Abstract

Integrated Optical Broad-Band Difference Interferometer (IO BB DI) is introduced as an alternative and economical measurement method to integrated optical label-free affinity sensors. A detailed theoretical analysis of the method is presented and the effects of the waveguide layer on the operation of the system are shown. A very short operating distance of less than 0.5 mm allows miniaturization of the interferometer. The analysis was performed for Si3N4/SiO2 layers that can be obtained in standard microelectronics technological processes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst
Opt. Express 22(8) 8856-8870 (2014)

Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing

Maria Kitsara, Konstantinos Misiakos, Ioannis Raptis, and Eleni Makarona
Opt. Express 18(8) 8193-8206 (2010)

All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor

K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, P. Oikonomou, A. Psarouli, P.S. Petrou, S.E. Kakabakos, Kari Tukkiniemi, M. Sopanen, and G. Jobst
Opt. Express 22(22) 26803-26813 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Makarona, P. Petrou, S. Kakabakos, K. Misiakos, and I. Raptis, “Point-of-need bioanalytics based on planar optical interferometry,” Biotechnol. Adv. 34(3), 209–233 (2016).
    [PubMed]
  2. C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108(2), 400–422 (2008).
    [PubMed]
  3. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
  4. D. Campbell, “Interferometric Biosensors,” in Principles of Bacterial Detection, M. Zourob, S. Elwary and A. Turner ed. (Springer, 2008).
  5. P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
    [PubMed]
  6. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Act. B 29(1), 37–50 (1995).
  7. M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, “Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing,” Opt. Express 18(8), 8193–8206 (2010).
    [PubMed]
  8. H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, “Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect,” Opt. Eng. 47(4), 044402 (2008).
  9. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devces for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
  10. Z. Qi, K. Itoh, M. Murabayashi, and H. Yangi, “A composite optical waveguide-based polarimetric interferometer for chemical and biological sensing applications,” J. Lightwave Technol. 18(8), 1106–1110 (2000).
  11. Z. M. Qi, S. Xia, and N. Matsuda, “Spectropolarimetric interferometer based on single-mode glass waveguides,” Opt. Express 16(3), 2245–2251 (2008).
    [PubMed]
  12. K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
    [PubMed]
  13. K. Gut, “Spectropolarimetric analysis of differential interferometer,” Proc. SPIE 9291, 92910N (2014).
  14. K. Gut and Z. Opilski, “Spectropolarimetric analyses of optical single mode SU8 waveguide layers,” Bull. Pol. Acad. Sci. Tech. (Paris) 63(2), 349–352 (2015).
  15. K. Gut and Z. Opilski, “Broad-band difference interferometer as a temperature sensor,” Photonics Lett. Pol. 6(4), 121–123 (2014).
  16. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
  17. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
    [PubMed]
  18. K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).
  19. A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
    [PubMed]
  20. X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).
  21. E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

2017 (2)

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).

2016 (3)

E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

E. Makarona, P. Petrou, S. Kakabakos, K. Misiakos, and I. Raptis, “Point-of-need bioanalytics based on planar optical interferometry,” Biotechnol. Adv. 34(3), 209–233 (2016).
[PubMed]

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

2015 (1)

K. Gut and Z. Opilski, “Spectropolarimetric analyses of optical single mode SU8 waveguide layers,” Bull. Pol. Acad. Sci. Tech. (Paris) 63(2), 349–352 (2015).

2014 (4)

K. Gut and Z. Opilski, “Broad-band difference interferometer as a temperature sensor,” Photonics Lett. Pol. 6(4), 121–123 (2014).

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
[PubMed]

K. Gut, “Spectropolarimetric analysis of differential interferometer,” Proc. SPIE 9291, 92910N (2014).

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[PubMed]

2012 (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devces for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).

2010 (1)

2008 (3)

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, “Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect,” Opt. Eng. 47(4), 044402 (2008).

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108(2), 400–422 (2008).
[PubMed]

Z. M. Qi, S. Xia, and N. Matsuda, “Spectropolarimetric interferometer based on single-mode glass waveguides,” Opt. Express 16(3), 2245–2251 (2008).
[PubMed]

2007 (1)

2006 (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).

2003 (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

2000 (1)

1995 (1)

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Act. B 29(1), 37–50 (1995).

Abad, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devces for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).

Angelopoulou, M.

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

Awsiuk, K.

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

Bernasik, A.

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

Bier, F. F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[PubMed]

Bo, S.

X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).

Botsialas, A.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
[PubMed]

Budkowski, A.

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

Burke, C. S.

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108(2), 400–422 (2008).
[PubMed]

Calle, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Chaniotakis, N.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

Daimon, M.

Dominguez, C.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Ehrentreich-Förster, E.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[PubMed]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devces for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).

Gajos, K.

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

Goustouridis, D.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

Gut, K.

K. Gut and Z. Opilski, “Spectropolarimetric analyses of optical single mode SU8 waveguide layers,” Bull. Pol. Acad. Sci. Tech. (Paris) 63(2), 349–352 (2015).

K. Gut, “Spectropolarimetric analysis of differential interferometer,” Proc. SPIE 9291, 92910N (2014).

K. Gut and Z. Opilski, “Broad-band difference interferometer as a temperature sensor,” Photonics Lett. Pol. 6(4), 121–123 (2014).

Haasnoot, W.

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

Han, X.

X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).

X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).

Hoekman, M.

Itoh, K.

Jobst, G.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
[PubMed]

Kakabakos, S.

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

E. Makarona, P. Petrou, S. Kakabakos, K. Misiakos, and I. Raptis, “Point-of-need bioanalytics based on planar optical interferometry,” Biotechnol. Adv. 34(3), 209–233 (2016).
[PubMed]

Kakabakos, S. E.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

Kehl, F.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[PubMed]

Kitsara, M.

Kozma, P.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[PubMed]

Lambeck, P. V.

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devces for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Liang, Y.

X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).

Llobera, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Lukosz, W.

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Act. B 29(1), 37–50 (1995).

MacCraith, B. D.

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108(2), 400–422 (2008).
[PubMed]

Makarona, E.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

E. Makarona, P. Petrou, S. Kakabakos, K. Misiakos, and I. Raptis, “Point-of-need bioanalytics based on planar optical interferometry,” Biotechnol. Adv. 34(3), 209–233 (2016).
[PubMed]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
[PubMed]

M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, “Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing,” Opt. Express 18(8), 8193–8206 (2010).
[PubMed]

Malainou, A.

E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

Marzec, M. M.

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

Masumura, A.

Matsuda, N.

McDonagh, C.

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108(2), 400–422 (2008).
[PubMed]

Misiakos, K.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

E. Makarona, P. Petrou, S. Kakabakos, K. Misiakos, and I. Raptis, “Point-of-need bioanalytics based on planar optical interferometry,” Biotechnol. Adv. 34(3), 209–233 (2016).
[PubMed]

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
[PubMed]

M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, “Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing,” Opt. Express 18(8), 8193–8206 (2010).
[PubMed]

Montoya, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Morthier, G.

X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).

Murabayashi, M.

Nikita, D.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

Nikkuni, H.

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, “Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect,” Opt. Eng. 47(4), 044402 (2008).

Ohkawa, M.

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, “Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect,” Opt. Eng. 47(4), 044402 (2008).

Opilski, Z.

K. Gut and Z. Opilski, “Spectropolarimetric analyses of optical single mode SU8 waveguide layers,” Bull. Pol. Acad. Sci. Tech. (Paris) 63(2), 349–352 (2015).

K. Gut and Z. Opilski, “Broad-band difference interferometer as a temperature sensor,” Photonics Lett. Pol. 6(4), 121–123 (2014).

Petrou, P.

E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

E. Makarona, P. Petrou, S. Kakabakos, K. Misiakos, and I. Raptis, “Point-of-need bioanalytics based on planar optical interferometry,” Biotechnol. Adv. 34(3), 209–233 (2016).
[PubMed]

Petrou, P. S.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

Prieto, F.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Psarouli, A.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

Qi, Z.

Qi, Z. M.

Raptis, I.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

E. Makarona, P. Petrou, S. Kakabakos, K. Misiakos, and I. Raptis, “Point-of-need bioanalytics based on planar optical interferometry,” Biotechnol. Adv. 34(3), 209–233 (2016).
[PubMed]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
[PubMed]

M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, “Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing,” Opt. Express 18(8), 8193–8206 (2010).
[PubMed]

Rysz, J.

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

Salapatas, A.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
[PubMed]

Sato, T.

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, “Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect,” Opt. Eng. 47(4), 044402 (2008).

Sepulveda, B.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Shao, Y.

X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).

Stamm, C.

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[PubMed]

Stavra, E.

E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

Stefanitsis, G.

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

Stoffer, R.

Teng, J.

X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).

Watanabe, Y.

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, “Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect,” Opt. Eng. 47(4), 044402 (2008).

Wu, Z.

X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).

Xia, S.

Yangi, H.

Zhao, M.

X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).

Appl. Opt. (1)

Appl. Surf. Sci. (1)

K. Gajos, M. Angelopoulou, P. Petrou, K. Awsiuk, S. Kakabakos, W. Haasnoot, A. Bernasik, J. Rysz, M. M. Marzec, K. Misiakos, I. Raptis, and A. Budkowski, “Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors,” Appl. Surf. Sci. 385, 529–542 (2016).

Biosens. Bioelectron. (1)

P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307 (2014).
[PubMed]

Biotechnol. Adv. (1)

E. Makarona, P. Petrou, S. Kakabakos, K. Misiakos, and I. Raptis, “Point-of-need bioanalytics based on planar optical interferometry,” Biotechnol. Adv. 34(3), 209–233 (2016).
[PubMed]

Bull. Pol. Acad. Sci. Tech. (Paris) (1)

K. Gut and Z. Opilski, “Spectropolarimetric analyses of optical single mode SU8 waveguide layers,” Bull. Pol. Acad. Sci. Tech. (Paris) 63(2), 349–352 (2015).

Chem. Rev. (1)

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chem. Rev. 108(2), 400–422 (2008).
[PubMed]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devces for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).

Meas. Sci. Technol. (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).

Nanotechnology (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).

Opt. Eng. (1)

H. Nikkuni, Y. Watanabe, M. Ohkawa, and T. Sato, “Sensitivity dependence with respect to diaphragm thickness in guided-wave optical pressure sensor based on elasto-optic effect,” Opt. Eng. 47(4), 044402 (2008).

Opt. Express (3)

Photonics Lett. Pol. (1)

K. Gut and Z. Opilski, “Broad-band difference interferometer as a temperature sensor,” Photonics Lett. Pol. 6(4), 121–123 (2014).

Photonics Sensors (1)

X. Han, X. Han, Y. Shao, Z. Wu, Y. Liang, J. Teng, S. Bo, G. Morthier, and M. Zhao, “Polymer integrated avegwuide optical biosensor by using spectral splitting effect,” Photonics Sensors 7(2), 131–139 (2017).

Proc. SPIE (2)

E. Stavra, A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, “Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules,” Proc. SPIE 9752, 97520N (2016).

K. Gut, “Spectropolarimetric analysis of differential interferometer,” Proc. SPIE 9291, 92910N (2014).

Sens. Act. B (1)

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Act. B 29(1), 37–50 (1995).

Talanta (1)

A. Psarouli, A. Botsialas, A. Salapatas, G. Stefanitsis, D. Nikita, G. Jobst, N. Chaniotakis, D. Goustouridis, E. Makarona, P. S. Petrou, I. Raptis, K. Misiakos, and S. E. Kakabakos, “Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips,” Talanta 165, 458–465 (2017).
[PubMed]

Other (1)

D. Campbell, “Interferometric Biosensors,” in Principles of Bacterial Detection, M. Zourob, S. Elwary and A. Turner ed. (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The analysed planar optical waveguide structure.
Fig. 2
Fig. 2 Effective refractive indices as a function of the thickness d of the waveguide layer for the wavelength 450nm and 1200nm.
Fig. 3
Fig. 3 Dependence of the effective refractive indices on the wavelength (Si3N4 thickness of 0.17µm).
Fig. 4
Fig. 4 The difference of propagation constants as a function of the wavelength.
Fig. 5
Fig. 5 Normalized distribution of light intensity In.
Fig. 6
Fig. 6 The difference propagation constant as a function of the wavelength for different thickness of the waveguide.
Fig. 7
Fig. 7 Normalized distribution of light intensity In for different thickness of the waveguide.
Fig. 8
Fig. 8 The shift of the extremum as a function of the wavelength for different thickness of the waveguide.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

S( n C ) ΔN Δ n C
S( n C )=( n C N )×( n wg 2 N 2 n wg 2 n C 2 )×( Δ z C d eff )× ( 2 N 2 n C 2 1 ) ρ
d eff = d wg +Δ z C +Δ z S
Δ z i=C,S (TE) = λ 2π 1 N 2 n i 2
Δ z i=C,S (TM) = λ 2π 1 N 2 n i 2 × [ ( N n wg ) 2 + ( N n i ) 2 1 ] 1
Δϕ( λ )=2π ( N TE N TM ) λ L
Δϕ( λ )=( Δβ )L
Δβ=( β TM β TE )
β i =2π N i λ
I( λ )= 1 2 I 0 ( λ ){ 1+cos[ Δϕ( λ ) ] }
I n ( λ )= 1 2 I o ( λ ){ 1+cos[ Δϕ( λ ) ] } I o ( λ )
S D ( n C )= Δ( N TE N TM ) Δ n c = Δ N TE Δ n c Δ N TM Δ n c = S TE ( n C ) S TM ( n C )
δλ λ m = [ S TE (λ, n C ) S TM (λ, n C ) ]δ n C [ N TE ( λ m  ,  n c,  ) N TM ( λ m  , n c,  ) ] λ m [ N TE ( λ, n c,  ) λ | λ= λ m  N TM ( λ, n c,  ) λ | λ= λ m  ]
N λ = 2πd N λ 2 ( n wg 2 N) 2πd λ + 1 N 2 n C 2 + 1 N 2 n S 2 , for TE
N λ = 2πd N λ 2 ( n wg 2 N) 2πd λ + i=S,C n i 2 n wg 2 ( N 2 n C 2 ) 1 2 ( n i 2 N 2 + n wg 2 N 2 n i 2 n wg 2 ) , for TM

Metrics