F. Zhang and J. Li, “A note on double Henyey–Greenstein phase function,” J. Quant. Spectrosc. Radiat. Transf. 184, 40–43 (2016).

E. K. Moghadam, R. N. Isfahani, and A. Azimi, “Numerical Investigation of the Transient Radiative Heat Transfer inside a Hexagonal Furnace Filled with Particulate Medium,” Am. J. Mech. Eng. 4(2), 42–49 (2016).

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41, 901–907 (2016).

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte-Carlo simulation package to model bioluminescence and fluorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).

[PubMed]

R. N. Mahalati and J. M. Kahn, “Effect of fog on free-space optical links employing imaging receivers,” Opt. Express 20(2), 1649–1661 (2012).

[PubMed]

M. Premuda, E. Palazzi, F. Ravegnani, D. Bortoli, S. Masieri, and G. Giovanelli, “MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere,” Opt. Express 20(7), 7973–7993 (2012).

[PubMed]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: A study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[PubMed]

A. K. Jha, M. A. Kupinski, H. H. Barrett, E. Clarkson, and J. H. Hartman, “Three-dimensional Neumann-series approach to model light transport in nonuniform media,” J. Opt. Soc. Am. A 29(9), 1885–1899 (2012).

[PubMed]

P. W. Zhai, Y. Hu, C. R. Trepte, and P. L. Lucker, “A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method,” Opt. Express 17(4), 2057–2079 (2009).

[PubMed]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).

[PubMed]

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).

[PubMed]

A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220(1), 441–470 (2006).

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202(1), 323–345 (2005).

E. D. Aydin, C. R. E. de Oliveira, and A. J. H. Goddard, “A finite element-spherical harmonics radiation transport model for photon migration in turbid media,” J. Quant. Spectrosc. Radiat. Transf. 84(3), 247–260 (2004).

I. Kandarakis and D. Cavouras, “Role of the activator in the performance of scintillators used in X-ray imaging,” Appl. Radiat. Isot. 54(5), 821–831 (2001).

[PubMed]

K. F. Evans, “The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55(3), 429–446 (1998).

M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24(6), 895–902 (1997).

[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2 Pt 1), 299–309 (1993).

[PubMed]

M. Ljungberg and S.-E. Strand, “A Monte Carlo program for the simulation of scintillation camera characteristics,” Comput. Methods Programs Biomed. 29(4), 257–272 (1989).

[PubMed]

G. W. Kattawar, “A three-parameter analytic phase function for multiple scattering calculations,” J. Quant. Spectrosc. Radiat. Transf. 15(9), 839–849 (1975).

W. M. Irvine, “Multiple scattering by large particles,” Astrophys. J. 142, 1563 (1965).

B. M. Herman and S. R. Browning, “A numerical solution to the equation of radiative transfer,” J. Atmos. Sci. 22(5), 559–566 (1965).

M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24(6), 895–902 (1997).

[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2 Pt 1), 299–309 (1993).

[PubMed]

E. K. Moghadam, R. N. Isfahani, and A. Azimi, “Numerical Investigation of the Transient Radiative Heat Transfer inside a Hexagonal Furnace Filled with Particulate Medium,” Am. J. Mech. Eng. 4(2), 42–49 (2016).

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: A study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[PubMed]

A. K. Jha, M. A. Kupinski, H. H. Barrett, E. Clarkson, and J. H. Hartman, “Three-dimensional Neumann-series approach to model light transport in nonuniform media,” J. Opt. Soc. Am. A 29(9), 1885–1899 (2012).

[PubMed]

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight for light,” Nature 453(7194), 495–498 (2008).

[PubMed]

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight for light,” Nature 453(7194), 495–498 (2008).

[PubMed]

B. M. Herman and S. R. Browning, “A numerical solution to the equation of radiative transfer,” J. Atmos. Sci. 22(5), 559–566 (1965).

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte-Carlo simulation package to model bioluminescence and fluorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).

[PubMed]

I. Kandarakis and D. Cavouras, “Role of the activator in the performance of scintillators used in X-ray imaging,” Appl. Radiat. Isot. 54(5), 821–831 (2001).

[PubMed]

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).

[PubMed]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).

[PubMed]

A. K. Jha, M. A. Kupinski, H. H. Barrett, E. Clarkson, and J. H. Hartman, “Three-dimensional Neumann-series approach to model light transport in nonuniform media,” J. Opt. Soc. Am. A 29(9), 1885–1899 (2012).

[PubMed]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: A study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[PubMed]

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41, 901–907 (2016).

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte-Carlo simulation package to model bioluminescence and fluorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).

[PubMed]

E. D. Aydin, C. R. E. de Oliveira, and A. J. H. Goddard, “A finite element-spherical harmonics radiation transport model for photon migration in turbid media,” J. Quant. Spectrosc. Radiat. Transf. 84(3), 247–260 (2004).

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).

[PubMed]

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).

[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2 Pt 1), 299–309 (1993).

[PubMed]

K. F. Evans, “The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55(3), 429–446 (1998).

G. G. Poludniowski and P. M. Evans, “Optical photon transport in powdered-phosphor scintillators. Part 1. Multiple-scattering and validity of the Boltzmann transport equation,” Med. Phys. 40(4), 041904 (2013).

[PubMed]

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41, 901–907 (2016).

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41, 901–907 (2016).

E. D. Aydin, C. R. E. de Oliveira, and A. J. H. Goddard, “A finite element-spherical harmonics radiation transport model for photon migration in turbid media,” J. Quant. Spectrosc. Radiat. Transf. 84(3), 247–260 (2004).

B. M. Herman and S. R. Browning, “A numerical solution to the equation of radiative transfer,” J. Atmos. Sci. 22(5), 559–566 (1965).

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202(1), 323–345 (2005).

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2 Pt 1), 299–309 (1993).

[PubMed]

W. M. Irvine, “Multiple scattering by large particles,” Astrophys. J. 142, 1563 (1965).

E. K. Moghadam, R. N. Isfahani, and A. Azimi, “Numerical Investigation of the Transient Radiative Heat Transfer inside a Hexagonal Furnace Filled with Particulate Medium,” Am. J. Mech. Eng. 4(2), 42–49 (2016).

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte-Carlo simulation package to model bioluminescence and fluorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).

[PubMed]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: A study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[PubMed]

A. K. Jha, M. A. Kupinski, H. H. Barrett, E. Clarkson, and J. H. Hartman, “Three-dimensional Neumann-series approach to model light transport in nonuniform media,” J. Opt. Soc. Am. A 29(9), 1885–1899 (2012).

[PubMed]

I. Kandarakis and D. Cavouras, “Role of the activator in the performance of scintillators used in X-ray imaging,” Appl. Radiat. Isot. 54(5), 821–831 (2001).

[PubMed]

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).

[PubMed]

G. W. Kattawar, “A three-parameter analytic phase function for multiple scattering calculations,” J. Quant. Spectrosc. Radiat. Transf. 15(9), 839–849 (1975).

A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220(1), 441–470 (2006).

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).

[PubMed]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202(1), 323–345 (2005).

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41, 901–907 (2016).

A. K. Jha, M. A. Kupinski, H. H. Barrett, E. Clarkson, and J. H. Hartman, “Three-dimensional Neumann-series approach to model light transport in nonuniform media,” J. Opt. Soc. Am. A 29(9), 1885–1899 (2012).

[PubMed]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: A study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[PubMed]

A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220(1), 441–470 (2006).

F. Zhang and J. Li, “A note on double Henyey–Greenstein phase function,” J. Quant. Spectrosc. Radiat. Transf. 184, 40–43 (2016).

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).

[PubMed]

M. Ljungberg and S.-E. Strand, “A Monte Carlo program for the simulation of scintillation camera characteristics,” Comput. Methods Programs Biomed. 29(4), 257–272 (1989).

[PubMed]

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41, 901–907 (2016).

E. K. Moghadam, R. N. Isfahani, and A. Azimi, “Numerical Investigation of the Transient Radiative Heat Transfer inside a Hexagonal Furnace Filled with Particulate Medium,” Am. J. Mech. Eng. 4(2), 42–49 (2016).

S. G. Narasimhan and S. K. Nayar, “Shedding Light on the Weather,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 665–672 (2003).

S. G. Narasimhan and S. K. Nayar, “Shedding Light on the Weather,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 665–672 (2003).

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202(1), 323–345 (2005).

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte-Carlo simulation package to model bioluminescence and fluorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).

[PubMed]

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).

[PubMed]

G. G. Poludniowski and P. M. Evans, “Optical photon transport in powdered-phosphor scintillators. Part 1. Multiple-scattering and validity of the Boltzmann transport equation,” Med. Phys. 40(4), 041904 (2013).

[PubMed]

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41, 901–907 (2016).

M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24(6), 895–902 (1997).

[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2 Pt 1), 299–309 (1993).

[PubMed]

M. Ljungberg and S.-E. Strand, “A Monte Carlo program for the simulation of scintillation camera characteristics,” Comput. Methods Programs Biomed. 29(4), 257–272 (1989).

[PubMed]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).

[PubMed]

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight for light,” Nature 453(7194), 495–498 (2008).

[PubMed]

F. Zhang and J. Li, “A note on double Henyey–Greenstein phase function,” J. Quant. Spectrosc. Radiat. Transf. 184, 40–43 (2016).

E. K. Moghadam, R. N. Isfahani, and A. Azimi, “Numerical Investigation of the Transient Radiative Heat Transfer inside a Hexagonal Furnace Filled with Particulate Medium,” Am. J. Mech. Eng. 4(2), 42–49 (2016).

I. Kandarakis and D. Cavouras, “Role of the activator in the performance of scintillators used in X-ray imaging,” Appl. Radiat. Isot. 54(5), 821–831 (2001).

[PubMed]

W. M. Irvine, “Multiple scattering by large particles,” Astrophys. J. 142, 1563 (1965).

M. Ljungberg and S.-E. Strand, “A Monte Carlo program for the simulation of scintillation camera characteristics,” Comput. Methods Programs Biomed. 29(4), 257–272 (1989).

[PubMed]

Th. Kraft, M. Geßner, H. Meißner, M. Cramer, M. Gerke, and H. J. Przybilla, “Evaluation of a Metric Camera System Tailored for High Precision UAV Applications,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 41, 901–907 (2016).

K. F. Evans, “The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer,” J. Atmos. Sci. 55(3), 429–446 (1998).

B. M. Herman and S. R. Browning, “A numerical solution to the equation of radiative transfer,” J. Atmos. Sci. 22(5), 559–566 (1965).

V. Cuplov, I. Buvat, F. Pain, and S. Jan, “Extension of the GATE Monte-Carlo simulation package to model bioluminescence and fluorescence imaging,” J. Biomed. Opt. 19(2), 026004 (2014).

[PubMed]

A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220(1), 441–470 (2006).

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202(1), 323–345 (2005).

J. Colombi and K. Louedec, “Monte Carlo simulation of light scattering in the atmosphere and effect of atmospheric aerosols on the point spread function,” J. Opt. Soc. Am. A 30(11), 2244–2252 (2013).

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. V. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transport equation: A study using the Neumann-series approach,” J. Opt. Soc. Am. A 29(8), 1741–1757 (2012).

[PubMed]

A. K. Jha, M. A. Kupinski, H. H. Barrett, E. Clarkson, and J. H. Hartman, “Three-dimensional Neumann-series approach to model light transport in nonuniform media,” J. Opt. Soc. Am. A 29(9), 1885–1899 (2012).

[PubMed]

G. W. Kattawar, “A three-parameter analytic phase function for multiple scattering calculations,” J. Quant. Spectrosc. Radiat. Transf. 15(9), 839–849 (1975).

F. Zhang and J. Li, “A note on double Henyey–Greenstein phase function,” J. Quant. Spectrosc. Radiat. Transf. 184, 40–43 (2016).

E. D. Aydin, C. R. E. de Oliveira, and A. J. H. Goddard, “A finite element-spherical harmonics radiation transport model for photon migration in turbid media,” J. Quant. Spectrosc. Radiat. Transf. 84(3), 247–260 (2004).

M. Nikl, “Scintillation detectors for x-rays,” Meas. Sci. Technol. 17(4), R37–R54 (2006).

P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, “Modeling granular phosphor screens by Monte Carlo methods,” Med. Phys. 33(12), 4502–4514 (2006).

[PubMed]

G. G. Poludniowski and P. M. Evans, “Optical photon transport in powdered-phosphor scintillators. Part 1. Multiple-scattering and validity of the Boltzmann transport equation,” Med. Phys. 40(4), 041904 (2013).

[PubMed]

M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24(6), 895–902 (1997).

[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2 Pt 1), 299–309 (1993).

[PubMed]

P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight for light,” Nature 453(7194), 495–498 (2008).

[PubMed]

J. Hedley, “A three-dimensional radiative transfer model for shallow water environments,” Opt. Express 16(26), 21887–21902 (2008).

[PubMed]

P. W. Zhai, Y. Hu, C. R. Trepte, and P. L. Lucker, “A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method,” Opt. Express 17(4), 2057–2079 (2009).

[PubMed]

M. Premuda, E. Palazzi, F. Ravegnani, D. Bortoli, S. Masieri, and G. Giovanelli, “MOCRA: a Monte Carlo code for the simulation of radiative transfer in the atmosphere,” Opt. Express 20(7), 7973–7993 (2012).

[PubMed]

R. N. Mahalati and J. M. Kahn, “Effect of fog on free-space optical links employing imaging receivers,” Opt. Express 20(2), 1649–1661 (2012).

[PubMed]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).

[PubMed]

S. Chandrasekhar, Radiative Transfer (Dover Publication, 1960).

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2 (Academic Press, 1978).

K. N. Liou, An Introduction to Atmospheric Radiation (Academic Press, 2002).

W. W. Piper, “Phosphor screen,” U.S. Patent 2,698,915 (1955).

K. L. Yip, Carestream Health, Inc., “Digital radiography panel with pressure-sensitive adhesive for optical coupling between scintillator screen and detector and method of manufacture,” US patent 8,106,363 (2012).

S. Jagannathan, T. J. Tredwell, C. M. Rankin, D. Gruszczynski, and D. M. Leusch, “Coatings for digital detectors,” U.S. Patent 9,739,896 (2013).

Y. Shibutani, R. Ueyama, N. Yasui, and T. Den, “Compound, scintillator, and radiation detector,” U.S. Patent 8,803,099 (2014).

M. Fuchs, K. Lowack, and A. Preissler, “Method to prepare a scintillator layer for application onto a photosensor layer to produce an x-ray detector or element thereof,” US Patent App. 13/301,854 (2011).

S. G. Narasimhan and S. K. Nayar, “Shedding Light on the Weather,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 665–672 (2003).

J. Paasschens, On the transmission of light through random media,” Ph.D. thesis, Leiden University, Netherlands (1997).