Abstract

A mode and threshold tunable random laser assisted by MnCl2 and fiber is investigated. This is constructed by doping MnCl2 with different concentrations and embedding fiber in the dye Pyrromethene-597(PM597)-doped negative liquid crystal (NLC) glass capillary samples. The excellent overlap of the absorption spectrum of MnCl2 with both the fluorescence and absorption spectra of dye PM597 provides the low threshold and tuning properties for the random lasing. The low-threshold and fewer-mode peculiarity of the random lasing for the systems with fiber is attributed to longer photon residence time provided by the fiber in the random gain-scattering systems. The simple and straightforward approach of random lasing control holds potential to enable optical device fabrication based on random lasers.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Random lasing assisted by CuSO4 and Au nanoparticles in random gain systems

Zhenzhen Shang, Zhi Tao, and Luogen Deng
Opt. Mater. Express 7(6) 1848-1857 (2017)

Core-resonance cylindrical whispering gallery mode laser of dye-doped nematic liquid crystal

Yusuke Nagai, Ryushi Fujimura, and Kotaro Kajikawa
J. Opt. Soc. Am. B 30(8) 2233-2239 (2013)

Random lasing in ballistic and diffusive regimes for macroporous silica-based systems with tunable scattering strength

Xiangeng Meng, Koji Fujita, Shunsuke Murai, Junko Konishi, Masafumi Mano, and Katsuhisa Tanaka
Opt. Express 18(12) 12153-12160 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Cao, “Random lasers: development, features and applications,” Opt. Photonics News 16(1), 24–29 (2005).
    [Crossref]
  2. D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
    [Crossref] [PubMed]
  3. A. Consoli and C. López, “Decoupling gain and feedback in coherent random lasers: experiments and simulations,” Sci. Rep. 5(1), 16848 (2015).
    [Crossref] [PubMed]
  4. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
    [Crossref]
  5. D. S. Wiersma, “Random lasers explained,” Nat. Photonics 3(5), 246–248 (2009).
    [Crossref]
  6. L. Cerdán, E. Enciso, V. Martín, J. Bañuelos, I. Lópezarbeloa, A. Costela, and I. García-Moreno, “Fret-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
    [Crossref]
  7. H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
    [Crossref]
  8. T. Takahashi, T. Nakamura, and S. Adachi, “Blue-light-emitting ZnSe random laser,” Opt. Lett. 34(24), 3923–3925 (2009).
    [Crossref] [PubMed]
  9. A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
    [Crossref]
  10. C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. L. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
    [Crossref] [PubMed]
  11. Z. K. Zhang, J. M. Bian, Y. Z. Zhang, J. F. Zhang, F. W. Qin, and Y. M. Luo, “Ultra-low threshold optically pumped random laser emission behavior of highly oriented pyrolytic graphite,” Mater. Lett. 115(115), 261–264 (2014).
  12. T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
    [Crossref] [PubMed]
  13. X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random Lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
    [Crossref]
  14. S. Biswas and P. Kumbhakar, “Continuous wave random lasing in naturally occurring biocompatible pigments and reduction of lasing threshold using triangular silver nanostructures as scattering media,” Nanoscale 9(47), 18812–18818 (2017).
    [Crossref] [PubMed]
  15. L. Wang, Y. Wan, L. Shi, H. Zhong, and L. Deng, “Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles,” Opt. Express 24(16), 17593–17602 (2016).
    [Crossref] [PubMed]
  16. L. Wang, M. Wang, M. C. Yang, L. J. Shi, L. G. Deng, and H. Yang, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B 25(9), 094217 (2016).
    [Crossref]
  17. Z. Shang, M. Yang, and L. Deng, “Low-threshold and high intensity random Lasing enhanced by MnCl2,” Materials (Basel) 9(9), 725 (2016).
    [Crossref] [PubMed]
  18. S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, “All-optical guided-wave random laser in nematic liquid crystals,” Opt. Express 25(5), 4672–4679 (2017).
    [Crossref] [PubMed]
  19. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
    [Crossref] [PubMed]
  20. C. H. Chang, C. T. Kuo, H. Y. Sun, S. H. Lin, C. W. Chang, and S. Y. Huang, “All-optically controllable nanoparticle random laser in a well-aligned laser-dye-doped liquid crystal,” Opt. Express 24(25), 28739–28747 (2016).
    [Crossref] [PubMed]
  21. H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11(11), 075104 (2014).
    [Crossref]
  22. T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
    [Crossref] [PubMed]
  23. Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
    [Crossref] [PubMed]
  24. R. Zhang, S. Knitter, S. F. Liew, F. G. Omenetto, B. M. Reinhard, H. Cao, and L. Dal Negro, “Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers,” Appl. Phys. Lett. 108(1), 01110 (2016).
    [Crossref]
  25. W. Kim, V. P. Safonov, V. M. Shalaev, and L. Armstrong, “Fractals in Microcaviies: Giant Coupled Multi- plicative Enhancement of Optical Responses,” Phys. Rev. Lett. 82(24), 4811–4814 (1999).
    [Crossref]
  26. V. Drachev, W.-T. Kim, V. Safonov, V. Podolskiy, N. Zakovryashin, E. Khaliullin, V. Shalaev, and R. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49(3–4), 645–662 (2002).
    [Crossref]
  27. B. J. Scott, M. H. Bartl, G. Wirnsberger, and G. D. Stucky, “Energy transfer in dye doped mesostructured composites,” Phys. Chem. A 107(29), 5499–5502 (2003).
    [Crossref]
  28. T. Sen, S. Jana, S. Koner, and A. Patra, “Efficient energy transfer between confined dye and Y-zeolite functionalized Au nanoparticles,” PhysChemComm 114(46), 19667–19672 (2010).
  29. G. Zhu, C. E. Small, and M. A. Noginov, “Control of gain and amplification in random lasers,” J. Opt. Soc. Am. B 24(9), 2129–2135 (2007).
    [Crossref]
  30. X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).
  31. B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Self-healing organic-dye-based random lasers,” Opt. Lett. 40(4), 577–580 (2015).
    [Crossref] [PubMed]
  32. B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Photodegradation and self-healing in a Rhodamine 6G dye and Y2O3 nanoparticle-doped polyurethane random laser,” Appl. Phys. B 120(1), 1–12 (2015).
    [Crossref]
  33. B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Random Lasing and Reversible photodegradation in disperse orange 11 dye-doped PMMA with dispersed ZrO2 nanoparticles,” J. Opt. 18(1), 015403 (2016).
    [Crossref]
  34. P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics 7(1), 66–71 (2013).
    [Crossref]

2017 (2)

S. Biswas and P. Kumbhakar, “Continuous wave random lasing in naturally occurring biocompatible pigments and reduction of lasing threshold using triangular silver nanostructures as scattering media,” Nanoscale 9(47), 18812–18818 (2017).
[Crossref] [PubMed]

S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, “All-optical guided-wave random laser in nematic liquid crystals,” Opt. Express 25(5), 4672–4679 (2017).
[Crossref] [PubMed]

2016 (7)

C. H. Chang, C. T. Kuo, H. Y. Sun, S. H. Lin, C. W. Chang, and S. Y. Huang, “All-optically controllable nanoparticle random laser in a well-aligned laser-dye-doped liquid crystal,” Opt. Express 24(25), 28739–28747 (2016).
[Crossref] [PubMed]

T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
[Crossref] [PubMed]

R. Zhang, S. Knitter, S. F. Liew, F. G. Omenetto, B. M. Reinhard, H. Cao, and L. Dal Negro, “Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers,” Appl. Phys. Lett. 108(1), 01110 (2016).
[Crossref]

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Random Lasing and Reversible photodegradation in disperse orange 11 dye-doped PMMA with dispersed ZrO2 nanoparticles,” J. Opt. 18(1), 015403 (2016).
[Crossref]

L. Wang, Y. Wan, L. Shi, H. Zhong, and L. Deng, “Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles,” Opt. Express 24(16), 17593–17602 (2016).
[Crossref] [PubMed]

L. Wang, M. Wang, M. C. Yang, L. J. Shi, L. G. Deng, and H. Yang, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B 25(9), 094217 (2016).
[Crossref]

Z. Shang, M. Yang, and L. Deng, “Low-threshold and high intensity random Lasing enhanced by MnCl2,” Materials (Basel) 9(9), 725 (2016).
[Crossref] [PubMed]

2015 (3)

A. Consoli and C. López, “Decoupling gain and feedback in coherent random lasers: experiments and simulations,” Sci. Rep. 5(1), 16848 (2015).
[Crossref] [PubMed]

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Self-healing organic-dye-based random lasers,” Opt. Lett. 40(4), 577–580 (2015).
[Crossref] [PubMed]

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Photodegradation and self-healing in a Rhodamine 6G dye and Y2O3 nanoparticle-doped polyurethane random laser,” Appl. Phys. B 120(1), 1–12 (2015).
[Crossref]

2014 (2)

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11(11), 075104 (2014).
[Crossref]

Z. K. Zhang, J. M. Bian, Y. Z. Zhang, J. F. Zhang, F. W. Qin, and Y. M. Luo, “Ultra-low threshold optically pumped random laser emission behavior of highly oriented pyrolytic graphite,” Mater. Lett. 115(115), 261–264 (2014).

2013 (2)

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random Lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics 7(1), 66–71 (2013).
[Crossref]

2012 (3)

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

C. T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C. B. de Araújo, and A. S. L. Gomes, “Microchip Random Laser based on a disordered TiO2-nanomembranes arrangement,” Opt. Express 20(16), 17380–17385 (2012).
[Crossref] [PubMed]

L. Cerdán, E. Enciso, V. Martín, J. Bañuelos, I. Lópezarbeloa, A. Costela, and I. García-Moreno, “Fret-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

2011 (1)

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

2010 (2)

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[Crossref]

T. Sen, S. Jana, S. Koner, and A. Patra, “Efficient energy transfer between confined dye and Y-zeolite functionalized Au nanoparticles,” PhysChemComm 114(46), 19667–19672 (2010).

2009 (5)

T. Takahashi, T. Nakamura, and S. Adachi, “Blue-light-emitting ZnSe random laser,” Opt. Lett. 34(24), 3923–3925 (2009).
[Crossref] [PubMed]

A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[Crossref]

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[Crossref]

D. S. Wiersma, “Random lasers explained,” Nat. Photonics 3(5), 246–248 (2009).
[Crossref]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

2007 (1)

2006 (1)

2005 (1)

H. Cao, “Random lasers: development, features and applications,” Opt. Photonics News 16(1), 24–29 (2005).
[Crossref]

2003 (1)

B. J. Scott, M. H. Bartl, G. Wirnsberger, and G. D. Stucky, “Energy transfer in dye doped mesostructured composites,” Phys. Chem. A 107(29), 5499–5502 (2003).
[Crossref]

2002 (1)

V. Drachev, W.-T. Kim, V. Safonov, V. Podolskiy, N. Zakovryashin, E. Khaliullin, V. Shalaev, and R. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49(3–4), 645–662 (2002).
[Crossref]

2001 (1)

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

1999 (1)

W. Kim, V. P. Safonov, V. M. Shalaev, and L. Armstrong, “Fractals in Microcaviies: Giant Coupled Multi- plicative Enhancement of Optical Responses,” Phys. Rev. Lett. 82(24), 4811–4814 (1999).
[Crossref]

Adachi, S.

Anderson, B. R.

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Random Lasing and Reversible photodegradation in disperse orange 11 dye-doped PMMA with dispersed ZrO2 nanoparticles,” J. Opt. 18(1), 015403 (2016).
[Crossref]

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Photodegradation and self-healing in a Rhodamine 6G dye and Y2O3 nanoparticle-doped polyurethane random laser,” Appl. Phys. B 120(1), 1–12 (2015).
[Crossref]

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Self-healing organic-dye-based random lasers,” Opt. Lett. 40(4), 577–580 (2015).
[Crossref] [PubMed]

Armstrong, L.

W. Kim, V. P. Safonov, V. M. Shalaev, and L. Armstrong, “Fractals in Microcaviies: Giant Coupled Multi- plicative Enhancement of Optical Responses,” Phys. Rev. Lett. 82(24), 4811–4814 (1999).
[Crossref]

Armstrong, R.

V. Drachev, W.-T. Kim, V. Safonov, V. Podolskiy, N. Zakovryashin, E. Khaliullin, V. Shalaev, and R. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49(3–4), 645–662 (2002).
[Crossref]

Assanto, G.

Bañuelos, J.

L. Cerdán, E. Enciso, V. Martín, J. Bañuelos, I. Lópezarbeloa, A. Costela, and I. García-Moreno, “Fret-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Barna, V.

Bartl, M. H.

B. J. Scott, M. H. Bartl, G. Wirnsberger, and G. D. Stucky, “Energy transfer in dye doped mesostructured composites,” Phys. Chem. A 107(29), 5499–5502 (2003).
[Crossref]

Bartolino, R.

Bian, J. M.

Z. K. Zhang, J. M. Bian, Y. Z. Zhang, J. F. Zhang, F. W. Qin, and Y. M. Luo, “Ultra-low threshold optically pumped random laser emission behavior of highly oriented pyrolytic graphite,” Mater. Lett. 115(115), 261–264 (2014).

Biswas, S.

S. Biswas and P. Kumbhakar, “Continuous wave random lasing in naturally occurring biocompatible pigments and reduction of lasing threshold using triangular silver nanostructures as scattering media,” Nanoscale 9(47), 18812–18818 (2017).
[Crossref] [PubMed]

Buchnev, O.

Cao, H.

R. Zhang, S. Knitter, S. F. Liew, F. G. Omenetto, B. M. Reinhard, H. Cao, and L. Dal Negro, “Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers,” Appl. Phys. Lett. 108(1), 01110 (2016).
[Crossref]

H. Cao, “Random lasers: development, features and applications,” Opt. Photonics News 16(1), 24–29 (2005).
[Crossref]

Cavalieri, S.

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Cerdán, L.

L. Cerdán, E. Enciso, V. Martín, J. Bañuelos, I. Lópezarbeloa, A. Costela, and I. García-Moreno, “Fret-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Chang, C. H.

Chang, C. W.

Chaumont, D.

Chen, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Consoli, A.

A. Consoli and C. López, “Decoupling gain and feedback in coherent random lasers: experiments and simulations,” Sci. Rep. 5(1), 16848 (2015).
[Crossref] [PubMed]

Costela, A.

L. Cerdán, E. Enciso, V. Martín, J. Bañuelos, I. Lópezarbeloa, A. Costela, and I. García-Moreno, “Fret-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Dal Negro, L.

R. Zhang, S. Knitter, S. F. Liew, F. G. Omenetto, B. M. Reinhard, H. Cao, and L. Dal Negro, “Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers,” Appl. Phys. Lett. 108(1), 01110 (2016).
[Crossref]

de Araújo, C. B.

De Luca, A.

Deng, L.

Deng, L. G.

L. Wang, M. Wang, M. C. Yang, L. J. Shi, L. G. Deng, and H. Yang, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B 25(9), 094217 (2016).
[Crossref]

Dietz, R. J. B.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[Crossref]

Dominguez, C. T.

Drachev, V.

V. Drachev, W.-T. Kim, V. Safonov, V. Podolskiy, N. Zakovryashin, E. Khaliullin, V. Shalaev, and R. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49(3–4), 645–662 (2002).
[Crossref]

Eilers, H.

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Random Lasing and Reversible photodegradation in disperse orange 11 dye-doped PMMA with dispersed ZrO2 nanoparticles,” J. Opt. 18(1), 015403 (2016).
[Crossref]

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Photodegradation and self-healing in a Rhodamine 6G dye and Y2O3 nanoparticle-doped polyurethane random laser,” Appl. Phys. B 120(1), 1–12 (2015).
[Crossref]

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Self-healing organic-dye-based random lasers,” Opt. Lett. 40(4), 577–580 (2015).
[Crossref] [PubMed]

Enciso, E.

L. Cerdán, E. Enciso, V. Martín, J. Bañuelos, I. Lópezarbeloa, A. Costela, and I. García-Moreno, “Fret-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Fallert, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[Crossref]

Feng, S.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Ferjani, S.

Fu, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Fujita, K.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random Lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

García-Moreno, I.

L. Cerdán, E. Enciso, V. Martín, J. Bañuelos, I. Lópezarbeloa, A. Costela, and I. García-Moreno, “Fret-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Gomes, A. S. L.

Gunawidjaja, R.

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Random Lasing and Reversible photodegradation in disperse orange 11 dye-doped PMMA with dispersed ZrO2 nanoparticles,” J. Opt. 18(1), 015403 (2016).
[Crossref]

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Photodegradation and self-healing in a Rhodamine 6G dye and Y2O3 nanoparticle-doped polyurethane random laser,” Appl. Phys. B 120(1), 1–12 (2015).
[Crossref]

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Self-healing organic-dye-based random lasers,” Opt. Lett. 40(4), 577–580 (2015).
[Crossref] [PubMed]

Hu, Z.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Huang, S. Y.

Jacquod, P.

P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics 7(1), 66–71 (2013).
[Crossref]

Jana, S.

T. Sen, S. Jana, S. Koner, and A. Patra, “Efficient energy transfer between confined dye and Y-zeolite functionalized Au nanoparticles,” PhysChemComm 114(46), 19667–19672 (2010).

Kalt, H.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[Crossref]

Kauranen, M.

Khaliullin, E.

V. Drachev, W.-T. Kim, V. Safonov, V. Podolskiy, N. Zakovryashin, E. Khaliullin, V. Shalaev, and R. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49(3–4), 645–662 (2002).
[Crossref]

Kim, W.

W. Kim, V. P. Safonov, V. M. Shalaev, and L. Armstrong, “Fractals in Microcaviies: Giant Coupled Multi- plicative Enhancement of Optical Responses,” Phys. Rev. Lett. 82(24), 4811–4814 (1999).
[Crossref]

Kim, W.-T.

V. Drachev, W.-T. Kim, V. Safonov, V. Podolskiy, N. Zakovryashin, E. Khaliullin, V. Shalaev, and R. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49(3–4), 645–662 (2002).
[Crossref]

Klingshirn, C.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[Crossref]

Knitter, S.

R. Zhang, S. Knitter, S. F. Liew, F. G. Omenetto, B. M. Reinhard, H. Cao, and L. Dal Negro, “Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers,” Appl. Phys. Lett. 108(1), 01110 (2016).
[Crossref]

Koner, S.

T. Sen, S. Jana, S. Koner, and A. Patra, “Efficient energy transfer between confined dye and Y-zeolite functionalized Au nanoparticles,” PhysChemComm 114(46), 19667–19672 (2010).

Kumar, A.

A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[Crossref]

Kumbhakar, P.

S. Biswas and P. Kumbhakar, “Continuous wave random lasing in naturally occurring biocompatible pigments and reduction of lasing threshold using triangular silver nanostructures as scattering media,” Nanoscale 9(47), 18812–18818 (2017).
[Crossref] [PubMed]

Kuo, C. T.

Lacroute, Y.

Li, X. F.

A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[Crossref]

Liang, H. K.

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[Crossref]

Liew, S. F.

R. Zhang, S. Knitter, S. F. Liew, F. G. Omenetto, B. M. Reinhard, H. Cao, and L. Dal Negro, “Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers,” Appl. Phys. Lett. 108(1), 01110 (2016).
[Crossref]

Lin, S. H.

Liu, F.

Liu, H.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

López, C.

A. Consoli and C. López, “Decoupling gain and feedback in coherent random lasers: experiments and simulations,” Sci. Rep. 5(1), 16848 (2015).
[Crossref] [PubMed]

Lópezarbeloa, I.

L. Cerdán, E. Enciso, V. Martín, J. Bañuelos, I. Lópezarbeloa, A. Costela, and I. García-Moreno, “Fret-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Luo, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Luo, Y. M.

Z. K. Zhang, J. M. Bian, Y. Z. Zhang, J. F. Zhang, F. W. Qin, and Y. M. Luo, “Ultra-low threshold optically pumped random laser emission behavior of highly oriented pyrolytic graphite,” Mater. Lett. 115(115), 261–264 (2014).

Martín, V.

L. Cerdán, E. Enciso, V. Martín, J. Bañuelos, I. Lópezarbeloa, A. Costela, and I. García-Moreno, “Fret-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

Meng, X.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random Lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

Miao, B.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Ming, H.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Moriguchi, Y.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random Lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

Murai, S.

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

Nakamura, T.

Noginov, M. A.

Omenetto, F. G.

R. Zhang, S. Knitter, S. F. Liew, F. G. Omenetto, B. M. Reinhard, H. Cao, and L. Dal Negro, “Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers,” Appl. Phys. Lett. 108(1), 01110 (2016).
[Crossref]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Patra, A.

T. Sen, S. Jana, S. Koner, and A. Patra, “Efficient energy transfer between confined dye and Y-zeolite functionalized Au nanoparticles,” PhysChemComm 114(46), 19667–19672 (2010).

Perumbilavil, S.

Piccardi, A.

Podolskiy, V.

V. Drachev, W.-T. Kim, V. Safonov, V. Podolskiy, N. Zakovryashin, E. Khaliullin, V. Shalaev, and R. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49(3–4), 645–662 (2002).
[Crossref]

Qin, F. W.

Z. K. Zhang, J. M. Bian, Y. Z. Zhang, J. F. Zhang, F. W. Qin, and Y. M. Luo, “Ultra-low threshold optically pumped random laser emission behavior of highly oriented pyrolytic graphite,” Mater. Lett. 115(115), 261–264 (2014).

Reinhard, B. M.

R. Zhang, S. Knitter, S. F. Liew, F. G. Omenetto, B. M. Reinhard, H. Cao, and L. Dal Negro, “Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers,” Appl. Phys. Lett. 108(1), 01110 (2016).
[Crossref]

Sacilotti, M.

Safonov, V.

V. Drachev, W.-T. Kim, V. Safonov, V. Podolskiy, N. Zakovryashin, E. Khaliullin, V. Shalaev, and R. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49(3–4), 645–662 (2002).
[Crossref]

Safonov, V. P.

W. Kim, V. P. Safonov, V. M. Shalaev, and L. Armstrong, “Fractals in Microcaviies: Giant Coupled Multi- plicative Enhancement of Optical Responses,” Phys. Rev. Lett. 82(24), 4811–4814 (1999).
[Crossref]

Sartor, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[Crossref]

Scaramuzza, N.

Schneider, D.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[Crossref]

Scott, B. J.

B. J. Scott, M. H. Bartl, G. Wirnsberger, and G. D. Stucky, “Energy transfer in dye doped mesostructured composites,” Phys. Chem. A 107(29), 5499–5502 (2003).
[Crossref]

Sen, T.

T. Sen, S. Jana, S. Koner, and A. Patra, “Efficient energy transfer between confined dye and Y-zeolite functionalized Au nanoparticles,” PhysChemComm 114(46), 19667–19672 (2010).

Shalaev, V.

V. Drachev, W.-T. Kim, V. Safonov, V. Podolskiy, N. Zakovryashin, E. Khaliullin, V. Shalaev, and R. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49(3–4), 645–662 (2002).
[Crossref]

Shalaev, V. M.

W. Kim, V. P. Safonov, V. M. Shalaev, and L. Armstrong, “Fractals in Microcaviies: Giant Coupled Multi- plicative Enhancement of Optical Responses,” Phys. Rev. Lett. 82(24), 4811–4814 (1999).
[Crossref]

Shang, Z.

Z. Shang, M. Yang, and L. Deng, “Low-threshold and high intensity random Lasing enhanced by MnCl2,” Materials (Basel) 9(9), 725 (2016).
[Crossref] [PubMed]

Shi, L.

Shi, L. J.

L. Wang, M. Wang, M. C. Yang, L. J. Shi, L. G. Deng, and H. Yang, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B 25(9), 094217 (2016).
[Crossref]

Small, C. E.

Stano, P.

P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics 7(1), 66–71 (2013).
[Crossref]

Strangi, G.

Stucky, G. D.

B. J. Scott, M. H. Bartl, G. Wirnsberger, and G. D. Stucky, “Energy transfer in dye doped mesostructured composites,” Phys. Chem. A 107(29), 5499–5502 (2003).
[Crossref]

Su, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Sun, H. Y.

Takahashi, T.

Tanaka, K.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random Lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

Versace, C.

Wan, Y.

Wang, L.

L. Wang, Y. Wan, L. Shi, H. Zhong, and L. Deng, “Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles,” Opt. Express 24(16), 17593–17602 (2016).
[Crossref] [PubMed]

L. Wang, M. Wang, M. C. Yang, L. J. Shi, L. G. Deng, and H. Yang, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B 25(9), 094217 (2016).
[Crossref]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Wang, M.

L. Wang, M. Wang, M. C. Yang, L. J. Shi, L. G. Deng, and H. Yang, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B 25(9), 094217 (2016).
[Crossref]

Wang, P.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Wang, Y.

Wiersma, D. S.

D. S. Wiersma, “Random lasers explained,” Nat. Photonics 3(5), 246–248 (2009).
[Crossref]

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Wirnsberger, G.

B. J. Scott, M. H. Bartl, G. Wirnsberger, and G. D. Stucky, “Energy transfer in dye doped mesostructured composites,” Phys. Chem. A 107(29), 5499–5502 (2003).
[Crossref]

Wu, X.

Xiao, H.

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11(11), 075104 (2014).
[Crossref]

Xu, X.

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11(11), 075104 (2014).
[Crossref]

Xu, Z.

Yang, H.

L. Wang, M. Wang, M. C. Yang, L. J. Shi, L. G. Deng, and H. Yang, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B 25(9), 094217 (2016).
[Crossref]

Yang, H. Y.

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[Crossref]

Yang, M.

Z. Shang, M. Yang, and L. Deng, “Low-threshold and high intensity random Lasing enhanced by MnCl2,” Materials (Basel) 9(9), 725 (2016).
[Crossref] [PubMed]

Yang, M. C.

L. Wang, M. Wang, M. C. Yang, L. J. Shi, L. G. Deng, and H. Yang, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B 25(9), 094217 (2016).
[Crossref]

Yu, S. F.

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[Crossref]

A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[Crossref]

Zakovryashin, N.

V. Drachev, W.-T. Kim, V. Safonov, V. Podolskiy, N. Zakovryashin, E. Khaliullin, V. Shalaev, and R. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49(3–4), 645–662 (2002).
[Crossref]

Zhai, T.

T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Zhang, D.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11(11), 075104 (2014).
[Crossref]

Zhang, J. F.

Z. K. Zhang, J. M. Bian, Y. Z. Zhang, J. F. Zhang, F. W. Qin, and Y. M. Luo, “Ultra-low threshold optically pumped random laser emission behavior of highly oriented pyrolytic graphite,” Mater. Lett. 115(115), 261–264 (2014).

Zhang, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Zhang, R.

R. Zhang, S. Knitter, S. F. Liew, F. G. Omenetto, B. M. Reinhard, H. Cao, and L. Dal Negro, “Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers,” Appl. Phys. Lett. 108(1), 01110 (2016).
[Crossref]

Zhang, X.

T. Zhai, Z. Xu, X. Wu, Y. Wang, F. Liu, and X. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Zhang, Y. Z.

Z. K. Zhang, J. M. Bian, Y. Z. Zhang, J. F. Zhang, F. W. Qin, and Y. M. Luo, “Ultra-low threshold optically pumped random laser emission behavior of highly oriented pyrolytic graphite,” Mater. Lett. 115(115), 261–264 (2014).

Zhang, Z. K.

Z. K. Zhang, J. M. Bian, Y. Z. Zhang, J. F. Zhang, F. W. Qin, and Y. M. Luo, “Ultra-low threshold optically pumped random laser emission behavior of highly oriented pyrolytic graphite,” Mater. Lett. 115(115), 261–264 (2014).

Zhong, H.

Zhou, P.

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11(11), 075104 (2014).
[Crossref]

Zhu, G.

Zong, Y.

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random Lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

Zou, G.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

X. Meng, K. Fujita, Y. Moriguchi, Y. Zong, and K. Tanaka, “Metal-dielectric core-shell nanoparticles: advanced plasmonic architectures towards multiple control of random Lasers,” Adv. Opt. Mater. 1(8), 573–580 (2013).
[Crossref]

Appl. Phys. B (1)

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Photodegradation and self-healing in a Rhodamine 6G dye and Y2O3 nanoparticle-doped polyurethane random laser,” Appl. Phys. B 120(1), 1–12 (2015).
[Crossref]

Appl. Phys. Lett. (3)

R. Zhang, S. Knitter, S. F. Liew, F. G. Omenetto, B. M. Reinhard, H. Cao, and L. Dal Negro, “Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers,” Appl. Phys. Lett. 108(1), 01110 (2016).
[Crossref]

H. K. Liang, S. F. Yu, and H. Y. Yang, “ZnO random laser diode arrays for stable single-mode operation at high power,” Appl. Phys. Lett. 97(24), 241107 (2010).
[Crossref]

A. Kumar, S. F. Yu, and X. F. Li, “Random laser action in dielectric-metal-dielectric surface plasmon waveguides,” Appl. Phys. Lett. 95(23), 231114 (2009).
[Crossref]

Chin. Phys. B (1)

L. Wang, M. Wang, M. C. Yang, L. J. Shi, L. G. Deng, and H. Yang, “Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization,” Chin. Phys. B 25(9), 094217 (2016).
[Crossref]

J. Mod. Opt. (1)

V. Drachev, W.-T. Kim, V. Safonov, V. Podolskiy, N. Zakovryashin, E. Khaliullin, V. Shalaev, and R. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49(3–4), 645–662 (2002).
[Crossref]

J. Opt. (1)

B. R. Anderson, R. Gunawidjaja, and H. Eilers, “Random Lasing and Reversible photodegradation in disperse orange 11 dye-doped PMMA with dispersed ZrO2 nanoparticles,” J. Opt. 18(1), 015403 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

H. Zhang, P. Zhou, H. Xiao, and X. Xu, “Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power,” Laser Phys. Lett. 11(11), 075104 (2014).
[Crossref]

Mater. Lett. (1)

Z. K. Zhang, J. M. Bian, Y. Z. Zhang, J. F. Zhang, F. W. Qin, and Y. M. Luo, “Ultra-low threshold optically pumped random laser emission behavior of highly oriented pyrolytic graphite,” Mater. Lett. 115(115), 261–264 (2014).

Materials (Basel) (1)

Z. Shang, M. Yang, and L. Deng, “Low-threshold and high intensity random Lasing enhanced by MnCl2,” Materials (Basel) 9(9), 725 (2016).
[Crossref] [PubMed]

Nano Lett. (1)

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Nanoscale (1)

S. Biswas and P. Kumbhakar, “Continuous wave random lasing in naturally occurring biocompatible pigments and reduction of lasing threshold using triangular silver nanostructures as scattering media,” Nanoscale 9(47), 18812–18818 (2017).
[Crossref] [PubMed]

Nat. Photonics (4)

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[Crossref]

D. S. Wiersma, “Random lasers explained,” Nat. Photonics 3(5), 246–248 (2009).
[Crossref]

L. Cerdán, E. Enciso, V. Martín, J. Bañuelos, I. Lópezarbeloa, A. Costela, and I. García-Moreno, “Fret-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles,” Nat. Photonics 6(9), 623–626 (2012).
[Crossref]

P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics 7(1), 66–71 (2013).
[Crossref]

Nature (1)

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Opt. Photonics News (1)

H. Cao, “Random lasers: development, features and applications,” Opt. Photonics News 16(1), 24–29 (2005).
[Crossref]

Phys. Chem. A (2)

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Chem. A 79(5), 053817 (2009).

B. J. Scott, M. H. Bartl, G. Wirnsberger, and G. D. Stucky, “Energy transfer in dye doped mesostructured composites,” Phys. Chem. A 107(29), 5499–5502 (2003).
[Crossref]

Phys. Rev. Lett. (2)

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109(25), 253901 (2012).
[Crossref] [PubMed]

W. Kim, V. P. Safonov, V. M. Shalaev, and L. Armstrong, “Fractals in Microcaviies: Giant Coupled Multi- plicative Enhancement of Optical Responses,” Phys. Rev. Lett. 82(24), 4811–4814 (1999).
[Crossref]

PhysChemComm (1)

T. Sen, S. Jana, S. Koner, and A. Patra, “Efficient energy transfer between confined dye and Y-zeolite functionalized Au nanoparticles,” PhysChemComm 114(46), 19667–19672 (2010).

Sci. Rep. (1)

A. Consoli and C. López, “Decoupling gain and feedback in coherent random lasers: experiments and simulations,” Sci. Rep. 5(1), 16848 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Experiment setup for the random lasing measurement. (b) Schematic of random system. (c) The SEM image of the side view of the optical fiber. (d) Fluorescence spectrum of PM597; absorption spectra of MnCl2 and PM597.
Fig. 2
Fig. 2 Emission spectra of (a) DDN and (b) DDNM (0.8) versus pump energies. Peak intensity and FWHM versus pump energies for (c) DDN and (d) DDNM (0.8).
Fig. 3
Fig. 3 (a) Emission spectra from DDNM (0.4), DDNM (0.8) and DDNM (1.2) recorded at the pump energy of 12.05 μJ/c m 2 . (b) Peak intensity as functions of pump energies for DDNM (0.4), DDNM (0.8) and DDNM (1.2). Single-shot emission spectra for (c) DDN and (d) DDNM (0.8) while maintaining the pump conditions, where the pump energies for the DDN and DDNM (0.8) system are 26.05 and 11.96 μJ/c m 2 , respectively.
Fig. 4
Fig. 4 The dependence of emission spectra for (a) DDNF and (b) DDNMF on pump energies. Peak intensity and FWHM as functions of pump energies for (c) DDNF and (d) DDNMF.
Fig. 5
Fig. 5 Emission spectra from (a) DDN, DDNF and (b) DDNM (0.8), DDNMF versus pump energies, where the pump energy for (a) and (b) is 20.79 and 11.96 μJ/c m 2 , respectively. (c) The enlarged view of (a). (d) The ensemble-averaged Power Fourier Transform (PFT) curves for a sum of (sum = 50) single-shot emission spectra of DDNM (0.8) and DDNMF recorded at the pump energy of 11.96 μJ/c m 2 .
Fig. 6
Fig. 6 Contour map of shot-to-shot lasing spectra of (a) DDN, (c) DDNF, (b) DDNM (0.8), and (d) DDNMF obtained upon different pump pulses recorded at the pump energy of 20.79 (a and c) and 11.96 μJ/c m 2 (b and d), respectively.

Tables (1)

Tables Icon

Table 1 The ingredient of all the samples.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L= d 1 π/n ,

Metrics