Abstract

Using a plasma to generate a surface texture with feature sizes on the order of tens to hundreds of nanometers (“nanotexturing”) is a promising technique being considered to improve efficiency in thin, high-efficiency crystalline silicon solar cells. This study investigates the evolution of the optical properties of silicon samples with various initial surface finishes (from mirror polish to various states of micron-scale roughness) during a plasma nanotexturing process. It is shown that during said process, the appearance and growth of nanocone-like structures are essentially independent of the initial surface finish, as quantified by the auto-correlation function of the surface morphology. During the first stage of the process (2 min to 15 min etching), the reflectance and light-trapping abilities of the nanotextured surfaces are strongly influenced by the initial surface roughness; however, the differences tend to diminish as the nanostructures become larger. For the longest etching times (15 min or more), the effective reflectance is less than 5% and a strong anisotropic scattering behavior is also observed for all samples, leading to very elevated levels of light-trapping.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers

Yunwon Song, Keorock Choi, Dong-Hwan Jun, and Jungwoo Oh
Opt. Express 25(20) 23862-23872 (2017)

Wave optical simulation of the light trapping properties of black silicon surface textures

Alexander Jürgen Bett, Johannes Eisenlohr, Oliver Höhn, Päivikki Repo, Hele Savin, Benedikt Bläsi, and Jan Christoph Goldschmidt
Opt. Express 24(6) A434-A445 (2016)

Lithography-free sub-100 nm nanocone array antireflection layer for low-cost silicon solar cell

Zhida Xu, Jing Jiang, and Gang Logan Liu
Appl. Opt. 51(19) 4430-4435 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).
  2. A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovolt. 3, 1184–1191 (2013).
  3. P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).
  4. J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).
  5. M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).
  6. X. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics,” Curr. Opin. Solid State Mater. Sci. 16, 71–81 (2012).
  7. X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).
  8. X. X. Lin, Y. Zeng, S. H. Zhong, Z. G. Huang, H. Q. Qian, J. Ling, J. B. Zhu, and W. Z. Shen, “Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production,” Nanotechnology 26(12), 125401 (2015).
    [PubMed]
  9. S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
    [PubMed]
  10. B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).
  11. H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).
  12. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
    [PubMed]
  13. P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).
  14. J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).
  15. M. Schnell, R. Ludemann, and S. Schaefer, “Plasma surface texturization for multicrystalline silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 367–370.
  16. G. Kumaravelu, M. M. Alkaisi, and A. Bittar, “Surface texturing for silicon solar cells using reactive ion etching technique,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (IEEE, 2002), pp. 258–261.
  17. R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).
  18. T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol. A 24, 1073–1082 (2006).
  19. M. Gaudig, J. Hirsch, T. Schneider, A. N. Sprafke, J. Ziegler, N. Bernhard, and R. B. Wehrspohn, “Properties of black silicon obtained at room-temperature by different plasma modes,” J. Vac. Sci. Technol. A 33, 05E132 (2015).
  20. D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).
  21. A. Bidiville, J. Heiber, K. Wasmer, S. Habegger, and F. Assi, “Diamond Wire Wafering: Wafer Morphology in Comparison to Slurry Sawn Wafers,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference (2010).
  22. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the authors’ organizations, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
  23. Standard G173–03(2012), “Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface”, The American Society for Testing and Materials (2012).
  24. M. Steglich, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “Self-organized, effective medium Black Silicon for infrared antireflection,” Infrared Phys. Technol. 69, 218–221 (2015).
  25. R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).
  26. G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76, 193405 (2007).
  27. Y.-P. Zhao, T. Jason, G.-C. Drotar, S. Wang, and T.-M. Lu, “Roughening in plasma etch fronts of Si(100),” Phys. Rev. Lett. 82, 4882–4885 (1999).
  28. N. Nakazaki, H. Tsuda, Y. Takao, K. Eriguchi, and K. Ono, “Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products,” J. Appl. Phys. 116, 223302 (2014).
  29. E. Gogolides, C. Boukouras, G. Kokkoris, O. Brani, A. Tserepi, and V. Constantoudis, “Si etching in high-density SF6 plasmas for microfabrication: surface roughness formation,” Microelectron. Eng. 73–74, 312–318 (2004).
  30. M. Martin and G. Cunge, “Surface roughness generated by plasma etching processes of silicon,” J. Vac. Sci. Technol. B 26, 1281–1288 (2008).
  31. D. Abi Saab, P. Basset, M. J. Pierotti, M. L. Trawick, and D. E. Angelescu, “Static and Dynamic Aspects of Black Silicon Formation,” Phys. Rev. Lett. 113(26), 265502 (2014).
    [PubMed]
  32. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).
  33. F. Stern, “Elementary Theory of the Optical Properties of Solids,” in Solid State Physics, D. Turnbull and F. Seitz, eds. (Academic, 1963), Vol. 15, pp. 299–408.
  34. W. Chen, X. Liu, M. Li, C. Yin, and L. Zhou, “On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers,” Mater. Sci. Semicond. Process. 27, 220–227 (2014).
  35. M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).
  36. D. H. Raguin and G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32(14), 2582–2598 (1993).
    [PubMed]
  37. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. J. Opt. Soc. Am. A 8, 549–553 (1991).
  38. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).
  39. J. C. Stover, Optical Scattering: Measurements and Analysis, Third Edition (Society of Photo-Optical Instrumentation Engineers, 2012).
  40. T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,” Rev. Sci. Instrum. 70, 3688–3695 (1999).
  41. H. J. Patrick, L. M. Hanssen, J. Zeng, and T. A. Germer, “BRDF measurements of graphite used in high-temperature fixed point blackbody radiators: a multi-angle study at 405 nm and 658 nm,” Metrologia 49, S81–S92 (2012).
  42. A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells: Modulated textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23, 1649–1659 (2015).
  43. S. Schaefer and R. Lüdemann, “Low damage reactive ion etching for photovoltaic applications,” J. Vac. Sci. Technol. A 17, 749–754 (1999).
  44. K. M. Park, M. B. Lee, K. S. Jeon, and S. Y. Choi, “Reactive Ion Etching Texturing for Multicrystalline Silicon Solar Cells Using a SF6/O2/Cl2 Gas Mixture,” Jpn. J. Appl. Phys. 52, 03BD01 (2013).
  45. B. M. Damiani, R. Ludemann, D. S. Ruby, S. H. Zaidi, and A. Rohatgi, “Development of RIE-textured silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 371–374.
  46. R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
    [PubMed]
  47. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [PubMed]
  48. G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” J. Vac. Sci. Technol. A 30, 040802 (2012).
  49. M. Otto, M. Kroll, T. Käsebier, R. Salzer, and R. B. Wehrspohn, “Conformal Al2O3 coatings on black silicon by thermal ALD for surface passivation,” Energy Procedia 27, 361–364 (2012).
  50. P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3, 90–94 (2013).
  51. W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
    [PubMed]

2017 (1)

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

2015 (7)

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

X. X. Lin, Y. Zeng, S. H. Zhong, Z. G. Huang, H. Q. Qian, J. Ling, J. B. Zhu, and W. Z. Shen, “Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production,” Nanotechnology 26(12), 125401 (2015).
[PubMed]

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[PubMed]

M. Gaudig, J. Hirsch, T. Schneider, A. N. Sprafke, J. Ziegler, N. Bernhard, and R. B. Wehrspohn, “Properties of black silicon obtained at room-temperature by different plasma modes,” J. Vac. Sci. Technol. A 33, 05E132 (2015).

M. Steglich, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “Self-organized, effective medium Black Silicon for infrared antireflection,” Infrared Phys. Technol. 69, 218–221 (2015).

A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells: Modulated textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23, 1649–1659 (2015).

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
[PubMed]

2014 (6)

N. Nakazaki, H. Tsuda, Y. Takao, K. Eriguchi, and K. Ono, “Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products,” J. Appl. Phys. 116, 223302 (2014).

W. Chen, X. Liu, M. Li, C. Yin, and L. Zhou, “On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers,” Mater. Sci. Semicond. Process. 27, 220–227 (2014).

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).

D. Abi Saab, P. Basset, M. J. Pierotti, M. L. Trawick, and D. E. Angelescu, “Static and Dynamic Aspects of Black Silicon Formation,” Phys. Rev. Lett. 113(26), 265502 (2014).
[PubMed]

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

2013 (6)

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[PubMed]

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovolt. 3, 1184–1191 (2013).

K. M. Park, M. B. Lee, K. S. Jeon, and S. Y. Choi, “Reactive Ion Etching Texturing for Multicrystalline Silicon Solar Cells Using a SF6/O2/Cl2 Gas Mixture,” Jpn. J. Appl. Phys. 52, 03BD01 (2013).

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3, 90–94 (2013).

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

2012 (6)

H. J. Patrick, L. M. Hanssen, J. Zeng, and T. A. Germer, “BRDF measurements of graphite used in high-temperature fixed point blackbody radiators: a multi-angle study at 405 nm and 658 nm,” Metrologia 49, S81–S92 (2012).

G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” J. Vac. Sci. Technol. A 30, 040802 (2012).

M. Otto, M. Kroll, T. Käsebier, R. Salzer, and R. B. Wehrspohn, “Conformal Al2O3 coatings on black silicon by thermal ALD for surface passivation,” Energy Procedia 27, 361–364 (2012).

X. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics,” Curr. Opin. Solid State Mater. Sci. 16, 71–81 (2012).

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).

2011 (1)

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).

2009 (1)

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).

2008 (2)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).

M. Martin and G. Cunge, “Surface roughness generated by plasma etching processes of silicon,” J. Vac. Sci. Technol. B 26, 1281–1288 (2008).

2007 (2)

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76, 193405 (2007).

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

2006 (3)

T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol. A 24, 1073–1082 (2006).

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).

2004 (2)

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

E. Gogolides, C. Boukouras, G. Kokkoris, O. Brani, A. Tserepi, and V. Constantoudis, “Si etching in high-density SF6 plasmas for microfabrication: surface roughness formation,” Microelectron. Eng. 73–74, 312–318 (2004).

1999 (3)

Y.-P. Zhao, T. Jason, G.-C. Drotar, S. Wang, and T.-M. Lu, “Roughening in plasma etch fronts of Si(100),” Phys. Rev. Lett. 82, 4882–4885 (1999).

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,” Rev. Sci. Instrum. 70, 3688–3695 (1999).

S. Schaefer and R. Lüdemann, “Low damage reactive ion etching for photovoltaic applications,” J. Vac. Sci. Technol. A 17, 749–754 (1999).

1994 (1)

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).

1993 (1)

1991 (1)

W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. J. Opt. Soc. Am. A 8, 549–553 (1991).

Abi Saab, D.

D. Abi Saab, P. Basset, M. J. Pierotti, M. L. Trawick, and D. E. Angelescu, “Static and Dynamic Aspects of Black Silicon Formation,” Phys. Rev. Lett. 113(26), 265502 (2014).
[PubMed]

Adachi, D.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Alcubilla, R.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[PubMed]

Algasinger, M.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

Alkaisi, M. M.

G. Kumaravelu, M. M. Alkaisi, and A. Bittar, “Surface texturing for silicon solar cells using reactive ion etching technique,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (IEEE, 2002), pp. 258–261.

Ambrosio, R.

D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).

André, E.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).

Angelescu, D. E.

D. Abi Saab, P. Basset, M. J. Pierotti, M. L. Trawick, and D. E. Angelescu, “Static and Dynamic Aspects of Black Silicon Formation,” Phys. Rev. Lett. 113(26), 265502 (2014).
[PubMed]

Angelikopoulos, P.

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76, 193405 (2007).

Asmail, C. C.

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,” Rev. Sci. Instrum. 70, 3688–3695 (1999).

Assi, F.

A. Bidiville, J. Heiber, K. Wasmer, S. Habegger, and F. Assi, “Diamond Wire Wafering: Wafer Morphology in Comparison to Slurry Sawn Wafers,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference (2010).

Basillais, A.

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

Basset, P.

D. Abi Saab, P. Basset, M. J. Pierotti, M. L. Trawick, and D. E. Angelescu, “Static and Dynamic Aspects of Black Silicon Formation,” Phys. Rev. Lett. 113(26), 265502 (2014).
[PubMed]

Benick, J.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).

Benoit, R.

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

Bernhard, N.

M. Gaudig, J. Hirsch, T. Schneider, A. N. Sprafke, J. Ziegler, N. Bernhard, and R. B. Wehrspohn, “Properties of black silicon obtained at room-temperature by different plasma modes,” J. Vac. Sci. Technol. A 33, 05E132 (2015).

Bidiville, A.

A. Bidiville, J. Heiber, K. Wasmer, S. Habegger, and F. Assi, “Diamond Wire Wafering: Wafer Morphology in Comparison to Slurry Sawn Wafers,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference (2010).

Bittar, A.

G. Kumaravelu, M. M. Alkaisi, and A. Bittar, “Surface texturing for silicon solar cells using reactive ion etching technique,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (IEEE, 2002), pp. 258–261.

Boufnichel, M.

T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol. A 24, 1073–1082 (2006).

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

Boukouras, C.

E. Gogolides, C. Boukouras, G. Kokkoris, O. Brani, A. Tserepi, and V. Constantoudis, “Si etching in high-density SF6 plasmas for microfabrication: surface roughness formation,” Microelectron. Eng. 73–74, 312–318 (2004).

Boulousis, G.

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76, 193405 (2007).

Brani, O.

E. Gogolides, C. Boukouras, G. Kokkoris, O. Brani, A. Tserepi, and V. Constantoudis, “Si etching in high-density SF6 plasmas for microfabrication: surface roughness formation,” Microelectron. Eng. 73–74, 312–318 (2004).

Branz, H.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

Branz, H. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).

Brault, P.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).

Cai, B.

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Calle, E.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[PubMed]

Cao, F.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

Chang, C.-W.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Chaumartin, A.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).

Chen, H. Y.

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Chen, H.-J.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

Chen, K.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Chen, M.-J.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

Chen, W.

W. Chen, X. Liu, M. Li, C. Yin, and L. Zhou, “On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers,” Mater. Sci. Semicond. Process. 27, 220–227 (2014).

Cho, K.-Y.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Choi, J.-Y.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Choi, S. Y.

K. M. Park, M. B. Lee, K. S. Jeon, and S. Y. Choi, “Reactive Ion Etching Texturing for Multicrystalline Silicon Solar Cells Using a SF6/O2/Cl2 Gas Mixture,” Jpn. J. Appl. Phys. 52, 03BD01 (2013).

Constantoudis, V.

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76, 193405 (2007).

E. Gogolides, C. Boukouras, G. Kokkoris, O. Brani, A. Tserepi, and V. Constantoudis, “Si etching in high-density SF6 plasmas for microfabrication: surface roughness formation,” Microelectron. Eng. 73–74, 312–318 (2004).

Cui, Y.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[PubMed]

Cunge, G.

M. Martin and G. Cunge, “Surface roughness generated by plasma etching processes of silicon,” J. Vac. Sci. Technol. B 26, 1281–1288 (2008).

Damiani, B. M.

B. M. Damiani, R. Ludemann, D. S. Ruby, S. H. Zaidi, and A. Rohatgi, “Development of RIE-textured silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 371–374.

Dhungel, S. K.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).

Dingemans, G.

G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” J. Vac. Sci. Technol. A 30, 040802 (2012).

Drotar, G.-C.

Y.-P. Zhao, T. Jason, G.-C. Drotar, S. Wang, and T.-M. Lu, “Roughening in plasma etch fronts of Si(100),” Phys. Rev. Lett. 82, 4882–4885 (1999).

Dumas, P.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).

Dussart, R.

T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol. A 24, 1073–1082 (2006).

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

Eriguchi, K.

N. Nakazaki, H. Tsuda, Y. Takao, K. Eriguchi, and K. Ono, “Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products,” J. Appl. Phys. 116, 223302 (2014).

Estrade-Szwarckopf, H.

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

Fave, A.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).

Füchsel, K.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

Gangopadhyay, U.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).

Garín, M.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[PubMed]

Gaudig, M.

M. Gaudig, J. Hirsch, T. Schneider, A. N. Sprafke, J. Ziegler, N. Bernhard, and R. B. Wehrspohn, “Properties of black silicon obtained at room-temperature by different plasma modes,” J. Vac. Sci. Technol. A 33, 05E132 (2015).

Germer, T. A.

H. J. Patrick, L. M. Hanssen, J. Zeng, and T. A. Germer, “BRDF measurements of graphite used in high-temperature fixed point blackbody radiators: a multi-angle study at 405 nm and 658 nm,” Metrologia 49, S81–S92 (2012).

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,” Rev. Sci. Instrum. 70, 3688–3695 (1999).

Gesemann, B.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

Gimpel, T.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

Glunz, S. W.

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovolt. 3, 1184–1191 (2013).

Gogolides, E.

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76, 193405 (2007).

E. Gogolides, C. Boukouras, G. Kokkoris, O. Brani, A. Tserepi, and V. Constantoudis, “Si etching in high-density SF6 plasmas for microfabrication: surface roughness formation,” Microelectron. Eng. 73–74, 312–318 (2004).

Gomard, G.

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
[PubMed]

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).

Gupta, M. C.

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).

Haarahiltunen, A.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3, 90–94 (2013).

Habegger, S.

A. Bidiville, J. Heiber, K. Wasmer, S. Habegger, and F. Assi, “Diamond Wire Wafering: Wafer Morphology in Comparison to Slurry Sawn Wafers,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference (2010).

Hanssen, L. M.

H. J. Patrick, L. M. Hanssen, J. Zeng, and T. A. Germer, “BRDF measurements of graphite used in high-temperature fixed point blackbody radiators: a multi-angle study at 405 nm and 658 nm,” Metrologia 49, S81–S92 (2012).

Heiber, J.

A. Bidiville, J. Heiber, K. Wasmer, S. Habegger, and F. Assi, “Diamond Wire Wafering: Wafer Morphology in Comparison to Slurry Sawn Wafers,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference (2010).

Henry, D.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).

Hermle, M.

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovolt. 3, 1184–1191 (2013).

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).

Hirsch, J.

M. Gaudig, J. Hirsch, T. Schneider, A. N. Sprafke, J. Ziegler, N. Bernhard, and R. B. Wehrspohn, “Properties of black silicon obtained at room-temperature by different plasma modes,” J. Vac. Sci. Technol. A 33, 05E132 (2015).

Hölscher, H.

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
[PubMed]

Hong, M.

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Hsu, W.-C.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Huang, J.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

Huang, J.-J.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Huang, Z. G.

X. X. Lin, Y. Zeng, S. H. Zhong, Z. G. Huang, H. Q. Qian, J. Ling, J. B. Zhu, and W. Z. Shen, “Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production,” Nanotechnology 26(12), 125401 (2015).
[PubMed]

i Cabarrocas, P. R.

D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).

Ingenito, A.

A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells: Modulated textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23, 1649–1659 (2015).

Irie, T.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Isabella, O.

A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells: Modulated textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23, 1649–1659 (2015).

Itzmoyotl, A.

D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).

Iyengar, V. V.

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).

Jason, T.

Y.-P. Zhao, T. Jason, G.-C. Drotar, S. Wang, and T.-M. Lu, “Roughening in plasma etch fronts of Si(100),” Phys. Rev. Lett. 82, 4882–4885 (1999).

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Jeon, K. S.

K. M. Park, M. B. Lee, K. S. Jeon, and S. Y. Choi, “Reactive Ion Etching Texturing for Multicrystalline Silicon Solar Cells Using a SF6/O2/Cl2 Gas Mixture,” Jpn. J. Appl. Phys. 52, 03BD01 (2013).

Jeong, S.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[PubMed]

Jones, K. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).

Kaminski, A.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).

Kanematsu, M.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Käsebier, T.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

M. Steglich, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “Self-organized, effective medium Black Silicon for infrared antireflection,” Infrared Phys. Technol. 69, 218–221 (2015).

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).

M. Otto, M. Kroll, T. Käsebier, R. Salzer, and R. B. Wehrspohn, “Conformal Al2O3 coatings on black silicon by thermal ALD for surface passivation,” Energy Procedia 27, 361–364 (2012).

Kawasaki, H.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Kessels, W. M. M.

G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” J. Vac. Sci. Technol. A 30, 040802 (2012).

Kim, J.-S.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Kim, K.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).

Kley, E.-B.

M. Steglich, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “Self-organized, effective medium Black Silicon for infrared antireflection,” Infrared Phys. Technol. 69, 218–221 (2015).

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).

Kokkoris, G.

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76, 193405 (2007).

E. Gogolides, C. Boukouras, G. Kokkoris, O. Brani, A. Tserepi, and V. Constantoudis, “Si etching in high-density SF6 plasmas for microfabrication: surface roughness formation,” Microelectron. Eng. 73–74, 312–318 (2004).

Kong, J.-H.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Konishi, K.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Kontermann, S.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

Koynov, S.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

Kraiem, J.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).

Kroll, M.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, and R. B. Wehrspohn, “Conformal Al2O3 coatings on black silicon by thermal ALD for surface passivation,” Energy Procedia 27, 361–364 (2012).

Kumaravelu, G.

G. Kumaravelu, M. M. Alkaisi, and A. Bittar, “Surface texturing for silicon solar cells using reactive ion etching technique,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (IEEE, 2002), pp. 258–261.

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Lee, E.-J.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Lee, H.-S.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Lee, H.-W.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Lee, M. B.

K. M. Park, M. B. Lee, K. S. Jeon, and S. Y. Choi, “Reactive Ion Etching Texturing for Multicrystalline Silicon Solar Cells Using a SF6/O2/Cl2 Gas Mixture,” Jpn. J. Appl. Phys. 52, 03BD01 (2013).

Lee, S.-H.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Lefaucheux, P.

T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol. A 24, 1073–1082 (2006).

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

Lelievre, J.-F.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).

Lemiti, M.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).

Li, J.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

Li, J. M.

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Li, M.

W. Chen, X. Liu, M. Li, C. Yin, and L. Zhou, “On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers,” Mater. Sci. Semicond. Process. 27, 220–227 (2014).

Li, X.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

X. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics,” Curr. Opin. Solid State Mater. Sci. 16, 71–81 (2012).

Lin, C.-W.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

Lin, X. X.

X. X. Lin, Y. Zeng, S. H. Zhong, Z. G. Huang, H. Q. Qian, J. Ling, J. B. Zhu, and W. Z. Shen, “Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production,” Nanotechnology 26(12), 125401 (2015).
[PubMed]

Ling, J.

X. X. Lin, Y. Zeng, S. H. Zhong, Z. G. Huang, H. Q. Qian, J. Ling, J. B. Zhu, and W. Z. Shen, “Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production,” Nanotechnology 26(12), 125401 (2015).
[PubMed]

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Liu, X.

W. Chen, X. Liu, M. Li, C. Yin, and L. Zhou, “On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers,” Mater. Sci. Semicond. Process. 27, 220–227 (2014).

Liu, Z. Q.

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Lu, T.-M.

Y.-P. Zhao, T. Jason, G.-C. Drotar, S. Wang, and T.-M. Lu, “Roughening in plasma etch fronts of Si(100),” Phys. Rev. Lett. 82, 4882–4885 (1999).

Lucas, J.

D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).

Ludemann, R.

M. Schnell, R. Ludemann, and S. Schaefer, “Plasma surface texturization for multicrystalline silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 367–370.

B. M. Damiani, R. Ludemann, D. S. Ruby, S. H. Zaidi, and A. Rohatgi, “Development of RIE-textured silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 371–374.

Lüdemann, R.

S. Schaefer and R. Lüdemann, “Low damage reactive ion etching for photovoltaic applications,” J. Vac. Sci. Technol. A 17, 749–754 (1999).

Maaza, N. M.

T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol. A 24, 1073–1082 (2006).

Mangalaraj, D.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).

Marcos, G.

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

Martin, M.

M. Martin and G. Cunge, “Surface roughness generated by plasma etching processes of silicon,” J. Vac. Sci. Technol. B 26, 1281–1288 (2008).

McGehee, M. D.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[PubMed]

Mellhaoui, X.

T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol. A 24, 1073–1082 (2006).

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

Moreno, M.

D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).

Morris, G. M.

Murias, D.

D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).

Nakano, K.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Nakazaki, N.

N. Nakazaki, H. Tsuda, Y. Takao, K. Eriguchi, and K. Ono, “Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products,” J. Appl. Phys. 116, 223302 (2014).

Naumann, V.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

Nayak, B. K.

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).

Nichiporuk, O.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).

Oh, D.-J.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Oh, J.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

Ono, K.

N. Nakazaki, H. Tsuda, Y. Takao, K. Eriguchi, and K. Ono, “Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products,” J. Appl. Phys. 116, 223302 (2014).

Ortega, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[PubMed]

Otto, M.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

M. Otto, M. Kroll, T. Käsebier, R. Salzer, and R. B. Wehrspohn, “Conformal Al2O3 coatings on black silicon by thermal ALD for surface passivation,” Energy Procedia 27, 361–364 (2012).

Overzet, L. J.

T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol. A 24, 1073–1082 (2006).

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Papet, P.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).

Park, K. M.

K. M. Park, M. B. Lee, K. S. Jeon, and S. Y. Choi, “Reactive Ion Etching Texturing for Multicrystalline Silicon Solar Cells Using a SF6/O2/Cl2 Gas Mixture,” Jpn. J. Appl. Phys. 52, 03BD01 (2013).

Parm, I. O.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).

Patrick, H. J.

H. J. Patrick, L. M. Hanssen, J. Zeng, and T. A. Germer, “BRDF measurements of graphite used in high-temperature fixed point blackbody radiators: a multi-angle study at 405 nm and 658 nm,” Metrologia 49, S81–S92 (2012).

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Peng, Y.

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Pertsch, T.

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).

Pétri, R.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).

Pierotti, M. J.

D. Abi Saab, P. Basset, M. J. Pierotti, M. L. Trawick, and D. E. Angelescu, “Static and Dynamic Aspects of Black Silicon Formation,” Phys. Rev. Lett. 113(26), 265502 (2014).
[PubMed]

Qian, H. Q.

X. X. Lin, Y. Zeng, S. H. Zhong, Z. G. Huang, H. Q. Qian, J. Ling, J. B. Zhu, and W. Z. Shen, “Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production,” Nanotechnology 26(12), 125401 (2015).
[PubMed]

Raguin, D. H.

Ranson, P.

T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol. A 24, 1073–1082 (2006).

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

Repo, P.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[PubMed]

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3, 90–94 (2013).

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).

Reyes-Betanzo, C.

D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).

Richter, A.

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovolt. 3, 1184–1191 (2013).

Rohatgi, A.

B. M. Damiani, R. Ludemann, D. S. Ruby, S. H. Zaidi, and A. Rohatgi, “Development of RIE-textured silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 371–374.

Rozier, Y.

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).

Ruby, D. S.

B. M. Damiani, R. Ludemann, D. S. Ruby, S. H. Zaidi, and A. Rohatgi, “Development of RIE-textured silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 371–374.

Sainiemi, L.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3, 90–94 (2013).

Salvan, F.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).

Salzer, R.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, and R. B. Wehrspohn, “Conformal Al2O3 coatings on black silicon by thermal ALD for surface passivation,” Energy Procedia 27, 361–364 (2012).

Savin, H.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[PubMed]

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3, 90–94 (2013).

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).

Schaefer, S.

S. Schaefer and R. Lüdemann, “Low damage reactive ion etching for photovoltaic applications,” J. Vac. Sci. Technol. A 17, 749–754 (1999).

M. Schnell, R. Ludemann, and S. Schaefer, “Plasma surface texturization for multicrystalline silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 367–370.

Schneider, T.

M. Gaudig, J. Hirsch, T. Schneider, A. N. Sprafke, J. Ziegler, N. Bernhard, and R. B. Wehrspohn, “Properties of black silicon obtained at room-temperature by different plasma modes,” J. Vac. Sci. Technol. A 33, 05E132 (2015).

Schnell, M.

M. Schnell, R. Ludemann, and S. Schaefer, “Plasma surface texturization for multicrystalline silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 367–370.

Schön, J.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).

Schrempel, F.

M. Steglich, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “Self-organized, effective medium Black Silicon for infrared antireflection,” Infrared Phys. Technol. 69, 218–221 (2015).

Schubert, M. C.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3, 90–94 (2013).

Seo, J.-K.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Shen, M.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

Shen, W. Z.

X. X. Lin, Y. Zeng, S. H. Zhong, Z. G. Huang, H. Q. Qian, J. Ling, J. B. Zhu, and W. Z. Shen, “Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production,” Nanotechnology 26(12), 125401 (2015).
[PubMed]

Shim, J.-M.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Shin, J.-E.

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

Siddique, R. H.

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
[PubMed]

Soriano, M.

D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).

Southwell, W. H.

W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. J. Opt. Soc. Am. A 8, 549–553 (1991).

Sprafke, A. N.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

M. Gaudig, J. Hirsch, T. Schneider, A. N. Sprafke, J. Ziegler, N. Bernhard, and R. B. Wehrspohn, “Properties of black silicon obtained at room-temperature by different plasma modes,” J. Vac. Sci. Technol. A 33, 05E132 (2015).

Steglich, M.

M. Steglich, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “Self-organized, effective medium Black Silicon for infrared antireflection,” Infrared Phys. Technol. 69, 218–221 (2015).

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).

Steinhauser, B.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).

Stradins, P.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).

Su, X.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

Takao, Y.

N. Nakazaki, H. Tsuda, Y. Takao, K. Eriguchi, and K. Ono, “Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products,” J. Appl. Phys. 116, 223302 (2014).

Talvitie, H.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3, 90–94 (2013).

Tillocher, T.

T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol. A 24, 1073–1082 (2006).

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

Tjahjono, B.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

To, B.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).

Torres, A.

D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).

Trawick, M. L.

D. Abi Saab, P. Basset, M. J. Pierotti, M. L. Trawick, and D. E. Angelescu, “Static and Dynamic Aspects of Black Silicon Formation,” Phys. Rev. Lett. 113(26), 265502 (2014).
[PubMed]

Tserepi, A.

E. Gogolides, C. Boukouras, G. Kokkoris, O. Brani, A. Tserepi, and V. Constantoudis, “Si etching in high-density SF6 plasmas for microfabrication: surface roughness formation,” Microelectron. Eng. 73–74, 312–318 (2004).

Tsuda, H.

N. Nakazaki, H. Tsuda, Y. Takao, K. Eriguchi, and K. Ono, “Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products,” J. Appl. Phys. 116, 223302 (2014).

Tünnermann, A.

M. Steglich, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “Self-organized, effective medium Black Silicon for infrared antireflection,” Infrared Phys. Technol. 69, 218–221 (2015).

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).

Uto, T.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Uzu, H.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Vähänissi, V.

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).

Vatel, O.

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).

von Gastrow, G.

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[PubMed]

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).

Wang, J. X.

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Wang, S.

Y.-P. Zhao, T. Jason, G.-C. Drotar, S. Wang, and T.-M. Lu, “Roughening in plasma etch fronts of Si(100),” Phys. Rev. Lett. 82, 4882–4885 (1999).

Wang, W.-C.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

Wang, X.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

Wang, X.-F.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

Ward, S.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).

Wasmer, K.

A. Bidiville, J. Heiber, K. Wasmer, S. Habegger, and F. Assi, “Diamond Wire Wafering: Wafer Morphology in Comparison to Slurry Sawn Wafers,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference (2010).

Wehrspohn, R. B.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

M. Gaudig, J. Hirsch, T. Schneider, A. N. Sprafke, J. Ziegler, N. Bernhard, and R. B. Wehrspohn, “Properties of black silicon obtained at room-temperature by different plasma modes,” J. Vac. Sci. Technol. A 33, 05E132 (2015).

M. Otto, M. Kroll, T. Käsebier, R. Salzer, and R. B. Wehrspohn, “Conformal Al2O3 coatings on black silicon by thermal ALD for surface passivation,” Energy Procedia 27, 361–364 (2012).

Yamamoto, K.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Yang, M.-J.

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

Ye, X.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

Yi, J.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).

Yin, C.

W. Chen, X. Liu, M. Li, C. Yin, and L. Zhou, “On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers,” Mater. Sci. Semicond. Process. 27, 220–227 (2014).

Yli-Koski, M.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3, 90–94 (2013).

Yoo, J. S.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).

Yoshida, W.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Yoshikawa, K.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Yost, V. E.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).

Yuan, G. D.

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Zaidi, S. H.

B. M. Damiani, R. Ludemann, D. S. Ruby, S. H. Zaidi, and A. Rohatgi, “Development of RIE-textured silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 371–374.

Zeman, M.

A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells: Modulated textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23, 1649–1659 (2015).

Zeng, J.

H. J. Patrick, L. M. Hanssen, J. Zeng, and T. A. Germer, “BRDF measurements of graphite used in high-temperature fixed point blackbody radiators: a multi-angle study at 405 nm and 658 nm,” Metrologia 49, S81–S92 (2012).

Zeng, Y.

X. X. Lin, Y. Zeng, S. H. Zhong, Z. G. Huang, H. Q. Qian, J. Ling, J. B. Zhu, and W. Z. Shen, “Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production,” Nanotechnology 26(12), 125401 (2015).
[PubMed]

Zhang, L.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

Zhang, Y.

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Zhang, Y. B.

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Zhao, Y.-P.

Y.-P. Zhao, T. Jason, G.-C. Drotar, S. Wang, and T.-M. Lu, “Roughening in plasma etch fronts of Si(100),” Phys. Rev. Lett. 82, 4882–4885 (1999).

Zhong, S. H.

X. X. Lin, Y. Zeng, S. H. Zhong, Z. G. Huang, H. Q. Qian, J. Ling, J. B. Zhu, and W. Z. Shen, “Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production,” Nanotechnology 26(12), 125401 (2015).
[PubMed]

Zhou, L.

W. Chen, X. Liu, M. Li, C. Yin, and L. Zhou, “On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers,” Mater. Sci. Semicond. Process. 27, 220–227 (2014).

Zhu, J. B.

X. X. Lin, Y. Zeng, S. H. Zhong, Z. G. Huang, H. Q. Qian, J. Ling, J. B. Zhu, and W. Z. Shen, “Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production,” Nanotechnology 26(12), 125401 (2015).
[PubMed]

Zhu, Y. M.

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Ziegler, J.

M. Gaudig, J. Hirsch, T. Schneider, A. N. Sprafke, J. Ziegler, N. Bernhard, and R. B. Wehrspohn, “Properties of black silicon obtained at room-temperature by different plasma modes,” J. Vac. Sci. Technol. A 33, 05E132 (2015).

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

Zilk, M.

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).

Zou, S.

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

ACS Appl. Mater. Interfaces (1)

W.-C. Wang, C.-W. Lin, H.-J. Chen, C.-W. Chang, J.-J. Huang, M.-J. Yang, B. Tjahjono, J.-J. Huang, W.-C. Hsu, and M.-J. Chen, “Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition,” ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013).
[PubMed]

Adv. Funct. Mater. (1)

X. Ye, S. Zou, K. Chen, J. Li, J. Huang, F. Cao, X. Wang, L. Zhang, X.-F. Wang, M. Shen, and X. Su, “18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture,” Adv. Funct. Mater. 24, 6708–6716 (2014).

Adv. Opt. Mater. (1)

M. Otto, M. Algasinger, H. Branz, B. Gesemann, T. Gimpel, K. Füchsel, T. Käsebier, S. Kontermann, S. Koynov, X. Li, V. Naumann, J. Oh, A. N. Sprafke, J. Ziegler, M. Zilk, and R. B. Wehrspohn, “Black silicon photovoltaics,” Adv. Opt. Mater. 3, 147–164 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94, 231121 (2009).

H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, “Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon,” Appl. Phys. Lett. 104, 193904 (2014).

Curr. Opin. Solid State Mater. Sci. (1)

X. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics,” Curr. Opin. Solid State Mater. Sci. 16, 71–81 (2012).

Energy Procedia (2)

P. Repo, J. Benick, V. Vähänissi, J. Schön, G. von Gastrow, B. Steinhauser, M. C. Schubert, M. Hermle, and H. Savin, “N-type Black Silicon Solar Cells,” Energy Procedia 38, 866–871 (2013).

M. Otto, M. Kroll, T. Käsebier, R. Salzer, and R. B. Wehrspohn, “Conformal Al2O3 coatings on black silicon by thermal ALD for surface passivation,” Energy Procedia 27, 361–364 (2012).

IEEE J. Photovolt. (2)

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective Passivation of Black Silicon Surfaces by Atomic Layer Deposition,” IEEE J. Photovolt. 3, 90–94 (2013).

A. Richter, M. Hermle, and S. W. Glunz, “Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovolt. 3, 1184–1191 (2013).

Infrared Phys. Technol. (1)

M. Steglich, T. Käsebier, F. Schrempel, E.-B. Kley, and A. Tünnermann, “Self-organized, effective medium Black Silicon for infrared antireflection,” Infrared Phys. Technol. 69, 218–221 (2015).

Int. J. Photoenergy (1)

J.-M. Shim, H.-W. Lee, K.-Y. Cho, J.-K. Seo, J.-S. Kim, E.-J. Lee, J.-Y. Choi, D.-J. Oh, J.-E. Shin, J.-S. Kim, J.-H. Kong, S.-H. Lee, and H.-S. Lee, “17.6% conversion efficiency multicrystalline silicon solar cells using the reactive ion etching with the damage removal etching,” Int. J. Photoenergy 2012, 1–6 (2012).

J. Appl. Phys. (3)

R. Pétri, P. Brault, O. Vatel, D. Henry, E. André, P. Dumas, and F. Salvan, “Silicon roughness induced by plasma etching,” J. Appl. Phys. 75, 7498–7506 (1994).

N. Nakazaki, H. Tsuda, Y. Takao, K. Eriguchi, and K. Ono, “Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products,” J. Appl. Phys. 116, 223302 (2014).

M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, and A. Tünnermann, “The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching,” J. Appl. Phys. 116, 173503 (2014).

J. Micromech. Microeng. (1)

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H. Estrade-Szwarckopf, and P. Ranson, “Passivation mechanisms in cryogenic SF 6 /O 2 etching process,” J. Micromech. Microeng. 14, 190–196 (2004).

J. Opt. Soc. Am. J. Opt. Soc. Am. A (1)

W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. J. Opt. Soc. Am. A 8, 549–553 (1991).

J. Vac. Sci. Technol. A (4)

T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N. M. Maaza, P. Ranson, M. Boufnichel, and L. J. Overzet, “Oxidation threshold in silicon etching at cryogenic temperatures,” J. Vac. Sci. Technol. A 24, 1073–1082 (2006).

M. Gaudig, J. Hirsch, T. Schneider, A. N. Sprafke, J. Ziegler, N. Bernhard, and R. B. Wehrspohn, “Properties of black silicon obtained at room-temperature by different plasma modes,” J. Vac. Sci. Technol. A 33, 05E132 (2015).

G. Dingemans and W. M. M. Kessels, “Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells,” J. Vac. Sci. Technol. A 30, 040802 (2012).

S. Schaefer and R. Lüdemann, “Low damage reactive ion etching for photovoltaic applications,” J. Vac. Sci. Technol. A 17, 749–754 (1999).

J. Vac. Sci. Technol. B (1)

M. Martin and G. Cunge, “Surface roughness generated by plasma etching processes of silicon,” J. Vac. Sci. Technol. B 26, 1281–1288 (2008).

Jpn. J. Appl. Phys. (1)

K. M. Park, M. B. Lee, K. S. Jeon, and S. Y. Choi, “Reactive Ion Etching Texturing for Multicrystalline Silicon Solar Cells Using a SF6/O2/Cl2 Gas Mixture,” Jpn. J. Appl. Phys. 52, 03BD01 (2013).

Mater. Sci. Eng. B (1)

D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. R. i Cabarrocas, “Black silicon formation using dry etching for solar cells applications,” Mater. Sci. Eng. B 177, 1509–1513 (2012).

Mater. Sci. Semicond. Process. (1)

W. Chen, X. Liu, M. Li, C. Yin, and L. Zhou, “On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers,” Mater. Sci. Semicond. Process. 27, 220–227 (2014).

Metrologia (1)

H. J. Patrick, L. M. Hanssen, J. Zeng, and T. A. Germer, “BRDF measurements of graphite used in high-temperature fixed point blackbody radiators: a multi-angle study at 405 nm and 658 nm,” Metrologia 49, S81–S92 (2012).

Microelectron. Eng. (1)

E. Gogolides, C. Boukouras, G. Kokkoris, O. Brani, A. Tserepi, and V. Constantoudis, “Si etching in high-density SF6 plasmas for microfabrication: surface roughness formation,” Microelectron. Eng. 73–74, 312–318 (2004).

Nanotechnology (1)

X. X. Lin, Y. Zeng, S. H. Zhong, Z. G. Huang, H. Q. Qian, J. Ling, J. B. Zhu, and W. Z. Shen, “Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production,” Nanotechnology 26(12), 125401 (2015).
[PubMed]

Nat. Commun. (2)

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[PubMed]

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6, 6909 (2015).
[PubMed]

Nat. Energy (1)

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy 2, 17032 (2017).

Nat. Nanotechnol. (2)

H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, and R. Alcubilla, “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency,” Nat. Nanotechnol. 10(7), 624–628 (2015).
[PubMed]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[PubMed]

Phys. Rev. B (1)

G. Kokkoris, V. Constantoudis, P. Angelikopoulos, G. Boulousis, and E. Gogolides, “Dual nanoscale roughness on plasma-etched Si surfaces: Role of etch inhibitors,” Phys. Rev. B 76, 193405 (2007).

Phys. Rev. Lett. (2)

Y.-P. Zhao, T. Jason, G.-C. Drotar, S. Wang, and T.-M. Lu, “Roughening in plasma etch fronts of Si(100),” Phys. Rev. Lett. 82, 4882–4885 (1999).

D. Abi Saab, P. Basset, M. J. Pierotti, M. L. Trawick, and D. E. Angelescu, “Static and Dynamic Aspects of Black Silicon Formation,” Phys. Rev. Lett. 113(26), 265502 (2014).
[PubMed]

Prog. Photovolt. Res. Appl. (2)

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).

A. Ingenito, O. Isabella, and M. Zeman, “Nano-cones on micro-pyramids: modulated surface textures for maximal spectral response and high-efficiency solar cells: Modulated textures for maximal spectral response and high-efficiency solar cells,” Prog. Photovolt. Res. Appl. 23, 1649–1659 (2015).

Rev. Sci. Instrum. (1)

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane ellipsometry measurements,” Rev. Sci. Instrum. 70, 3688–3695 (1999).

Sol. Energy Mater. Sol. Cells (3)

P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90, 2319–2328 (2006).

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).

Other (8)

F. Stern, “Elementary Theory of the Optical Properties of Solids,” in Solid State Physics, D. Turnbull and F. Seitz, eds. (Academic, 1963), Vol. 15, pp. 299–408.

A. Bidiville, J. Heiber, K. Wasmer, S. Habegger, and F. Assi, “Diamond Wire Wafering: Wafer Morphology in Comparison to Slurry Sawn Wafers,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference (2010).

Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the authors’ organizations, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Standard G173–03(2012), “Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface”, The American Society for Testing and Materials (2012).

M. Schnell, R. Ludemann, and S. Schaefer, “Plasma surface texturization for multicrystalline silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 367–370.

G. Kumaravelu, M. M. Alkaisi, and A. Bittar, “Surface texturing for silicon solar cells using reactive ion etching technique,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (IEEE, 2002), pp. 258–261.

J. C. Stover, Optical Scattering: Measurements and Analysis, Third Edition (Society of Photo-Optical Instrumentation Engineers, 2012).

B. M. Damiani, R. Ludemann, D. S. Ruby, S. H. Zaidi, and A. Rohatgi, “Development of RIE-textured silicon solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (IEEE, 2000), pp. 371–374.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Top-view SEM images of four types of sample without texturing (left column) and after various RIE etching times (2 min, 10 min, 15 min and 30 min). Inset images for the textured LPD samples are 40° off normal tilted views, magnified 3.5x compared to the corresponding top views.
Fig. 2
Fig. 2 (a) Typical example of radial autocorrelation function with corresponding SEM top-view image (DSP sample etched 10 min), and (b) evolution of pseudo-period of nanostructures, Λ, as a function of RIE etching time for the four sample types.
Fig. 3
Fig. 3 Reflectance spectra of four types of unetched sample, as well as theoretical Fresnel reflection at interface between air and c-Si. The AM1.5g solar irradiance spectrum is also shown with its scale on the right.
Fig. 4
Fig. 4 Evolution of reflectance spectra (from 250 nm to 1250 nm) of samples having undergone different RIE etching times.
Fig. 5
Fig. 5 Effective reflectance as a function of nanostructure pseudo-period for four types of sample.
Fig. 6
Fig. 6 BRDF, fr, measured for four surface types and for five etching times. The data are shown in projected cosine space, and a grid (30° in polar angle and 45° in azimuth angle) is overlaid on top of the data. The black point in each data to the left of the surface normal is due to the detector blocking the incident beam. The incident angle was 5° and the wavelength was 633 nm. The samples are aligned so that the (110) crystal direction is horizontal.
Fig. 7
Fig. 7 Evolution of the absorptance spectra with RIE etching time for (a) the SWS and (b) the LPD samples. (c) Close-up comparison of absorptance spectra for 30 min etched SWS and LPD samples at near-bandgap wavelengths. The solid black curves show the theoretical Yablonovitch limit of absorptance for a 280 µm thick c-Si substrate.
Fig. 8
Fig. 8 Dependence of photogenerated current density on angle of incidence, normalized by value at normal incidence, for Pyramid + ARC sample and 30 min etched SWS and LPD samples. The value at 50° for the Pyramid + ARC sample is not shown due to retroreflection out of the entrance port of the integrating sphere.

Tables (2)

Tables Icon

Table 1 Labels and description of the samples used in this study.

Tables Icon

Table 2 Photogenerated current densities Jph calculated at normal incidence for Pyramid + ARC sample, 30 min RIE etched SWS and LPD samples, and value for Yablonovitch limit. Uncertainties represent 95% confidence limits, for Jph they are estimated from uncertainties in the absorptance measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R eff = 280nm 1000nm R ( λ ) S AM1 .5g ( λ ) d λ 280nm 1000nm S AM1 .5g ( λ ) d λ
J ph = e h c 280nm 1200nm S AM1 .5g ( λ ) A ( λ ) λ d λ

Metrics