Abstract

Fourier domain mode locked (FDML) fiber lasers enable megahertz wavelength sweeping rate but suffer from the short coherent length. Discretization of the swept spectrum by a comb filter was demonstrated effective to enhance the coherent length. In this paper, we propose a novel discretization method of the FDML signal with an intracavity intensity modulator. We propose and successfully demonstrate a time and Fourier domain jointly mode locked fiber laser with a Fabry-Pérot comb filter and an intensity modulator in the cavity. A 50 GHz free spectral range comb filter in the Fourier domain mode locked fiber swept laser slices the spectrum into a series of comb lines and chops the swept signal into short pulses in time domain. The temporal signal is detected by a photodetector to generate a series of ultrashort pulses to drive the intensity modulator to further polish the intracavity pulses. We experimentally realized the proposed time and Fourier domain jointly mode locked fiber laser. Discrete wavelength swept laser output with a wavelength spacing of ~0.4 nm in a 41 nm sweeping range has been achieved.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency comb swept lasers

Tsung-Han Tsai, Chao Zhou, Desmond C. Adler, and James G. Fujimoto
Opt. Express 17(23) 21257-21270 (2009)

Dispersion, coherence and noise of Fourier domain mode locked lasers

Benjamin R. Biedermann, Wolfgang Wieser, Christoph M. Eigenwillig, Thomas Klein, and Robert Huber
Opt. Express 17(12) 9947-9961 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. Wijesundara, C. Zdanski, J. Kimbell, H. Price, N. Iftimia, and A. L. Oldenburg, “Quantitative upper airway endoscopy with swept-source anatomical optical coherence tomography,” Biomed. Opt. Express 5(3), 788–799 (2014).
    [Crossref] [PubMed]
  2. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
    [Crossref] [PubMed]
  3. C. Ryu and C. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11(1), 468–473 (2002).
    [Crossref]
  4. D. P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138–13145 (2012).
    [Crossref] [PubMed]
  5. S. Jyu, S. Liu, W. Hsiang, and Y. Lai, “Fiber Dispersion Measurement With a Swept-Wavelength Pulse Light Source,” IEEE Photonics Technol. Lett. 22(9), 598–600 (2010).
    [Crossref]
  6. M. Y. Jeon, N. Kim, S. P. Han, H. Ko, H. C. Ryu, D. S. Yee, and K. H. Park, “Rapidly frequency-swept optical beat source for continuous wave terahertz generation,” Opt. Express 19(19), 18364–18371 (2011).
    [Crossref] [PubMed]
  7. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [Crossref] [PubMed]
  8. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [Crossref] [PubMed]
  9. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [Crossref] [PubMed]
  10. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  11. S. W. Lee, C. S. Kim, and B. M. Kim, “External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 19(3), 176–178 (2007).
    [Crossref]
  12. R. F. Stancu and A. G. Podoleanu, “Dual-mode-locking mechanism for an akinetic dispersive ring cavity swept source,” Opt. Lett. 40(7), 1322–1325 (2015).
    [Crossref] [PubMed]
  13. H. D. Lee, Z. Chen, M. Y. Jeong, and C. S. Kim, “Simultaneous Dual-Band Wavelength-Swept Fiber Laser Based on Active Mode Locking,” IEEE Photonics Technol. Lett. 26(2), 190–193 (2014).
    [Crossref]
  14. Y. Takubo and S. Yamashita, “High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG,” Opt. Express 21(4), 5130–5139 (2013).
    [Crossref] [PubMed]
  15. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  16. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
    [Crossref] [PubMed]
  17. J. Zhang, J. Jing, P. Wang, and Z. Chen, “Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography,” Opt. Lett. 36(24), 4788–4790 (2011).
    [Crossref] [PubMed]
  18. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
    [Crossref] [PubMed]
  19. W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3(10), 2647–2657 (2012).
    [Crossref] [PubMed]
  20. F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, and P. K. A. Wai, “Eckhaus Instability in the Fourier-Domain Mode Locked Fiber Laser Cavity”, arXiv:1707.08304 [physics.optics], (2017).
  21. T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17(23), 21257–21270 (2009).
    [Crossref] [PubMed]
  22. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

H. D. Lee, Z. Chen, M. Y. Jeong, and C. S. Kim, “Simultaneous Dual-Band Wavelength-Swept Fiber Laser Based on Active Mode Locking,” IEEE Photonics Technol. Lett. 26(2), 190–193 (2014).
[Crossref]

K. Wijesundara, C. Zdanski, J. Kimbell, H. Price, N. Iftimia, and A. L. Oldenburg, “Quantitative upper airway endoscopy with swept-source anatomical optical coherence tomography,” Biomed. Opt. Express 5(3), 788–799 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

2011 (2)

2010 (3)

2009 (2)

2008 (1)

2007 (1)

S. W. Lee, C. S. Kim, and B. M. Kim, “External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 19(3), 176–178 (2007).
[Crossref]

2006 (2)

2005 (1)

2003 (1)

2002 (1)

C. Ryu and C. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11(1), 468–473 (2002).
[Crossref]

Adler, D. C.

Bao, X.

Barry, S.

Baumann, B.

Biedermann, B. R.

Boudoux, C.

Bouma, B. E.

Cable, A. E.

Chen, L.

Chen, Z.

H. D. Lee, Z. Chen, M. Y. Jeong, and C. S. Kim, “Simultaneous Dual-Band Wavelength-Swept Fiber Laser Based on Active Mode Locking,” IEEE Photonics Technol. Lett. 26(2), 190–193 (2014).
[Crossref]

J. Zhang, J. Jing, P. Wang, and Z. Chen, “Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography,” Opt. Lett. 36(24), 4788–4790 (2011).
[Crossref] [PubMed]

Duker, J. S.

Eigenwillig, C. M.

Fujimoto, J.

Fujimoto, J. G.

Han, S. P.

Hong, C.

C. Ryu and C. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11(1), 468–473 (2002).
[Crossref]

Hsiang, W.

S. Jyu, S. Liu, W. Hsiang, and Y. Lai, “Fiber Dispersion Measurement With a Swept-Wavelength Pulse Light Source,” IEEE Photonics Technol. Lett. 22(9), 598–600 (2010).
[Crossref]

Hsu, K.

Huang, D.

Huber, R.

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4(10), 1890–1908 (2013).
[Crossref] [PubMed]

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3(10), 2647–2657 (2012).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
[Crossref] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[Crossref] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[Crossref] [PubMed]

Iftimia, N.

Jeon, M. Y.

Jeong, M. Y.

H. D. Lee, Z. Chen, M. Y. Jeong, and C. S. Kim, “Simultaneous Dual-Band Wavelength-Swept Fiber Laser Based on Active Mode Locking,” IEEE Photonics Technol. Lett. 26(2), 190–193 (2014).
[Crossref]

Jing, J.

Jyu, S.

S. Jyu, S. Liu, W. Hsiang, and Y. Lai, “Fiber Dispersion Measurement With a Swept-Wavelength Pulse Light Source,” IEEE Photonics Technol. Lett. 22(9), 598–600 (2010).
[Crossref]

Kampik, A.

Karpf, S.

Kim, B. M.

S. W. Lee, C. S. Kim, and B. M. Kim, “External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 19(3), 176–178 (2007).
[Crossref]

Kim, C. S.

H. D. Lee, Z. Chen, M. Y. Jeong, and C. S. Kim, “Simultaneous Dual-Band Wavelength-Swept Fiber Laser Based on Active Mode Locking,” IEEE Photonics Technol. Lett. 26(2), 190–193 (2014).
[Crossref]

S. W. Lee, C. S. Kim, and B. M. Kim, “External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 19(3), 176–178 (2007).
[Crossref]

Kim, N.

Kimbell, J.

Klein, T.

Ko, H.

Lai, Y.

S. Jyu, S. Liu, W. Hsiang, and Y. Lai, “Fiber Dispersion Measurement With a Swept-Wavelength Pulse Light Source,” IEEE Photonics Technol. Lett. 22(9), 598–600 (2010).
[Crossref]

Lee, H. D.

H. D. Lee, Z. Chen, M. Y. Jeong, and C. S. Kim, “Simultaneous Dual-Band Wavelength-Swept Fiber Laser Based on Active Mode Locking,” IEEE Photonics Technol. Lett. 26(2), 190–193 (2014).
[Crossref]

Lee, S. W.

S. W. Lee, C. S. Kim, and B. M. Kim, “External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 19(3), 176–178 (2007).
[Crossref]

Li, W.

Liu, S.

S. Jyu, S. Liu, W. Hsiang, and Y. Lai, “Fiber Dispersion Measurement With a Swept-Wavelength Pulse Light Source,” IEEE Photonics Technol. Lett. 22(9), 598–600 (2010).
[Crossref]

Neubauer, A.

Oldenburg, A. L.

Palte, G.

Park, K. H.

Podoleanu, A. G.

Potsaid, B.

Price, H.

Qin, Z.

Reznicek, L.

Ryu, C.

C. Ryu and C. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11(1), 468–473 (2002).
[Crossref]

Ryu, H. C.

Schmitt, J. M.

Schuman, J. S.

Stancu, R. F.

Taira, K.

Takubo, Y.

Tearney, G. J.

Trépanier, F.

Tsai, T. H.

Wang, P.

Wieser, W.

Wijesundara, K.

Wojtkowski, M.

Yamashita, S.

Yee, D. S.

Yun, S. H.

Zdanski, C.

Zhang, J.

Zhou, C.

Zhou, D. P.

Biomed. Opt. Express (3)

IEEE Photonics Technol. Lett. (3)

H. D. Lee, Z. Chen, M. Y. Jeong, and C. S. Kim, “Simultaneous Dual-Band Wavelength-Swept Fiber Laser Based on Active Mode Locking,” IEEE Photonics Technol. Lett. 26(2), 190–193 (2014).
[Crossref]

S. Jyu, S. Liu, W. Hsiang, and Y. Lai, “Fiber Dispersion Measurement With a Swept-Wavelength Pulse Light Source,” IEEE Photonics Technol. Lett. 22(9), 598–600 (2010).
[Crossref]

S. W. Lee, C. S. Kim, and B. M. Kim, “External Line-Cavity Wavelength-Swept Source at 850 nm for Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 19(3), 176–178 (2007).
[Crossref]

Opt. Express (10)

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[Crossref] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

M. Y. Jeon, N. Kim, S. P. Han, H. Ko, H. C. Ryu, D. S. Yee, and K. H. Park, “Rapidly frequency-swept optical beat source for continuous wave terahertz generation,” Opt. Express 19(19), 18364–18371 (2011).
[Crossref] [PubMed]

Y. Takubo and S. Yamashita, “High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG,” Opt. Express 21(4), 5130–5139 (2013).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

D. P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138–13145 (2012).
[Crossref] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
[Crossref] [PubMed]

T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17(23), 21257–21270 (2009).
[Crossref] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[Crossref] [PubMed]

Opt. Lett. (4)

Smart Mater. Struct. (1)

C. Ryu and C. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11(1), 468–473 (2002).
[Crossref]

Other (1)

F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, and P. K. A. Wai, “Eckhaus Instability in the Fourier-Domain Mode Locked Fiber Laser Cavity”, arXiv:1707.08304 [physics.optics], (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The principle of (a) filtering by a comb filter and (b) modulation with a periodic function of a linearly chirped signal. (b) and (c) show the temporal and spectral profiles of the swept signal after the filtering. (e) and (f) show the temporal and spectral profiles of the swept signal after the modulation.
Fig. 2
Fig. 2 The (a)(c)(e)(g) temporal and (b)(d)(f)(h) spectral profiles of the signals (a)(b) linearly chirped with a 5 GHz Gaussian line shape, (c)(d) filtered 3 times, (e)(f) modulated 3 times, and (g)(h) iteratively filtered and modulated 3 times.
Fig. 3
Fig. 3 Spectrograms of the (a) input signal, (b) filtered signal, (c) modulated signal and (d) jointly filtered and modulated signal.
Fig. 4
Fig. 4 Schematic diagrams of TFDML fiber laser with a comb filter and a modulator in the cavity.
Fig. 5
Fig. 5 (a) The driving signal of the modulator generated by the DDG. (b) The temporal waveform of the output signal from the TFDML fiber laser. The regions between the vertical dashed lines are in a whole period of sweep, which is 23.3 μs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H ˜ ( ω ) = 1 R 1 R e i ω τ ,
A ( t ) = A 0 ( t ) e i a t 2 / 2 ,
H ( t ) = ( 1 R ) 2 1 + R 2 2 R cos { [ ω 0 ( 0 ) + a t ] τ } .
A ( t ) = F 1 [ e 1 2 ( ω / ω l ) 2 i ϕ ( ω ) ] e 1 2 ( 3 t / T ) 10 i a t 2 / 2 ,

Metrics