Abstract

Optical fiber technology has become a very powerful tool for distributed temperature (strain and refractive index) sensing, and can be used to monitor critical infrastructures such as bridges, aircrafts, pipelines, etc. Stimulated Brillouin scattering (SBS) in optical fibers used for distributed sensing utilizing the first Stokes order, is limited to a fixed material property, 1.1 MHz/°C for SMF-28. We demonstrate a distributed higher order Stokes SBS temperature fiber-sensor increasing the achievable sensitivity by several folds to over 4 MHz/°C. The proposed system uses time-gating for distributed sensing. This allows the increase in sensitivity by the order of the Stokes waves generated while maintaining a fairly normal spatial resolution over a few kilometers of sensing length. Increased sensitivity on these types of sensors may allow an earlier detection which could prevent failure of the monitored structure.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Distributed Brillouin optical fiber temperature and strain sensing at a high temperature up to 1000 °C by using an annealed gold-coated fiber

Pengbai Xu, Dexin Ba, Weiming He, Hongping Hu, and Yongkang Dong
Opt. Express 26(23) 29724-29734 (2018)

Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing

Aldo Minardo, Romeo Bernini, and Luigi Zeni
Opt. Express 15(16) 10397-10407 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Culverhouse, F. Farahi, C. Pannell, and D. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
    [Crossref]
  2. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
    [Crossref]
  3. T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
    [Crossref] [PubMed]
  4. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [Crossref] [PubMed]
  5. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. 83, 405–412 (2000).
  6. K.-Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis and beat lock-in detection scheme,” in Optical Fiber Sensors (Optical Society of America, 2006), ThC2.
  7. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [Crossref] [PubMed]
  8. G. Ryu, G.-T. Kim, K. Y. Song, S. B. Lee, and K. Lee, “BOCDA system enhanced by concurrent interrogation of multiple correlation peaks with a 10 km sensing range,” in Optical Fiber Sensors Conference (OFS) (IEEE, 2017), pp. 1–4.
  9. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
    [Crossref]
  10. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [Crossref] [PubMed]
  11. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  12. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
    [Crossref] [PubMed]
  13. V. L. Iezzi, S. Loranger, M. Marois, and R. Kashyap, “High-sensitivity temperature sensing using higher-order Stokes stimulated Brillouin scattering in optical fiber,” Opt. Lett. 39(4), 857–860 (2014).
    [Crossref] [PubMed]
  14. R. Xu and X. Zhang, “Multiwavelength Brillouin–erbium fiber laser temperature sensor with tunable and high sensitivity,” IEEE Photonics J. 7, 1–8 (2015).
  15. Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7, 1–9 (2015).
  16. G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photonics Technol. Lett. 8(11), 1465–1467 (1996).
    [Crossref]
  17. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
    [Crossref]
  18. S. Loranger, V. L. Iezzi, and R. Kashyap, “Demonstration of an ultra-high frequency picosecond pulse generator using an SBS frequency comb and self phase-locking,” Opt. Express 20(17), 19455–19462 (2012).
    [Crossref] [PubMed]
  19. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [Crossref] [PubMed]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2000).
  21. N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812–816 (2008).
    [Crossref]

2015 (2)

R. Xu and X. Zhang, “Multiwavelength Brillouin–erbium fiber laser temperature sensor with tunable and high sensitivity,” IEEE Photonics J. 7, 1–8 (2015).

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7, 1–9 (2015).

2014 (1)

2012 (2)

2011 (2)

2008 (1)

N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812–816 (2008).
[Crossref]

2005 (1)

2001 (1)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. 83, 405–412 (2000).

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1996 (1)

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photonics Technol. Lett. 8(11), 1465–1467 (1996).
[Crossref]

1990 (1)

1989 (3)

D. Culverhouse, F. Farahi, C. Pannell, and D. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
[Crossref] [PubMed]

1972 (1)

Abdul Rashid, H. A.

N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812–816 (2008).
[Crossref]

Alahbabi, M. N.

Al-Mansoori, M. H.

N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812–816 (2008).
[Crossref]

Bao, X.

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7, 1–9 (2015).

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

Chen, L.

Cho, Y. T.

Choudhury, P. K.

N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812–816 (2008).
[Crossref]

Cowle, G. J.

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photonics Technol. Lett. 8(11), 1465–1467 (1996).
[Crossref]

Culverhouse, D.

D. Culverhouse, F. Farahi, C. Pannell, and D. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Dong, Y.

Farahi, F.

D. Culverhouse, F. Farahi, C. Pannell, and D. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. 83, 405–412 (2000).

He, Z.

Horiguchi, T.

Hotate, K.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[Crossref] [PubMed]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. 83, 405–412 (2000).

Iezzi, V. L.

Jackson, D.

D. Culverhouse, F. Farahi, C. Pannell, and D. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Kashyap, R.

Kim, P.

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

Kishi, M.

Kurashima, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Li, L.

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7, 1–9 (2015).

Liu, Y.

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7, 1–9 (2015).

Loranger, S.

Marois, M.

Min, B.

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

Mohd Nasir, N.

N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812–816 (2008).
[Crossref]

Newson, T. P.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Pannell, C.

D. Culverhouse, F. Farahi, C. Pannell, and D. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

Park, N.

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Smith, R. G.

Song, K. Y.

Stepanov, D. Y.

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photonics Technol. Lett. 8(11), 1465–1467 (1996).
[Crossref]

Tateda, M.

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Wang, P.

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7, 1–9 (2015).

Wang, Y.

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7, 1–9 (2015).

Xu, R.

R. Xu and X. Zhang, “Multiwavelength Brillouin–erbium fiber laser temperature sensor with tunable and high sensitivity,” IEEE Photonics J. 7, 1–8 (2015).

Yusoff, Z.

N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812–816 (2008).
[Crossref]

Zhang, H.

Zhang, M.

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7, 1–9 (2015).

Zhang, X.

R. Xu and X. Zhang, “Multiwavelength Brillouin–erbium fiber laser temperature sensor with tunable and high sensitivity,” IEEE Photonics J. 7, 1–8 (2015).

Appl. Opt. (2)

Electron. Lett. (1)

D. Culverhouse, F. Farahi, C. Pannell, and D. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[Crossref]

IEEE Photonics J. (2)

R. Xu and X. Zhang, “Multiwavelength Brillouin–erbium fiber laser temperature sensor with tunable and high sensitivity,” IEEE Photonics J. 7, 1–8 (2015).

Y. Liu, M. Zhang, P. Wang, L. Li, Y. Wang, and X. Bao, “Multiwavelength single-longitudinal-mode Brillouin–erbium fiber laser sensor for temperature measurements with ultrahigh resolution,” IEEE Photonics J. 7, 1–9 (2015).

IEEE Photonics Technol. Lett. (3)

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photonics Technol. Lett. 8(11), 1465–1467 (1996).
[Crossref]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photonics Technol. Lett. 13(12), 1352–1354 (2001).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. 83, 405–412 (2000).

J. Lightwave Technol. (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812–816 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(4), 4152–4187 (2011).
[Crossref] [PubMed]

Other (3)

G. Ryu, G.-T. Kim, K. Y. Song, S. B. Lee, and K. Lee, “BOCDA system enhanced by concurrent interrogation of multiple correlation peaks with a 10 km sensing range,” in Optical Fiber Sensors Conference (OFS) (IEEE, 2017), pp. 1–4.

K.-Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis and beat lock-in detection scheme,” in Optical Fiber Sensors (Optical Society of America, 2006), ThC2.

G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the self-heterodyne detection scheme. Similar reference and sensing oscillators generate a cSBS frequency comb from the same laser source and are recombined at an ESA where they are analyzed. Difference in the SBS frequency combs leads to a beat frequency spectrum with multiple peaks. Variation in temperature or strain leads to a shift in the beat frequencies close to baseband related to the Stokes orders in the ESA.
Fig. 2
Fig. 2 Two near identical SBS ring resonators are used; one as a reference and the other as the sensor, both sharing a common seed laser through a 3dB coupler. The signals are recombined at their respective output by a second 3dB coupler connected to the electrical spectrum analyzer. AOMs are used as temporal gates which provide the spatial resolution of the sensor. One AOM is electrically controlled to vary the time of the overlap with the other AOM to allow a scan over the entire length of the fiber spool. The in-cavity EDFAs are used to compensate for the cavity loss.
Fig. 3
Fig. 3 Description of the influence of AOMs gate-overlap on the cSBS generation, depicted in grey (gate 1) and blue (gate 2) in the lower part of the figure. In a) and c) the AOM gates do not overlap and the cavity loss ensures SBS does not reach threshold. In b) the AOM gates do overlap and the gain in the region is high enough for SBS to be cascaded. Control of the opening of the AOMs temporally in opposite direction, allows overlap only in a certain region of the fiber which corresponds to the spatial resolution of the system (shorter temporal gate time means better resolution).
Fig. 4
Fig. 4 A 2.5 km (area shown by the pale grey rectangle) fiber bundle is kept at 70.0 °C while the rest of the fiber (1.5 km) is maintained at room temperature of 22.8°C. The sensor has a resolution of ~225m (shown by the darker grey rectangle). The temperature sensing signal generated by the 4th Stokes wave is compared with the 2nd Stokes wave shown by the red and blue curves, respectively. The insets show the beat frequencies for the 2nd (bottom inset) and 4th Stokes (top inset), both for a temperature of 22.8 °C (reference oscillator) and 70.0 °C (sensing coil).
Fig. 5
Fig. 5 Distributed sensing measurement at various temperatures ranging from 22.8 °C to 90.0 °C using the 2nd Stokes order. The inset shows the beat signal between S2,sens and S2,ref for this temperature range.
Fig. 6
Fig. 6 OSA spectra of the even (in blue) and odd (in red) Stokes generation. Even Stokes orders are clearly discriminated, while odd Stokes are below the ASE noise under favorable generation conditions.
Fig. 7
Fig. 7 Demonstration of a case when proper temperature sensing is performed using higher order Stokes wave (blue curve), and when SBS is generated from ASE instead of from a cascaded process of SBS. The inset represents beat frequencies for T = 22.8 °C (in blue), and T = 70.0 °C with proper cSBS generation (in red), and for T = 70.0 °C under poor SNR conditions when ASE is dominant for the odd Stokes wave (in grey).
Fig. 8
Fig. 8 Temporal gating time of both AOMs. In red the time window is narrow at around 100 ns, while in red the gating time is longer at approximately 900 ns which leads to a convolution product of 1100 ns leading to a spatial resolution of 225 m.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ν B = 2 n eff ( T,ε ) V A (T,ε) λ
ν B (T,ε)= ν B0 + C T (T T 0 )+ C ε ( ε ε 0 )
ν Beat = ν ref ( T 0 , ε 0 ) ν sens (T,ε) = 2n { C 2n,T ΔT+ C 2n,ε Δε }
P th = 21 A eff g B L eff [ 1+ Δ ν L Δ ν B ]
P th = A eff ( ln( R m 1 )+αL ) g B L active

Metrics