Abstract

The advantages of simultaneous side and end diode pumping of Nd:YAG laser to enhance the spatio-temporal characteristics in the Q-switched mode of operation has been demonstrated. It has been shown that using a hybrid pump geometry in a short linear resonator provides a superior combination of output beam optical quality, energy, and pulse duration in contrast to the solitary use of an end-pump or a side-pump scheme at similar levels of average output power. We have demonstrated a compact single active rod Nd:YAG laser design in Q-switching mode with a pulse duration of 18 ns, pulse energy up to 3mJ, a repetition rate of 8 kHz, and М2 <2.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A novel miniaturized passively Q-switched pulse-burst laser for engine ignition

Yufei Ma, Xudong Li, Xin Yu, Rongwei Fan, Renpeng Yan, Jiangbo Peng, Xinrui Xu, Rui Sun, and Deying Chen
Opt. Express 22(20) 24655-24665 (2014)

Passively Q-switched diode-pumped continuous-wave Nd:YAG–Cr4+:YAG laser with high peak power and high pulse energy

Jie Song, Cheng Li, Nam Seong Kim, and Ken-ichi Ueda
Appl. Opt. 39(27) 4954-4958 (2000)

Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen
Opt. Express 24(24) 27212-27224 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Iffländer, Solid-State Lasers for Materials Processing: Fundamental Relations and Technical Realizations (Springer Series in Optical Sciences, 2001), Vol. 77.
  2. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” STQE 20(5), 0904123 (2014).
  3. J. Speiser, “History, principles and prospects of thin-disk lasers” (German Aerospace Center Institute of Technical Physics, 2014), http://elib.dlr.de/94106/1/Speiser_thin_disk_hist_scaling.pdf .
  4. S. G. Grechin and P. P. Nikolaev, “Diode-side-pumped laser heads for solid-state lasers,” Quantum Electron. 39(1), 1–17 (2009).
    [Crossref]
  5. B. Oreshkov, K. Georgiev, S. Gagarskiy, V. Rusov, N. Belashenkov, A. Trifonov, and I. Buchvarov, “High Energy, High Repetition Rate, Q-Switched Diode Pumped Nd:YAG Laser Using an Unstable Resonator with Variable Reflectivity Mirror”, (CLEO EUROPE, 2017), Book of Abstracts, p.17.
  6. N. N. Du Keming, J. Xu, J. Giesekius, P. Loosen, and R. Poprawe, “Partially end-pumped Nd:YAG laser with a hybrid resonator,” Opt. Lett. 23(5), 370–372 (1998).
    [Crossref] [PubMed]
  7. W. A. Clarkson, N. S. Felgate, and D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24(12), 820–822 (1999).
    [Crossref] [PubMed]
  8. S. Mondal, S. P. Singh, K. Hussain, A. Choubey, B. N. Upadhyay, and P. K. Datta, “Efficient depolarization-loss-compensation of solid state lasers using only a Glan-Taylor polarizer,” Opt. Laser Technol. 45, 154–159 (2013).
    [Crossref]
  9. J. Sherman, “Thermal compensation of CW-pumped Nd:YAG laser,” Appl. Opt. 37(33), 7789–7796 (1998).
    [Crossref] [PubMed]
  10. J. J. Morehead, “Compensation of laser thermal depolarization using free space,” STQE 13(3), 498–501 (2007).
  11. W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971).
    [Crossref]
  12. M. Ouhayoun, M. Boucher, O. Musset, and J. P. Boquillon, “A Nd:YAG laser with a vectorial phase conjugate mirror in the gain medium”, in Conference on Lasers and Electro-Optics Europe, France, 10–15 Sept. 2000, paper CTuN3.
    [Crossref]
  13. P. K. Mukhopadhyay, K. Ranganathan, S. K. Sharma, P. K. Gupta, and T. P. S. Nathan, “Experimental study of simultaneous end-pumping to a diode-side-pumped intracavity frequency doubled Q-switched Nd:YAG laser,” Opt. Commun. 256(1-3), 139–148 (2005).
    [Crossref]
  14. H. Kogelnik and T. Li, “Laser Beams and Resonators,” Appl. Opt. 5(10), 1550–1567 (1966).
    [Crossref] [PubMed]
  15. W. Koehner, Solid-State Lasers (Springer Verlag US, 2008).
  16. S. De Silvestri, P. Laporta, and V. Magni, “Novel stability diagrams for continuous-wave solid-state laser resonators,” Opt. Lett. 11(8), 513–515 (1986).
    [Crossref] [PubMed]
  17. O. Svelto, Principels of Lasers (Springer Verlag US, 2010), Chap.5.
  18. Y. V. Shen, T. M. Huang, C. F. Kao, C. L. Wang, and C. S. Wang, “Optimization in scaling fiber- coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” STQE 33(8), 1424–1429 (1997).
  19. J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35(12), 3572–3578 (1996).
    [Crossref]
  20. A. Y. Vinokhodov, M. S. Krivokorytov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, and K. N. Koshelev, “High brightness EUV sources based on laser plasma at using droplet liquid metal target,” Quantum Electron. 46(5), 473–480 (2016).
    [Crossref]

2016 (1)

A. Y. Vinokhodov, M. S. Krivokorytov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, and K. N. Koshelev, “High brightness EUV sources based on laser plasma at using droplet liquid metal target,” Quantum Electron. 46(5), 473–480 (2016).
[Crossref]

2014 (1)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” STQE 20(5), 0904123 (2014).

2013 (1)

S. Mondal, S. P. Singh, K. Hussain, A. Choubey, B. N. Upadhyay, and P. K. Datta, “Efficient depolarization-loss-compensation of solid state lasers using only a Glan-Taylor polarizer,” Opt. Laser Technol. 45, 154–159 (2013).
[Crossref]

2009 (1)

S. G. Grechin and P. P. Nikolaev, “Diode-side-pumped laser heads for solid-state lasers,” Quantum Electron. 39(1), 1–17 (2009).
[Crossref]

2007 (1)

J. J. Morehead, “Compensation of laser thermal depolarization using free space,” STQE 13(3), 498–501 (2007).

2005 (1)

P. K. Mukhopadhyay, K. Ranganathan, S. K. Sharma, P. K. Gupta, and T. P. S. Nathan, “Experimental study of simultaneous end-pumping to a diode-side-pumped intracavity frequency doubled Q-switched Nd:YAG laser,” Opt. Commun. 256(1-3), 139–148 (2005).
[Crossref]

1999 (1)

1998 (2)

1997 (1)

Y. V. Shen, T. M. Huang, C. F. Kao, C. L. Wang, and C. S. Wang, “Optimization in scaling fiber- coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” STQE 33(8), 1424–1429 (1997).

1996 (1)

J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35(12), 3572–3578 (1996).
[Crossref]

1986 (1)

1971 (1)

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971).
[Crossref]

1966 (1)

Choubey, A.

S. Mondal, S. P. Singh, K. Hussain, A. Choubey, B. N. Upadhyay, and P. K. Datta, “Efficient depolarization-loss-compensation of solid state lasers using only a Glan-Taylor polarizer,” Opt. Laser Technol. 45, 154–159 (2013).
[Crossref]

Clarkson, W. A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” STQE 20(5), 0904123 (2014).

Datta, P. K.

S. Mondal, S. P. Singh, K. Hussain, A. Choubey, B. N. Upadhyay, and P. K. Datta, “Efficient depolarization-loss-compensation of solid state lasers using only a Glan-Taylor polarizer,” Opt. Laser Technol. 45, 154–159 (2013).
[Crossref]

De Silvestri, S.

de Wit, M.

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971).
[Crossref]

Du Keming, N. N.

Felgate, N. S.

Giesekius, J.

Grechin, S. G.

S. G. Grechin and P. P. Nikolaev, “Diode-side-pumped laser heads for solid-state lasers,” Quantum Electron. 39(1), 1–17 (2009).
[Crossref]

Gupta, P. K.

P. K. Mukhopadhyay, K. Ranganathan, S. K. Sharma, P. K. Gupta, and T. P. S. Nathan, “Experimental study of simultaneous end-pumping to a diode-side-pumped intracavity frequency doubled Q-switched Nd:YAG laser,” Opt. Commun. 256(1-3), 139–148 (2005).
[Crossref]

Hanna, D. C.

Huang, T. M.

Y. V. Shen, T. M. Huang, C. F. Kao, C. L. Wang, and C. S. Wang, “Optimization in scaling fiber- coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” STQE 33(8), 1424–1429 (1997).

Hussain, K.

S. Mondal, S. P. Singh, K. Hussain, A. Choubey, B. N. Upadhyay, and P. K. Datta, “Efficient depolarization-loss-compensation of solid state lasers using only a Glan-Taylor polarizer,” Opt. Laser Technol. 45, 154–159 (2013).
[Crossref]

Jabczynski, J. K.

J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35(12), 3572–3578 (1996).
[Crossref]

Kao, C. F.

Y. V. Shen, T. M. Huang, C. F. Kao, C. L. Wang, and C. S. Wang, “Optimization in scaling fiber- coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” STQE 33(8), 1424–1429 (1997).

Kogelnik, H.

Kopczynski, K.

J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35(12), 3572–3578 (1996).
[Crossref]

Koshelev, K. N.

A. Y. Vinokhodov, M. S. Krivokorytov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, and K. N. Koshelev, “High brightness EUV sources based on laser plasma at using droplet liquid metal target,” Quantum Electron. 46(5), 473–480 (2016).
[Crossref]

Krivokorytov, M. S.

A. Y. Vinokhodov, M. S. Krivokorytov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, and K. N. Koshelev, “High brightness EUV sources based on laser plasma at using droplet liquid metal target,” Quantum Electron. 46(5), 473–480 (2016).
[Crossref]

Krivtsun, V. M.

A. Y. Vinokhodov, M. S. Krivokorytov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, and K. N. Koshelev, “High brightness EUV sources based on laser plasma at using droplet liquid metal target,” Quantum Electron. 46(5), 473–480 (2016).
[Crossref]

Laporta, P.

Li, T.

Loosen, P.

Magni, V.

Medvedev, V. V.

A. Y. Vinokhodov, M. S. Krivokorytov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, and K. N. Koshelev, “High brightness EUV sources based on laser plasma at using droplet liquid metal target,” Quantum Electron. 46(5), 473–480 (2016).
[Crossref]

Mondal, S.

S. Mondal, S. P. Singh, K. Hussain, A. Choubey, B. N. Upadhyay, and P. K. Datta, “Efficient depolarization-loss-compensation of solid state lasers using only a Glan-Taylor polarizer,” Opt. Laser Technol. 45, 154–159 (2013).
[Crossref]

Morehead, J. J.

J. J. Morehead, “Compensation of laser thermal depolarization using free space,” STQE 13(3), 498–501 (2007).

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, K. Ranganathan, S. K. Sharma, P. K. Gupta, and T. P. S. Nathan, “Experimental study of simultaneous end-pumping to a diode-side-pumped intracavity frequency doubled Q-switched Nd:YAG laser,” Opt. Commun. 256(1-3), 139–148 (2005).
[Crossref]

Nathan, T. P. S.

P. K. Mukhopadhyay, K. Ranganathan, S. K. Sharma, P. K. Gupta, and T. P. S. Nathan, “Experimental study of simultaneous end-pumping to a diode-side-pumped intracavity frequency doubled Q-switched Nd:YAG laser,” Opt. Commun. 256(1-3), 139–148 (2005).
[Crossref]

Nikolaev, P. P.

S. G. Grechin and P. P. Nikolaev, “Diode-side-pumped laser heads for solid-state lasers,” Quantum Electron. 39(1), 1–17 (2009).
[Crossref]

Poprawe, R.

Ranganathan, K.

P. K. Mukhopadhyay, K. Ranganathan, S. K. Sharma, P. K. Gupta, and T. P. S. Nathan, “Experimental study of simultaneous end-pumping to a diode-side-pumped intracavity frequency doubled Q-switched Nd:YAG laser,” Opt. Commun. 256(1-3), 139–148 (2005).
[Crossref]

Scott, W. C.

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971).
[Crossref]

Sharma, S. K.

P. K. Mukhopadhyay, K. Ranganathan, S. K. Sharma, P. K. Gupta, and T. P. S. Nathan, “Experimental study of simultaneous end-pumping to a diode-side-pumped intracavity frequency doubled Q-switched Nd:YAG laser,” Opt. Commun. 256(1-3), 139–148 (2005).
[Crossref]

Shen, Y. V.

Y. V. Shen, T. M. Huang, C. F. Kao, C. L. Wang, and C. S. Wang, “Optimization in scaling fiber- coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” STQE 33(8), 1424–1429 (1997).

Sherman, J.

Sidelnikov, Y. V.

A. Y. Vinokhodov, M. S. Krivokorytov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, and K. N. Koshelev, “High brightness EUV sources based on laser plasma at using droplet liquid metal target,” Quantum Electron. 46(5), 473–480 (2016).
[Crossref]

Singh, S. P.

S. Mondal, S. P. Singh, K. Hussain, A. Choubey, B. N. Upadhyay, and P. K. Datta, “Efficient depolarization-loss-compensation of solid state lasers using only a Glan-Taylor polarizer,” Opt. Laser Technol. 45, 154–159 (2013).
[Crossref]

Szczesniak, A.

J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35(12), 3572–3578 (1996).
[Crossref]

Upadhyay, B. N.

S. Mondal, S. P. Singh, K. Hussain, A. Choubey, B. N. Upadhyay, and P. K. Datta, “Efficient depolarization-loss-compensation of solid state lasers using only a Glan-Taylor polarizer,” Opt. Laser Technol. 45, 154–159 (2013).
[Crossref]

Vinokhodov, A. Y.

A. Y. Vinokhodov, M. S. Krivokorytov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, and K. N. Koshelev, “High brightness EUV sources based on laser plasma at using droplet liquid metal target,” Quantum Electron. 46(5), 473–480 (2016).
[Crossref]

Wang, C. L.

Y. V. Shen, T. M. Huang, C. F. Kao, C. L. Wang, and C. S. Wang, “Optimization in scaling fiber- coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” STQE 33(8), 1424–1429 (1997).

Wang, C. S.

Y. V. Shen, T. M. Huang, C. F. Kao, C. L. Wang, and C. S. Wang, “Optimization in scaling fiber- coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” STQE 33(8), 1424–1429 (1997).

Xu, J.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” STQE 20(5), 0904123 (2014).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971).
[Crossref]

Opt. Commun. (1)

P. K. Mukhopadhyay, K. Ranganathan, S. K. Sharma, P. K. Gupta, and T. P. S. Nathan, “Experimental study of simultaneous end-pumping to a diode-side-pumped intracavity frequency doubled Q-switched Nd:YAG laser,” Opt. Commun. 256(1-3), 139–148 (2005).
[Crossref]

Opt. Eng. (1)

J. K. Jabczynski, K. Kopczynski, and A. Szczesniak, “Thermal lensing and thermal aberration investigations in diode-pumped lasers,” Opt. Eng. 35(12), 3572–3578 (1996).
[Crossref]

Opt. Laser Technol. (1)

S. Mondal, S. P. Singh, K. Hussain, A. Choubey, B. N. Upadhyay, and P. K. Datta, “Efficient depolarization-loss-compensation of solid state lasers using only a Glan-Taylor polarizer,” Opt. Laser Technol. 45, 154–159 (2013).
[Crossref]

Opt. Lett. (3)

Quantum Electron. (2)

S. G. Grechin and P. P. Nikolaev, “Diode-side-pumped laser heads for solid-state lasers,” Quantum Electron. 39(1), 1–17 (2009).
[Crossref]

A. Y. Vinokhodov, M. S. Krivokorytov, Y. V. Sidelnikov, V. M. Krivtsun, V. V. Medvedev, and K. N. Koshelev, “High brightness EUV sources based on laser plasma at using droplet liquid metal target,” Quantum Electron. 46(5), 473–480 (2016).
[Crossref]

STQE (3)

Y. V. Shen, T. M. Huang, C. F. Kao, C. L. Wang, and C. S. Wang, “Optimization in scaling fiber- coupled laser-diode end-pumped lasers to higher power: Influence of thermal effect,” STQE 33(8), 1424–1429 (1997).

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” STQE 20(5), 0904123 (2014).

J. J. Morehead, “Compensation of laser thermal depolarization using free space,” STQE 13(3), 498–501 (2007).

Other (6)

M. Ouhayoun, M. Boucher, O. Musset, and J. P. Boquillon, “A Nd:YAG laser with a vectorial phase conjugate mirror in the gain medium”, in Conference on Lasers and Electro-Optics Europe, France, 10–15 Sept. 2000, paper CTuN3.
[Crossref]

O. Svelto, Principels of Lasers (Springer Verlag US, 2010), Chap.5.

W. Koehner, Solid-State Lasers (Springer Verlag US, 2008).

J. Speiser, “History, principles and prospects of thin-disk lasers” (German Aerospace Center Institute of Technical Physics, 2014), http://elib.dlr.de/94106/1/Speiser_thin_disk_hist_scaling.pdf .

B. Oreshkov, K. Georgiev, S. Gagarskiy, V. Rusov, N. Belashenkov, A. Trifonov, and I. Buchvarov, “High Energy, High Repetition Rate, Q-Switched Diode Pumped Nd:YAG Laser Using an Unstable Resonator with Variable Reflectivity Mirror”, (CLEO EUROPE, 2017), Book of Abstracts, p.17.

R. Iffländer, Solid-State Lasers for Materials Processing: Fundamental Relations and Technical Realizations (Springer Series in Optical Sciences, 2001), Vol. 77.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Stability diagram of the plane-spherical resonator with two thermally induced lenses with variable optical powers De, and Ds. The output coupler’s curvature radius is R2 = −500 mm (а), R2 = ∞ (b), R2 = 500 mm (c), resonator length is Lb = 135 mm. Zone I represents the stable region, zones II show the unstable regions for the resonator.
Fig. 2
Fig. 2 [EP] – end-pump source; M1 – dichroic rear mirror (HR@1064 nm, HT@808 nm); [SP] – side-pump diode module with Nd:YAG active rod; TFP – thin film polarizer; M2 – output coupler (Roc = 78%); W1, W2 – optical wedges; FF – optical filters ; SM – spherical mirror; PWM – power meter, PD – high-speed pin-photodiode with oscilloscope.
Fig. 3
Fig. 3 а) Side pump scheme, transversal distribution of fluorescence in the active rod and power parameters of [SP] and [EP] systems (ISP, IEP are the side- and end pump systems working current values respectively; b) output beam intensity distributions for the side-pump (1) and hybrid pump (2) operation modes; c, d) pulse energy and duration vs end-pump peak power PEP for different levels of side pump peak power PSP.
Fig. 4
Fig. 4 Scheme of the laser with continuous hybrid pump. THE and THS – thermally induced lenses caused by end- and side pump radiation.
Fig. 5
Fig. 5 Calculated dependences for the resonator with an output coupler radius of curvature R2 = −500 mm: a) g1g2 stability diagram; b) Magnification coefficient M for the resonator in the unstable configuration region. The area without isolines corresponds to the stable generation regime (M = 1).
Fig. 6
Fig. 6 Transverse intensity distribution and generated pulse temporal profile for generation at 8 kHz; a) end-pump (IEP = 5 A), average output power Wg = 2.4 W, τg = 22 ns; b) side-pump (ISP = 24 A), Wg = 19 W, τg = 50 ns; c) side + end-pump (IEP = 6 A, ISP = 24 A), Wg = 21 W, τg = 18 ns.
Fig. 7
Fig. 7 Experiment using CW end and side pumping -Stage II. Results at Q-switched repetition rate f = 8 KHz, a) Output pulse energy vs end-pump power PEP (PEP = WEP in the case of CW pumping); b) pulse energy vs side-pump power PSP at PEP = 32 W corresponding to the max output energy in Fig. 7(a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g1= D E ( z S + z E )[ 1 z D R1 ]+ D S z D [ 1 z E + z S R1 ] z D + z E + z S R1 +1
g2= D E z D [ 1 z E + z S R2 ]+ D S ( z E + z S )[ 1 z D R2 ] z D + z E + z S R2 +1

Metrics