Abstract

A dielectric liquid lens driven using a chevron-patterned electrode is prepared. The bending angle of the electrode is 90°. This newly designed electrode can effectively and symmetrically deform the shape of the liquid lens, which in turn leads to a variable focus. For a 3-mm-diameter lens, a driving voltage changed from 0 to 52 V can vary its focal length from ~19.3 to ~4.9 mm. Using a 40-Vrms pulse voltage to impact the lens, the dynamic response time is ~6.7 s. Using a step voltage to impact the liquid lens, the response time can be largely reduced. Multiple lenses or a microlens array can be driven at the same time. Due to in-plane actuation, the driving voltage is insensitive to the size of the liquid lens.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive liquid lens actuated by liquid crystal pistons

Su Xu, Hongwen Ren, and Shin-Tson Wu
Opt. Express 20(27) 28518-28523 (2012)

Large aperture liquid crystal lens with an imbedded floating ring electrode

Che-Ju Hsu, Jyun-Jia Jhang, and Chi-Yen Huang
Opt. Express 24(15) 16722-16731 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
    [Crossref]
  2. L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
    [Crossref]
  3. K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
    [Crossref] [PubMed]
  4. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
    [Crossref]
  5. L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast All Polymer Electrically Tunable Silicone Lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
    [Crossref]
  6. M. Xu, B. Jin, R. He, and H. Ren, “Adaptive lenticular microlens array based on voltage-induced waves at the surface of polyvinyl chloride/dibutyl phthalate gels,” Opt. Express 24(8), 8142–8148 (2016).
    [Crossref] [PubMed]
  7. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
    [Crossref]
  8. J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
    [Crossref]
  9. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [Crossref] [PubMed]
  10. F. Fan, A. K. Srivastava, T. Du, M. C. Tseng, V. Chigrinov, and H. S. Kwok, “Low voltage tunable liquid crystal lens,” Opt. Lett. 38(20), 4116–4119 (2013).
    [Crossref] [PubMed]
  11. L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
    [Crossref] [PubMed]
  12. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  13. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
    [Crossref] [PubMed]
  14. S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  15. C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
    [Crossref] [PubMed]
  16. C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
    [Crossref] [PubMed]
  17. L. Li, D. Wang, C. Liu, and Q.-H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
    [Crossref] [PubMed]
  18. C.-C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [Crossref] [PubMed]
  19. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [Crossref] [PubMed]
  20. S. Xu, Y.-J. Lin, and S.-T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
    [Crossref] [PubMed]
  21. C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
    [Crossref]
  22. Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
    [Crossref] [PubMed]
  23. M. Xu, X. Wang, and H. Ren, “Tunable focus liquid lens with radial-patterned electrode,” Micromachines (Basel) 6(8), 1157–1165 (2015).
    [Crossref]
  24. P. Penfield and H. Haus, Electrodynamics of Moving Media (MIT, 1967).
  25. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (Wiley, 2011).
  26. L. Ren, S. Park, H. Ren, and I.-S. Yoo, “Adaptive liquid lens by changing aperture,” J. Microelectromech. Syst. 21(4), 953–958 (2012).
    [Crossref]
  27. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).

2016 (2)

2015 (2)

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast All Polymer Electrically Tunable Silicone Lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

M. Xu, X. Wang, and H. Ren, “Tunable focus liquid lens with radial-patterned electrode,” Micromachines (Basel) 6(8), 1157–1165 (2015).
[Crossref]

2014 (1)

2013 (5)

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

F. Fan, A. K. Srivastava, T. Du, M. C. Tseng, V. Chigrinov, and H. S. Kwok, “Low voltage tunable liquid crystal lens,” Opt. Lett. 38(20), 4116–4119 (2013).
[Crossref] [PubMed]

L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
[Crossref] [PubMed]

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

2012 (4)

L. Ren, S. Park, H. Ren, and I.-S. Yoo, “Adaptive liquid lens by changing aperture,” J. Microelectromech. Syst. 21(4), 953–958 (2012).
[Crossref]

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
[Crossref] [PubMed]

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

2011 (3)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]

2009 (1)

2008 (2)

2007 (1)

2004 (1)

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

2002 (1)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Bhowmik, A.

Bos, P. J.

Carpi, F.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast All Polymer Electrically Tunable Silicone Lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Cheng, C.-C.

Chigrinov, V.

De Nicola, S.

De Rossi, D.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Domicone, N. W.

Du, T.

Duston, D.

Fan, F.

Ferraro, P.

Finizio, A.

Frediani, G.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Fuh, Y.-K.

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

Ghilardi, M.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast All Polymer Electrically Tunable Silicone Lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Grilli, S.

He, R.

Hendriks, B.

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Huang, W.-C.

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

Ishikawa, M.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

Jiang, H.

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

Jin, B.

Kuiper, S.

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Kwok, H. S.

Lee, S.

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

Lee, Y.-S.

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

Li, C.

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

Li, L.

Li, Y.

Lin, Y.-J.

Liu, C.

Lu, L.

Lu, Y.-S.

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

Maffli, L.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast All Polymer Electrically Tunable Silicone Lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Miccio, L.

Mugele, F.

Murade, C. U.

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Oku, H.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

Park, S.

L. Ren, S. Park, H. Ren, and I.-S. Yoo, “Adaptive liquid lens by changing aperture,” J. Microelectromech. Syst. 21(4), 953–958 (2012).
[Crossref]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Ren, H.

M. Xu, B. Jin, R. He, and H. Ren, “Adaptive lenticular microlens array based on voltage-induced waves at the surface of polyvinyl chloride/dibutyl phthalate gels,” Opt. Express 24(8), 8142–8148 (2016).
[Crossref] [PubMed]

M. Xu, X. Wang, and H. Ren, “Tunable focus liquid lens with radial-patterned electrode,” Micromachines (Basel) 6(8), 1157–1165 (2015).
[Crossref]

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

L. Ren, S. Park, H. Ren, and I.-S. Yoo, “Adaptive liquid lens by changing aperture,” J. Microelectromech. Syst. 21(4), 953–958 (2012).
[Crossref]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref] [PubMed]

Ren, L.

L. Ren, S. Park, H. Ren, and I.-S. Yoo, “Adaptive liquid lens by changing aperture,” J. Microelectromech. Syst. 21(4), 953–958 (2012).
[Crossref]

Rosset, S.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast All Polymer Electrically Tunable Silicone Lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Sato, S.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Sergan, V.

Shea, H.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast All Polymer Electrically Tunable Silicone Lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Srivastava, A. K.

Sun, J.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

Tsai, C.-W. G.

C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]

Tseng, M. C.

Tu, H.

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

Turco, S.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

van der Ende, D.

Van Heugten, T.

Vespini, V.

Wang, B.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Wang, D.

Wang, L.

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

Wang, Q.-H.

Wang, X.

M. Xu, X. Wang, and H. Ren, “Tunable focus liquid lens with radial-patterned electrode,” Micromachines (Basel) 6(8), 1157–1165 (2015).
[Crossref]

Wei, K.

Wu, S. T.

Wu, S.-T.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

S. Xu, Y.-J. Lin, and S.-T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[Crossref] [PubMed]

Xianyu, H.

Xu, M.

Xu, S.

Xu, Y.

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

Yang, C.-C.

C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]

Ye, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Yeh, J. A.

C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]

C.-C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

Yoo, I.-S.

L. Ren, S. Park, H. Ren, and I.-S. Yoo, “Adaptive liquid lens by changing aperture,” J. Microelectromech. Syst. 21(4), 953–958 (2012).
[Crossref]

Zhao, Y.

Adv. Funct. Mater. (2)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Ultrafast All Polymer Electrically Tunable Silicone Lenses,” Adv. Funct. Mater. 25(11), 1656–1665 (2015).
[Crossref]

Appl. Phys. Lett. (6)

Y.-K. Fuh, W.-C. Huang, Y.-S. Lee, and S. Lee, “An oscillation-free actuation of fluidic lens for optical beam control,” Appl. Phys. Lett. 101(7), 071901 (2012).
[Crossref]

L. Wang, H. Oku, and M. Ishikawa, “Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure,” Appl. Phys. Lett. 102(13), 131111 (2013).
[Crossref]

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102(16), 161106 (2013).
[Crossref]

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

Y.-S. Lu, H. Tu, Y. Xu, and H. Jiang, “Tunable dielectric liquid lens on flexible substrate,” Appl. Phys. Lett. 103(26), 261113 (2013).
[Crossref] [PubMed]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

J. Microelectromech. Syst. (2)

L. Ren, S. Park, H. Ren, and I.-S. Yoo, “Adaptive liquid lens by changing aperture,” J. Microelectromech. Syst. 21(4), 953–958 (2012).
[Crossref]

C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Micromachines (Basel) (1)

M. Xu, X. Wang, and H. Ren, “Tunable focus liquid lens with radial-patterned electrode,” Micromachines (Basel) 6(8), 1157–1165 (2015).
[Crossref]

Opt. Express (9)

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
[Crossref] [PubMed]

L. Li, D. Wang, C. Liu, and Q.-H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref] [PubMed]

C.-C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref] [PubMed]

S. Xu, Y.-J. Lin, and S.-T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[Crossref] [PubMed]

L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
[Crossref] [PubMed]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

M. Xu, B. Jin, R. He, and H. Ren, “Adaptive lenticular microlens array based on voltage-induced waves at the surface of polyvinyl chloride/dibutyl phthalate gels,” Opt. Express 24(8), 8142–8148 (2016).
[Crossref] [PubMed]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (3)

P. Penfield and H. Haus, Electrodynamics of Moving Media (MIT, 1967).

H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (Wiley, 2011).

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).

Supplementary Material (1)

NameDescription
» Visualization 1       the shape of the liquid lens can be changed by an external voltage.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Side-view structure of the lens cell and (b) the electrode with chevron pattern.
Fig. 2
Fig. 2 Simulation of electric field distribution with chevron ITO stripes (a) yoz plane (b) xoy plane.
Fig. 3
Fig. 3 The aperture change of the droplet driven at different voltages (300 Hz). The surrounding of the droplet is covered by glycerol.
Fig. 4
Fig. 4 Voltage-induced shape change of the droplets covered with glycerol. A video can be found in Visualization 1.
Fig. 5
Fig. 5 The edge of the droplet with sawtooth shape at (a) 15 Vrms and (b) 30 Vrms.
Fig. 6
Fig. 6 Contact angle and radius of the curvature of the droplet at various voltages.
Fig. 7
Fig. 7 The focal length (f) and f-number of the liquid lens at various voltages.
Fig. 8
Fig. 8 Images observed through the lens at various voltages. (a) V = 0, (b) 20 Vrms, (c) 40 Vrms, and (d) resolution chart observed using the optical microscope at V = 40 Vrms.
Fig. 9
Fig. 9 Response time of the liquid lens driven with various pulse voltages
Fig. 10
Fig. 10 The liquid lens driven by a step voltage from 30 to 40 Vrms.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F= 1 2 ε 0 ( ε 1 ε 2 ) E 2
f 3 = 3V π( 1cosθ )( 2 cos 2 θcosθ ) ( n 0 n g ) 3
R( c ) ~ d sλ

Metrics