Abstract

In this paper, we report the design, fabrication, and characterization of a tungsten-based metamaterial selective solar absorber (SSA) combining a metal-insulator-metal (MIM) structure and simple nanodisk array. The as-fabricated absorber absorbs strongly and selectively in the wavelength range of 0.5–1.75 μm with a characterized absorptance of more than 90%, which drops abruptly to less than 12.6% beyond 2.5 μm. In addition, this broadband and highly selective absorber is polarization-insensitive under incidence of normal plane waves. Moreover, the solar selectivity remains invariable up to 40°, which is beneficial for solar thermal applications. These properties are verified theoretically and experimentally in the present work. Further analysis on energy dissipation reveals the underlying physics and optical performances.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Perfect selective metamaterial solar absorbers

Hao Wang and Liping Wang
Opt. Express 21(S6) A1078-A1093 (2013)

Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

Manohar Chirumamilla, Alexander S. Roberts, Fei Ding, Deyong Wang, Peter Kjær Kristensen, Sergey I. Bozhevolnyi, and Kjeld Pedersen
Opt. Mater. Express 6(8) 2704-2714 (2016)

Tungsten based anisotropic metamaterial as an ultra-broadband absorber

Yinyue Lin, Yanxia Cui, Fei Ding, Kin Hung Fung, Ting Ji, Dongdong Li, and Yuying Hao
Opt. Mater. Express 7(2) 606-617 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Ann. Rev. Heat Transf. 15, 231–254 (2012).
  2. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [PubMed]
  4. H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
    [PubMed]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [PubMed]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [PubMed]
  7. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [PubMed]
  8. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
  9. I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro ‐ and nanostructured surfaces for selective solar absorption,” Adv. Opt. Mater. 3, 852–881 (2015).
  10. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).
  11. Y. Q. He, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).
  12. Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
  13. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
    [PubMed]
  14. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [PubMed]
  15. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19(15), 14260–14267 (2011).
    [PubMed]
  16. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).
  17. Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146, 208–220 (2008).
  18. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
  19. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
    [PubMed]
  20. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 656 (2013).
  21. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [PubMed]
  22. H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
  23. B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).
  24. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).

2015 (2)

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro ‐ and nanostructured surfaces for selective solar absorption,” Adv. Opt. Mater. 3, 852–881 (2015).

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).

2014 (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

2013 (3)

2012 (3)

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
[PubMed]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Ann. Rev. Heat Transf. 15, 231–254 (2012).

2011 (4)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19(15), 14260–14267 (2011).
[PubMed]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).

2010 (3)

Y. Q. He, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010).

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

2008 (4)

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).

Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146, 208–220 (2008).

2007 (2)

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[PubMed]

Alici, K. B.

Bermel, P.

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Ann. Rev. Heat Transf. 15, 231–254 (2012).

Bierman, D. M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

Buchwald, W.

Celanovic, I.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Ann. Rev. Heat Transf. 15, 231–254 (2012).

Chan, W. R.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

Chen, H.

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[PubMed]

Chen, Y.-B.

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).

Fan, S.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Guo, J.

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

He, S.

He, Y. Q.

Hendrickson, J.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Jin, Y.

Joannopoulos, J. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Ann. Rev. Heat Transf. 15, 231–254 (2012).

John, J.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Khodasevych, I. E.

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro ‐ and nanostructured surfaces for selective solar absorption,” Adv. Opt. Mater. 3, 852–881 (2015).

Kong, J. A.

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Lee, B. J.

Lee, J.

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Ann. Rev. Heat Transf. 15, 231–254 (2012).

Lenert, A.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Milder, A.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).

Mitchell, A.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro ‐ and nanostructured surfaces for selective solar absorption,” Adv. Opt. Mater. 3, 852–881 (2015).

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Neuner, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).

Ozbay, E.

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[PubMed]

Phelan, P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).

Rinnerbauer, V.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

Rosengarten, G.

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro ‐ and nanostructured surfaces for selective solar absorption,” Adv. Opt. Mater. 3, 852–881 (2015).

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Savoy, S.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

Shuai, Y.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).

Shvets, G.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).

Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146, 208–220 (2008).

Sivan, V. P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[PubMed]

Soljacic, M.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Ann. Rev. Heat Transf. 15, 231–254 (2012).

Soref, R.

Soukoulis, C. M.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Turhan, A. B.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

Urzhumov, Y. A.

Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146, 208–220 (2008).

Wang, E. N.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

Wang, H.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[PubMed]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Wang, L.

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro ‐ and nanostructured surfaces for selective solar absorption,” Adv. Opt. Mater. 3, 852–881 (2015).

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[PubMed]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[PubMed]

Wu, B. I.

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[PubMed]

Wu, C.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).

Yeng, Y. X.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

Zhang, B.

Zhang, Z. M.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[PubMed]

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).

Zhao, B.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Zollars, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanović, “Metallic photonic crystal absorber‐emitter for efficient spectral control in high‐temperature solar thermophotovoltaics,” Adv. Energy Mater. 4, 1400334 (2014).

Adv. Opt. Mater. (1)

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro ‐ and nanostructured surfaces for selective solar absorption,” Adv. Opt. Mater. 3, 852–881 (2015).

Ann. Rev. Heat Transf. (1)

P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Selective solar absorbers,” Ann. Rev. Heat Transf. 15, 231–254 (2012).

Appl. Phys. Lett. (3)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92, 211107 (2008).

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).

Int. J. Heat Mass Transfer (1)

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67, 637–645 (2013).

J. Opt. Soc. Am. B (2)

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Opt. Commun. (1)

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area, wide-angle, spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011).

Phys. Rev. Lett. (4)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[PubMed]

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Science (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[PubMed]

Sol. Energy Mater. Sol. Cells (1)

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).

Solid State Commun. (1)

Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146, 208–220 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) 3D structure of as-designed absorber in nine unit cells and (b) SEM top-view of the fabricated absorber.
Fig. 2
Fig. 2 Measured and simulated absorptance from 0.3 to 2.5 μm. (inset) Calculated spectra of the MIM geometry and flat tungsten slab from 0.3 to 8 μm.
Fig. 3
Fig. 3 Calculated absorptance from FDTD 2D power monitors (blue solid), the energy absorbed in the tungsten bottom layer (red area) and in the tungsten nanodisk array (orange area), and the reflected energy by the absorber.
Fig. 4
Fig. 4 Field intensity and energy loss at 503, 671, and 1569 nm in the x–z plane.
Fig. 5
Fig. 5 (a) Simulated absorptance of different polarization angles up to 45° under normal incidence, (b)(c) simulated absorptance of different angles of incidence under TE and TM polarization, respectively, and (d) measured absorptance under 8, 20, 40, and 60°.

Metrics