Abstract

This article aims to switch the surface-enhanced Raman spectrum (SERS) of a 4-Aminothiophenol (4-ATP) dye solution on a silver nanoparticle (Ag-NPs) film, where the SERS is largely influenced by the distance betweenss the 4-ATP and the Ag-NPs under applied an external field. The electrophoresis apparatus uses two ITO electrodes to build a cell in which one of the ITO electrodes is coated with 30-nm Ag-NPs. The SiO2 nanospheres form an insulating layer which effectively hinders 4-ATP adsorption on Ag-NPs when a + 3V bias voltage is applied. The 4-ATP dye molecules are carried by the SiO2 nanospheres to move off the Ag-NPs by applying a −3V bias voltage. The 0.4 wt% 4-ATP and less than 15 wt% SiO2 nanospheres (200 ~350 nm in diameter) are used to prepare samples for analysis. The results show that the 1.6 wt% SiO2 200-nm nanospheres achieved the best switching effect of SERS in this study.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface-enhanced Raman scattering: phenomenological approach

H. Grebel
J. Opt. Soc. Am. B 21(2) 429-435 (2004)

Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film

Xiangxian Wang, Xuelin Bai, Zhiyuan Pang, Jiankai Zhu, Yuan Wu, Hua Yang, Yunping Qi, and Xiaolei Wen
Opt. Mater. Express 9(4) 1872-1881 (2019)

Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering

Kaichen Xu, Chentao Zhang, Rui Zhou, Rong Ji, and Minghui Hong
Opt. Express 24(10) 10352-10358 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [Crossref]
  2. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [Crossref]
  3. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
    [Crossref] [PubMed]
  4. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6), 485–496 (2005).
    [Crossref]
  5. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
    [Crossref]
  6. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  7. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  8. E. C. Le Ru and P. G. Etchegoin, “Single-Molecule Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
    [Crossref] [PubMed]
  9. H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112–117 (2011).
    [Crossref] [PubMed]
  10. P. G. Etchegoin and E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10(40), 6079–6089 (2008).
    [Crossref] [PubMed]
  11. M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
    [Crossref] [PubMed]
  12. S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
    [Crossref]
  13. H. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
    [Crossref] [PubMed]
  14. M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
    [Crossref] [PubMed]
  15. N. Valley, N. Greeneltch, R. P. Van Duyne, and G. C. Schatz, “A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment,” J. Phys. Chem. Lett. 4(16), 2599–2604 (2013).
    [Crossref]
  16. W. E. Doering and S. Nie, “Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement,” J. Phys. Chem. B 106(2), 311–317 (2002).
    [Crossref]
  17. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 61101 (2006).
    [Crossref] [PubMed]
  18. S. H. Kim, S. Y. Lee, S. M. Yang, and G. R. Yi, “Self-assembled colloidal structures for photonics,” NPG Asia Mater. 3(1), 25–33 (2011).
    [Crossref]
  19. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
    [Crossref]
  20. S. H. Park and Y. Xia, “Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir 15(1), 266–273 (1999).
    [Crossref]
  21. F. Osterloh, H. Hiramatsu, R. Porter, and T. Guo, “Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: an opportunity for chemical sensor engineering,” Langmuir 20(13), 5553–5558 (2004).
    [Crossref] [PubMed]
  22. J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
    [Crossref] [PubMed]
  23. L. Lu and A. Eychmüller, “Ordered macroporous bimetallic nanostructures: design, characterization, and applications,” Acc. Chem. Res. 41(2), 244–253 (2008).
    [Crossref] [PubMed]
  24. M. Trau, D. A. Saville, and I. A. Aksay, “Assembly of colloidal crystals at electrode interfaces,” Langmuir 13(24), 6375–6381 (1997).
    [Crossref]
  25. B. I. Rosario-Castro, E. R. Fachini, J. Hernández, M. E. Pérez-Davis, and C. R. Cabrera, “Electrochemical and Surface Characterization of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes,” Langmuir 22(14), 6102–6108 (2006).
    [Crossref] [PubMed]
  26. X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-Enhanced Raman Scattering of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with Nanoparticle Shape Dependence: Off-Surface Plasmon Resonance Condition,” J. Phys. Chem. C 111(19), 6962–6969 (2007).
    [Crossref]
  27. P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, and H. L. Wang, “Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol,” Sci. Rep. 3(1), 2997 (2013).
    [Crossref] [PubMed]
  28. W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [Crossref]
  29. M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst (Lond.) 140(2), 386–406 (2015).
    [Crossref] [PubMed]
  30. T. K. Liu, M. S. Tsai, W. C. Hung, C. T. Kuo, D. P. Wang, and I. M. Jiang, “Field-enhanced Raman scattering by silver nanoparticle with graded SiO2 coating,” Appl. Phys. Lett. 102(15), 153105 (2013).
    [Crossref]

2015 (1)

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst (Lond.) 140(2), 386–406 (2015).
[Crossref] [PubMed]

2014 (1)

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

2013 (4)

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
[Crossref] [PubMed]

N. Valley, N. Greeneltch, R. P. Van Duyne, and G. C. Schatz, “A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment,” J. Phys. Chem. Lett. 4(16), 2599–2604 (2013).
[Crossref]

T. K. Liu, M. S. Tsai, W. C. Hung, C. T. Kuo, D. P. Wang, and I. M. Jiang, “Field-enhanced Raman scattering by silver nanoparticle with graded SiO2 coating,” Appl. Phys. Lett. 102(15), 153105 (2013).
[Crossref]

P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, and H. L. Wang, “Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol,” Sci. Rep. 3(1), 2997 (2013).
[Crossref] [PubMed]

2012 (3)

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

E. C. Le Ru and P. G. Etchegoin, “Single-Molecule Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

2011 (2)

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112–117 (2011).
[Crossref] [PubMed]

S. H. Kim, S. Y. Lee, S. M. Yang, and G. R. Yi, “Self-assembled colloidal structures for photonics,” NPG Asia Mater. 3(1), 25–33 (2011).
[Crossref]

2008 (2)

P. G. Etchegoin and E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10(40), 6079–6089 (2008).
[Crossref] [PubMed]

L. Lu and A. Eychmüller, “Ordered macroporous bimetallic nanostructures: design, characterization, and applications,” Acc. Chem. Res. 41(2), 244–253 (2008).
[Crossref] [PubMed]

2007 (1)

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-Enhanced Raman Scattering of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with Nanoparticle Shape Dependence: Off-Surface Plasmon Resonance Condition,” J. Phys. Chem. C 111(19), 6962–6969 (2007).
[Crossref]

2006 (3)

B. I. Rosario-Castro, E. R. Fachini, J. Hernández, M. E. Pérez-Davis, and C. R. Cabrera, “Electrochemical and Surface Characterization of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes,” Langmuir 22(14), 6102–6108 (2006).
[Crossref] [PubMed]

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 61101 (2006).
[Crossref] [PubMed]

2005 (1)

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6), 485–496 (2005).
[Crossref]

2004 (1)

F. Osterloh, H. Hiramatsu, R. Porter, and T. Guo, “Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: an opportunity for chemical sensor engineering,” Langmuir 20(13), 5553–5558 (2004).
[Crossref] [PubMed]

2002 (1)

W. E. Doering and S. Nie, “Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement,” J. Phys. Chem. B 106(2), 311–317 (2002).
[Crossref]

2001 (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[Crossref]

2000 (1)

H. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

1999 (2)

S. H. Park and Y. Xia, “Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir 15(1), 266–273 (1999).
[Crossref]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

1997 (3)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

M. Trau, D. A. Saville, and I. A. Aksay, “Assembly of colloidal crystals at electrode interfaces,” Langmuir 13(24), 6375–6381 (1997).
[Crossref]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

1968 (1)

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Aizpurua, J.

H. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

Aksay, I. A.

M. Trau, D. A. Saville, and I. A. Aksay, “Assembly of colloidal crystals at electrode interfaces,” Langmuir 13(24), 6375–6381 (1997).
[Crossref]

Apell, P.

H. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

Apkarian, V. A.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Banik, M.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Bazan, G. C.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Bohn, E.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Cabrera, C. R.

B. I. Rosario-Castro, E. R. Fachini, J. Hernández, M. E. Pérez-Davis, and C. R. Cabrera, “Electrochemical and Surface Characterization of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes,” Langmuir 22(14), 6102–6108 (2006).
[Crossref] [PubMed]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Chen, M.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112–117 (2011).
[Crossref] [PubMed]

Cho, M. H.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Choi, H.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Cushing, S. K.

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst (Lond.) 140(2), 386–406 (2015).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Dey, S.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Doering, W. E.

W. E. Doering and S. Nie, “Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement,” J. Phys. Chem. B 106(2), 311–317 (2002).
[Crossref]

Dong, S.

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-Enhanced Raman Scattering of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with Nanoparticle Shape Dependence: Off-Surface Plasmon Resonance Condition,” J. Phys. Chem. C 111(19), 6962–6969 (2007).
[Crossref]

El-Khoury, P. Z.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, “Single-Molecule Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

P. G. Etchegoin and E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10(40), 6079–6089 (2008).
[Crossref] [PubMed]

Eychmüller, A.

L. Lu and A. Eychmüller, “Ordered macroporous bimetallic nanostructures: design, characterization, and applications,” Acc. Chem. Res. 41(2), 244–253 (2008).
[Crossref] [PubMed]

Fachini, E. R.

B. I. Rosario-Castro, E. R. Fachini, J. Hernández, M. E. Pérez-Davis, and C. R. Cabrera, “Electrochemical and Surface Characterization of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes,” Langmuir 22(14), 6102–6108 (2006).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Fink, A.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Fishman, D. A.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 61101 (2006).
[Crossref] [PubMed]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Greeneltch, N.

N. Valley, N. Greeneltch, R. P. Van Duyne, and G. C. Schatz, “A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment,” J. Phys. Chem. Lett. 4(16), 2599–2604 (2013).
[Crossref]

Guarrottxena, N.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Guo, T.

F. Osterloh, H. Hiramatsu, R. Porter, and T. Guo, “Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: an opportunity for chemical sensor engineering,” Langmuir 20(13), 5553–5558 (2004).
[Crossref] [PubMed]

Han, X.

P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, and H. L. Wang, “Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol,” Sci. Rep. 3(1), 2997 (2013).
[Crossref] [PubMed]

Henry, A. I.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Hernández, J.

B. I. Rosario-Castro, E. R. Fachini, J. Hernández, M. E. Pérez-Davis, and C. R. Cabrera, “Electrochemical and Surface Characterization of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes,” Langmuir 22(14), 6102–6108 (2006).
[Crossref] [PubMed]

Hiramatsu, H.

F. Osterloh, H. Hiramatsu, R. Porter, and T. Guo, “Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: an opportunity for chemical sensor engineering,” Langmuir 20(13), 5553–5558 (2004).
[Crossref] [PubMed]

Hu, X.

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-Enhanced Raman Scattering of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with Nanoparticle Shape Dependence: Off-Surface Plasmon Resonance Condition,” J. Phys. Chem. C 111(19), 6962–6969 (2007).
[Crossref]

Hulkko, E.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Hung, W. C.

T. K. Liu, M. S. Tsai, W. C. Hung, C. T. Kuo, D. P. Wang, and I. M. Jiang, “Field-enhanced Raman scattering by silver nanoparticle with graded SiO2 coating,” Appl. Phys. Lett. 102(15), 153105 (2013).
[Crossref]

Inouye, Y.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112–117 (2011).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Iwasaki, H.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112–117 (2011).
[Crossref] [PubMed]

Jeong, D. H.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Jiang, I. M.

T. K. Liu, M. S. Tsai, W. C. Hung, C. T. Kuo, D. P. Wang, and I. M. Jiang, “Field-enhanced Raman scattering by silver nanoparticle with graded SiO2 coating,” Appl. Phys. Lett. 102(15), 153105 (2013).
[Crossref]

Jun, B. H.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Kall, M.

H. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Kang, L.

P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, and H. L. Wang, “Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol,” Sci. Rep. 3(1), 2997 (2013).
[Crossref] [PubMed]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[Crossref]

Kim, J. H.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Kim, J. S.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Kim, S. H.

S. H. Kim, S. Y. Lee, S. M. Yang, and G. R. Yi, “Self-assembled colloidal structures for photonics,” NPG Asia Mater. 3(1), 25–33 (2011).
[Crossref]

Kim, Y. K.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Kinkhabwala, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 61101 (2006).
[Crossref] [PubMed]

Kino, G. S.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 61101 (2006).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kuk, E.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Kuo, C. T.

T. K. Liu, M. S. Tsai, W. C. Hung, C. T. Kuo, D. P. Wang, and I. M. Jiang, “Field-enhanced Raman scattering by silver nanoparticle with graded SiO2 coating,” Appl. Phys. Lett. 102(15), 153105 (2013).
[Crossref]

Lang, X.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112–117 (2011).
[Crossref] [PubMed]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, “Single-Molecule Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

P. G. Etchegoin and E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10(40), 6079–6089 (2008).
[Crossref] [PubMed]

Lee, S. M.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Lee, S. Y.

S. H. Kim, S. Y. Lee, S. M. Yang, and G. R. Yi, “Self-assembled colloidal structures for photonics,” NPG Asia Mater. 3(1), 25–33 (2011).
[Crossref]

Lee, Y. S.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Li, M.

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst (Lond.) 140(2), 386–406 (2015).
[Crossref] [PubMed]

Liu, H.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112–117 (2011).
[Crossref] [PubMed]

Liu, T. K.

T. K. Liu, M. S. Tsai, W. C. Hung, C. T. Kuo, D. P. Wang, and I. M. Jiang, “Field-enhanced Raman scattering by silver nanoparticle with graded SiO2 coating,” Appl. Phys. Lett. 102(15), 153105 (2013).
[Crossref]

Lu, L.

L. Lu and A. Eychmüller, “Ordered macroporous bimetallic nanostructures: design, characterization, and applications,” Acc. Chem. Res. 41(2), 244–253 (2008).
[Crossref] [PubMed]

Mack, N. H.

P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, and H. L. Wang, “Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol,” Sci. Rep. 3(1), 2997 (2013).
[Crossref] [PubMed]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[Crossref]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 61101 (2006).
[Crossref] [PubMed]

Moskovits, M.

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
[Crossref] [PubMed]

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6), 485–496 (2005).
[Crossref]

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Nag, A.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Nie, S.

W. E. Doering and S. Nie, “Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement,” J. Phys. Chem. B 106(2), 311–317 (2002).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Osterloh, F.

F. Osterloh, H. Hiramatsu, R. Porter, and T. Guo, “Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: an opportunity for chemical sensor engineering,” Langmuir 20(13), 5553–5558 (2004).
[Crossref] [PubMed]

Park, S. H.

S. H. Park and Y. Xia, “Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir 15(1), 266–273 (1999).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Pérez-Davis, M. E.

B. I. Rosario-Castro, E. R. Fachini, J. Hernández, M. E. Pérez-Davis, and C. R. Cabrera, “Electrochemical and Surface Characterization of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes,” Langmuir 22(14), 6102–6108 (2006).
[Crossref] [PubMed]

Porter, R.

F. Osterloh, H. Hiramatsu, R. Porter, and T. Guo, “Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: an opportunity for chemical sensor engineering,” Langmuir 20(13), 5553–5558 (2004).
[Crossref] [PubMed]

Potma, E. O.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Ringe, E.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Rodriguez-Perez, A.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Rosario-Castro, B. I.

B. I. Rosario-Castro, E. R. Fachini, J. Hernández, M. E. Pérez-Davis, and C. R. Cabrera, “Electrochemical and Surface Characterization of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes,” Langmuir 22(14), 6102–6108 (2006).
[Crossref] [PubMed]

Saville, D. A.

M. Trau, D. A. Saville, and I. A. Aksay, “Assembly of colloidal crystals at electrode interfaces,” Langmuir 13(24), 6375–6381 (1997).
[Crossref]

Schanze, K. S.

P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, and H. L. Wang, “Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol,” Sci. Rep. 3(1), 2997 (2013).
[Crossref] [PubMed]

Schatz, G. C.

N. Valley, N. Greeneltch, R. P. Van Duyne, and G. C. Schatz, “A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment,” J. Phys. Chem. Lett. 4(16), 2599–2604 (2013).
[Crossref]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[Crossref]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 61101 (2006).
[Crossref] [PubMed]

Sharma, B.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Stober, W.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 61101 (2006).
[Crossref] [PubMed]

Trau, M.

M. Trau, D. A. Saville, and I. A. Aksay, “Assembly of colloidal crystals at electrode interfaces,” Langmuir 13(24), 6375–6381 (1997).
[Crossref]

Tsai, M. S.

T. K. Liu, M. S. Tsai, W. C. Hung, C. T. Kuo, D. P. Wang, and I. M. Jiang, “Field-enhanced Raman scattering by silver nanoparticle with graded SiO2 coating,” Appl. Phys. Lett. 102(15), 153105 (2013).
[Crossref]

Valley, N.

N. Valley, N. Greeneltch, R. P. Van Duyne, and G. C. Schatz, “A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment,” J. Phys. Chem. Lett. 4(16), 2599–2604 (2013).
[Crossref]

Van Duyne, R. P.

N. Valley, N. Greeneltch, R. P. Van Duyne, and G. C. Schatz, “A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment,” J. Phys. Chem. Lett. 4(16), 2599–2604 (2013).
[Crossref]

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[Crossref]

Wang, D. P.

T. K. Liu, M. S. Tsai, W. C. Hung, C. T. Kuo, D. P. Wang, and I. M. Jiang, “Field-enhanced Raman scattering by silver nanoparticle with graded SiO2 coating,” Appl. Phys. Lett. 102(15), 153105 (2013).
[Crossref]

Wang, H. L.

P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, and H. L. Wang, “Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol,” Sci. Rep. 3(1), 2997 (2013).
[Crossref] [PubMed]

Wang, L.

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-Enhanced Raman Scattering of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with Nanoparticle Shape Dependence: Off-Surface Plasmon Resonance Condition,” J. Phys. Chem. C 111(19), 6962–6969 (2007).
[Crossref]

Wang, T.

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-Enhanced Raman Scattering of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with Nanoparticle Shape Dependence: Off-Surface Plasmon Resonance Condition,” J. Phys. Chem. C 111(19), 6962–6969 (2007).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wu, N.

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst (Lond.) 140(2), 386–406 (2015).
[Crossref] [PubMed]

Xia, Y.

S. H. Park and Y. Xia, “Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir 15(1), 266–273 (1999).
[Crossref]

Xu, H.

H. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

Xu, P.

P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, and H. L. Wang, “Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol,” Sci. Rep. 3(1), 2997 (2013).
[Crossref] [PubMed]

Xue, Q.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112–117 (2011).
[Crossref] [PubMed]

Yamaguchi, Y.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112–117 (2011).
[Crossref] [PubMed]

Yampolsky, S.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Yang, S. M.

S. H. Kim, S. Y. Lee, S. M. Yang, and G. R. Yi, “Self-assembled colloidal structures for photonics,” NPG Asia Mater. 3(1), 25–33 (2011).
[Crossref]

Yi, G. R.

S. H. Kim, S. Y. Lee, S. M. Yang, and G. R. Yi, “Self-assembled colloidal structures for photonics,” NPG Asia Mater. 3(1), 25–33 (2011).
[Crossref]

Yu, K. N.

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Zhang, L.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112–117 (2011).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

L. Lu and A. Eychmüller, “Ordered macroporous bimetallic nanostructures: design, characterization, and applications,” Acc. Chem. Res. 41(2), 244–253 (2008).
[Crossref] [PubMed]

ACS Nano (1)

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, K. N. Yu, E. Kuk, Y. K. Kim, D. H. Jeong, M. H. Cho, and Y. S. Lee, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting,” Anal. Chem. 78(19), 6967–6973 (2006).
[Crossref] [PubMed]

Analyst (Lond.) (1)

M. Li, S. K. Cushing, and N. Wu, “Plasmon-enhanced optical sensors: a review,” Analyst (Lond.) 140(2), 386–406 (2015).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

E. C. Le Ru and P. G. Etchegoin, “Single-Molecule Surface-Enhanced Raman Spectroscopy,” Annu. Rev. Phys. Chem. 63(1), 65–87 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. K. Liu, M. S. Tsai, W. C. Hung, C. T. Kuo, D. P. Wang, and I. M. Jiang, “Field-enhanced Raman scattering by silver nanoparticle with graded SiO2 coating,” Appl. Phys. Lett. 102(15), 153105 (2013).
[Crossref]

Chem. Rev. (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

J. Am. Chem. Soc. (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[Crossref]

J. Chem. Phys. (1)

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 61101 (2006).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

J. Phys. Chem. B (1)

W. E. Doering and S. Nie, “Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement,” J. Phys. Chem. B 106(2), 311–317 (2002).
[Crossref]

J. Phys. Chem. C (1)

X. Hu, T. Wang, L. Wang, and S. Dong, “Surface-Enhanced Raman Scattering of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with Nanoparticle Shape Dependence: Off-Surface Plasmon Resonance Condition,” J. Phys. Chem. C 111(19), 6962–6969 (2007).
[Crossref]

J. Phys. Chem. Lett. (1)

N. Valley, N. Greeneltch, R. P. Van Duyne, and G. C. Schatz, “A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment,” J. Phys. Chem. Lett. 4(16), 2599–2604 (2013).
[Crossref]

J. Raman Spectrosc. (1)

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6), 485–496 (2005).
[Crossref]

Langmuir (4)

M. Trau, D. A. Saville, and I. A. Aksay, “Assembly of colloidal crystals at electrode interfaces,” Langmuir 13(24), 6375–6381 (1997).
[Crossref]

B. I. Rosario-Castro, E. R. Fachini, J. Hernández, M. E. Pérez-Davis, and C. R. Cabrera, “Electrochemical and Surface Characterization of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes,” Langmuir 22(14), 6102–6108 (2006).
[Crossref] [PubMed]

S. H. Park and Y. Xia, “Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir 15(1), 266–273 (1999).
[Crossref]

F. Osterloh, H. Hiramatsu, R. Porter, and T. Guo, “Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: an opportunity for chemical sensor engineering,” Langmuir 20(13), 5553–5558 (2004).
[Crossref] [PubMed]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Nat. Photonics (1)

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

NPG Asia Mater. (1)

S. H. Kim, S. Y. Lee, S. M. Yang, and G. R. Yi, “Self-assembled colloidal structures for photonics,” NPG Asia Mater. 3(1), 25–33 (2011).
[Crossref]

Phys. Chem. Chem. Phys. (2)

M. Moskovits, “Persistent misconceptions regarding SERS,” Phys. Chem. Chem. Phys. 15(15), 5301–5311 (2013).
[Crossref] [PubMed]

P. G. Etchegoin and E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10(40), 6079–6089 (2008).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

H. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(3), 4318–4324 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Sci. Rep. (2)

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112–117 (2011).
[Crossref] [PubMed]

P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han, and H. L. Wang, “Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol,” Sci. Rep. 3(1), 2997 (2013).
[Crossref] [PubMed]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SEM images of (a) 30-nm (average) silver nanoparticles, and (b) 200-nm SiO2 nanospheres.
Fig. 2
Fig. 2 Distribution of 4-ATP and SiO2-NSs in the solution (a) without applying voltage in the beginning, and (b) with applying + 3V voltage in forward bias for 15 min.
Fig. 3
Fig. 3 Raman spectrum of 4-ATP with 1.5 wt% SiO2-NSs (a) measured with forward bias at 30 minutes after completing the sample, and then (b) measured with reverse bias.
Fig. 4
Fig. 4 Raman spectrum of 4-ATP measured with concentrations of SiO2-NSs (a) 0 wt%, (b) 1 wt%, (c) 3 wt%, and (d) 7 wt%.
Fig. 5
Fig. 5 (a) Selected Raman peak of Ag-4ATP at 1081 cm−1 with various concentrations of SiO2-NSs (i) forward bias and (ii) reverse bias, and (b) the contrast ratio of the peak intensity values in curve (i) divided by the peak intensity values in curve (ii).
Fig. 6
Fig. 6 Raman spectrum of 4-ATP with 350-nm SiO2-NSs and a concentration of 0.4 wt%.

Metrics