LiCAF frequency down-shifter,” Opt. Commun. 380, 57–60 (2016).

Opt. Express (4)

Opt. Laser Technol. (1)

S. Johnson, F. Küppers, and S. Pau, “Efficiency of continuous-wave solar pumped semiconductor lasers,” Opt. Laser Technol. 47, 194–198 (2013).

Opt. Lett. (2)

Opt. Spectrosc. (1)

O. B. Danilov, A. P. Zhevlakov, and M. S. Yur’ev, “Optically (solar) pumped oxygen-iodine lasers,” Opt. Spectrosc. 117, 145–151 (2014).

Phys. Scr. (1)

P. L. Pernas and E. Cantelar, “Emission and Absorption Cross-Section Calculation of Rare Earth Doped Materials for Applications to Integrated Optic Devices,” Phys. Scr. 93, 93 (2005).

Sol. Energy Mater. Sol. Cells (1)

D. Liang, J. Almeida, C. R. Vistas, and E. Guillot, “Solar-pumped Nd:YAG laser with 31.5W/m2 multimode and 7.9W/m2 TEM00-mode collection efficiencies,” Sol. Energy Mater. Sol. Cells 159, 435–439 (2017).

Other (5)

J. P. Morgan, P. M. Chang, and S. H. S. Myrskog, “Stimulated Emission Luminescent Light-Guide Solar Concentrators,” U.S. patent WO 2010/102408 A1 (2010).

J. P. Morgan and P. Dufour, “Pulsed stimulated emission luminescent photovoltaic solar concentrator,” U.S. patent US 2014/0319377 A1 (2014).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

R. Hull and INSPEC (Information service), Properties of Crystalline Silicon (INSPEC, the Institution of Electrical Engineers, 1999).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 A) A conventional LSC in which the primary photon emission is spontaneous and into a random mode; B) An SELSC in which photons are emitted into a specific mode (with specific directionality) via stimulated emission.
Fig. 2
Fig. 2 2D SELSC device schematic/grid diagram and definition of parameters used in the calculations. The luminophores are optically pumped via solar radiation, like a traditional LSC. A seed laser enters the SELSC device via an iris at x = y = 0 (top left) and propagates through the SELSC device. As it propagates, the beam is amplified via stimulated emission from the luminophores. This amplified beam, as well as some spontaneous emission, is absorbed by a PV cell. An SELSC device may comprise a single pass (no reflection of the laser light) or multiple passes with the laser light reflecting back and forth thereby sweeping the complete thickness (in the y-direction) of the device. With multiples passes, the laser iris and PV cell are a fraction of the thickness. This figure illustrates a 3-pass system.
Fig. 3
Fig. 3 Four-level atomic system used in this work. The transition from 0→3 is the pump transition (broadband, rate of R) and the transition from 2→1 is the emission transition (rate of 1/τ). The 3→2 and 1→0 transitions are considered infinitely quick. Nm is the population at energy level m.
Fig. 4
Fig. 4 Example of a reflected ray that reaches the PV cell compared to an example ray that exists through the laser iris. A ray can either exit through the iris, resulting in no contribution to the energy generation, or can strike the PV cell and contribute. The amount contributed depends on propagation losses, reflection losses, escape cone losses, the discrete number of angles, and the spontaneous emission rate at x,y.
Fig. 5
Fig. 5 Baseline (traditional LSC, only escape cone losses) for various emission wavelengths and Stokes shifts.
Fig. 6
Fig. 6 SELSC with minimal losses other than the escape cone for various emission wavelengths and Stokes shifts. A) Maximum possible efficiencies achievable with an SELSC; B) Relative improvement of the SELSC over a traditional LSC with the same parameters; C) Percentage of captured photons which are from the amplified laser, rather than those from spontaneous emission.
Fig. 7
Fig. 7 Efficiency of an SELSC at different propagation losses and lengths. A) SELSC efficiency; B) Relative improvement over traditional LSC with the same parameters; C) Percentage of captured photons that are from stimulated emission. The stimulated percentage is the same for 0.0 to 0.5m-1, thus completely overlapping.
Fig. 8
Fig. 8 SELSC efficiencies for different emission linewidths and photoluminescent layer thickness. A) SELSC efficiency; B) Relative improvement over traditional LSC with the same parameters; C) Percentage of captured photons that are from stimulated emission.
Fig. 9
Fig. 9 SELSC efficiencies for different thickness and number of passes if there was no loss from reflection or propagation. A) SELSC efficiency; B) Relative improvement over a traditional LSC with the same parameters; C) Percentage of captured photons that are due to stimulated emission. The percentage improvement is a comparison between the optimal laser intensity for a SELSC and an identical configuration however without a laser.
Fig. 10
Fig. 10 SELSC efficiencies for different thickness and number of passes for a 1.0% reflection loss and a 0.1 m-1 propagation loss constant. A) SELSC efficiency; B) Relative improvement over a traditional LSC with the same parameters. The percentage improvement is a comparison between the optimal laser intensity for an SELSC and an identical configuration however now with a reduced PV cell size due to multiple passes and no laser.
Fig. 11
Fig. 11 SELSC efficiency at various spontaneous emission and non-radiative lifetimes. A) SELSC efficiency; B) Relative improvement over traditional LSC with the same parameters.

Tables (5)

Tables Icon

Table 1 Parameters used to study the effect of emission wavelength and Stokes shift on SELSC efficiency

Tables Icon

Table 2 Parameters used to study the effect of propagation losses and SELSC length on SELSC efficiency

Tables Icon

Table 3 Parameters used to study the effect of emission bandwidth and SELSC thickness on SELSC efficiency

Tables Icon

Table 4 Parameters used to study the effect of number of passes and SELSC thickness on SELSC efficiency

Tables Icon

Table 5 Parameters used to study the effect of spontaneous emission and non-radiative lifetimes

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

η S E L S C = ( h c 0 λ 0 ( η C e l l ( C s t + C s p ) Φ L a s e r η L a s e r ) ) L P A M 1.5 g × 100 %
Φ L a s e r = 0 Y L a s e r ϕ λ ( x = 0 ,   y ) d y = 0 Y L a s e r ϕ λ 0 d y
C s p = 0 D 0 L r s p ( x ,   y ) η c a p t u r e ( x , y ) d x d y
C s t = Y C e l l D ϕ λ ( x = L ,   y ) d y
[ N 0 ( x , y ) N 2 ( x , y ) ] = N 1 + R ( x , y ) τ ( x , y ) [ 1 R ( x , y ) τ ( x , y ) ]
R ( x , y ) = ϕ p u m p ( x , y ) σ a b s
1 τ ( x , y ) = 1 τ n r + 1 τ s p + 1 τ s t ( x , y )
r x x ( x , y ) = N 2 ( x , y ) τ x x ( x , y ) = N R ( x , y ) τ ( x , y ) τ x x ( x , y ) ( 1 + R ( x , y ) τ ( x , y ) )
1 τ s t ( x , y ) = 1 τ s p ϕ λ ( x , y ) ( λ 0 2 2 π n ) 2 1 c 0 Δ λ
λ A b s = λ L a s e r   E m i s s i o n λ S t o k e s
ϕ p u m p ( x , 0 ) = 0 λ A b s ϕ A M 1.5 G ( λ ) d λ
R ( x , 0 ) = σ a b s 0 λ A b s ϕ A M 1.5 G ( λ ) d λ
ϕ λ ( 0 ,   0 y Y L a s e r ) = ϕ λ 0
q ( λ 0 2 2 π n ) 2 1 c 0 Δ λ
1 τ ( 0 ,   0 y Y L a s e r ) = 1 τ n r + 1 + q ϕ λ 0 τ s p
ϕ p u m p ( x , y + Δ y ) = N R ( x , y ) 1 + R ( x , y ) τ ( x , y ) Δ y + ϕ p u m p ( x , y )
R ( x , y + Δ y ) = ϕ p u m p ( y + Δ y ) σ a b s
ϕ λ ( x + Δ x , y ) = ϕ λ ( x , y ) ( 1 + N R ( x , y ) τ ( x , y ) 1 + R ( x , y ) τ ( x , y ) q τ s p Δ x α l o s s Δ x )
1 τ ( x + Δ x , y ) = 1 τ n r + 1 + q ϕ λ ( x + Δ x , y ) τ s p
ϕ λ ( L , y ) = η r e f ϕ λ ( L , y Y L a s e r ) ( N R ( x , y ) τ ( x , y ) 1 + R ( x , y ) τ ( x , y ) q τ s p Δ x + 1 α l o s s Δ x )
C s t = y = Y C e l l Δ y D Δ y ϕ λ ( L ,   y ) Δ y
C s p = y = 0 d e p t h Δ y x = 0 l e n g t h Δ x ( r s p ( x ,   y ) i = 0 n a n g l e s δ c a p t u r e d η e s c _ i η r e f n r e f l i e α l o s s l i n a n g l e s ) Δ x Δ y
( 1 C s t C t o t a l ) η e s c η i r i s + η s t C s t C t o t a l = η e s c

Metrics