Abstract

We report three new liquid crystal mixtures optimized for the phase modulator of an augmented reality display. The mixtures exhibit a relatively high birefringence (Δn) yet low viscosity, modest dielectric anisotropy (Δε), and acceptable resistivity and UV stability. High Δn enables a thin cell gap (d≈1.7 μm) for achieving 2π phase change with a reflective Liquid-Crystal-on-Silicon (LCoS) device and ~2 ms average phase-to-phase response time at 40°C. The modest Δε helps lower the operation voltage to 5V. To improve the response time of a full-color LCoS, we propose a new driving method by shifting the operation voltage away from the threshold. We also applied such a high Δn LC mixture to LCoS based amplitude modulators and achieved submillisecond response time. Widespread applications of these materials for the emerging augmented reality displays are foreseeable.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Submillisecond-response nematic liquid crystals for augmented reality displays

Haiwei Chen, Fangwang Gou, and Shin-Tson Wu
Opt. Mater. Express 7(1) 195-201 (2017)

High performance liquid crystals for vehicle displays

Fenglin Peng, Yuge Huang, Fangwang Gou, Minggang Hu, Jian Li, Zhongwei An, and Shin-Tson Wu
Opt. Mater. Express 6(3) 717-726 (2016)

Submillisecond-response polymer network liquid crystals for mid-infrared applications

Fangwang Gou, Ran Chen, Minggang Hu, Juanli Li, Jian Li, Zhongwei An, and Shin-Tson Wu
Opt. Express 26(23) 29735-29743 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Armitage, I. Underwood, and S.-T. Wu, Introduction to Microdisplays (John Wiley & Sons, 2006).
  2. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
    [Crossref]
  3. N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 86 (2017).
    [Crossref]
  4. P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).
  5. Y.-W. Li, C.-W. Lin, K.-Y. Chen, K.-H. Fan-Chiang, H.-C. Kuo, and H.-C. Tsai, “Front-lit LCOS for wearable applications,” in SID Int. Symp. Dig. Tech. Pap. (2014), pp. 234–236.
  6. H. Hasebe and S. Kobayashi, “A full-color field sequential LCD using modulated backlight,” in SID Int. Symp. Dig. Tech. Pap. (1985), pp. 81–83.
  7. Y. P. Huang, F. C. Lin, and H. P. D. Shieh, “Eco-displays: The color LCD’s without color filters and polarizers,” J. Disp. Technol. 7(12), 630–632 (2011).
    [Crossref]
  8. C. Wang and R. Hsu, “Digital modulation on micro display and spatial light modulator,” SID Int. Symp. Dig. Tech. Pap. 48(1), 238–241 (2017).
  9. G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
    [Crossref]
  10. S. Siemianowski, M. Bremer, E. Plummer, B. Fiebranz, M. Klasen-Memmer, and J. Canisius, “Liquid crystal technologies towards realising a field sequential colour (FSC) display,” in SID Int. Symp. Dig. Tech. Pap. (2016), pp. 175–178.
  11. Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
    [Crossref]
  12. J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. Part B Polym. Phys. 52(3), 183–192 (2014).
  13. A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
    [Crossref]
  14. H. Chen, F. Gou, and S. T. Wu, “Submillisecond-response nematic liquid crystals for augmented reality displays,” Opt. Mater. Express 7(1), 195–201 (2017).
    [Crossref]
  15. S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
    [Crossref]
  16. R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
    [Crossref]
  17. Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
    [Crossref]
  18. H. Chen, F. Peng, M. Hu, and S. T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
    [Crossref]
  19. S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
    [Crossref] [PubMed]
  20. I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
    [Crossref]
  21. K. Beeson, S. Zimmerman, W. Livesay, R. Ross, C. Livesay, and K. Livesay, “LED-based light-recycling light sources for projection displays,” in SID Int. Symp. Dig. Tech. Pap. (2006), pp. 1823–1826.
    [Crossref]
  22. S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
    [Crossref] [PubMed]
  23. S.-T. Wu and C.-S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
    [Crossref]
  24. C.-H. Wen, S. Gauza, and S.-T. Wu, “Photostability of liquid crystals and alignment layers,” J. Soc. Inf. Disp. 13(9), 805–811 (2005).
    [Crossref]
  25. J. Sun, Y. Chen, and S.-T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
    [Crossref] [PubMed]
  26. S.-T. Wu, “Design of a liquid crystal based tunable electrooptic filter,” Appl. Opt. 28(1), 48–52 (1989).
    [Crossref] [PubMed]
  27. S.-T. Wu and C.-S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett. 68(11), 1455–1457 (1996).
    [Crossref]

2017 (6)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 86 (2017).
[Crossref]

P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
[Crossref]

H. Chen, F. Gou, and S. T. Wu, “Submillisecond-response nematic liquid crystals for augmented reality displays,” Opt. Mater. Express 7(1), 195–201 (2017).
[Crossref]

2015 (2)

H. Chen, F. Peng, M. Hu, and S. T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
[Crossref]

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

2014 (1)

J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. Part B Polym. Phys. 52(3), 183–192 (2014).

2013 (1)

R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

2012 (1)

2011 (2)

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Y. P. Huang, F. C. Lin, and H. P. D. Shieh, “Eco-displays: The color LCD’s without color filters and polarizers,” J. Disp. Technol. 7(12), 630–632 (2011).
[Crossref]

2005 (1)

C.-H. Wen, S. Gauza, and S.-T. Wu, “Photostability of liquid crystals and alignment layers,” J. Soc. Inf. Disp. 13(9), 805–811 (2005).
[Crossref]

2003 (1)

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[Crossref]

1996 (1)

S.-T. Wu and C.-S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett. 68(11), 1455–1457 (1996).
[Crossref]

1990 (1)

S.-T. Wu and C.-S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

1989 (1)

1986 (1)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

1984 (1)

1975 (1)

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
[Crossref]

Beeson, K.

K. Beeson, S. Zimmerman, W. Livesay, R. Ross, C. Livesay, and K. Livesay, “LED-based light-recycling light sources for projection displays,” in SID Int. Symp. Dig. Tech. Pap. (2006), pp. 1823–1826.
[Crossref]

Bremer, M.

S. Siemianowski, M. Bremer, E. Plummer, B. Fiebranz, M. Klasen-Memmer, and J. Canisius, “Liquid crystal technologies towards realising a field sequential colour (FSC) display,” in SID Int. Symp. Dig. Tech. Pap. (2016), pp. 175–178.

Canisius, J.

S. Siemianowski, M. Bremer, E. Plummer, B. Fiebranz, M. Klasen-Memmer, and J. Canisius, “Liquid crystal technologies towards realising a field sequential colour (FSC) display,” in SID Int. Symp. Dig. Tech. Pap. (2016), pp. 175–178.

Chang, S.

P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).

Chen, H.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
[Crossref]

H. Chen, F. Gou, and S. T. Wu, “Submillisecond-response nematic liquid crystals for augmented reality displays,” Opt. Mater. Express 7(1), 195–201 (2017).
[Crossref]

H. Chen, F. Peng, M. Hu, and S. T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
[Crossref]

Chen, K.-Y.

Y.-W. Li, C.-W. Lin, K.-Y. Chen, K.-H. Fan-Chiang, H.-C. Kuo, and H.-C. Tsai, “Front-lit LCOS for wearable applications,” in SID Int. Symp. Dig. Tech. Pap. (2014), pp. 234–236.

Chen, Y.

J. Sun, Y. Chen, and S.-T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
[Crossref] [PubMed]

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Chigrinov, V. G.

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Dabrowski, R.

R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[Crossref]

Efron, U.

Fan-Chiang, K.-H.

Y.-W. Li, C.-W. Lin, K.-Y. Chen, K.-H. Fan-Chiang, H.-C. Kuo, and H.-C. Tsai, “Front-lit LCOS for wearable applications,” in SID Int. Symp. Dig. Tech. Pap. (2014), pp. 234–236.

Fiebranz, B.

S. Siemianowski, M. Bremer, E. Plummer, B. Fiebranz, M. Klasen-Memmer, and J. Canisius, “Liquid crystal technologies towards realising a field sequential colour (FSC) display,” in SID Int. Symp. Dig. Tech. Pap. (2016), pp. 175–178.

Fix, A.

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 86 (2017).
[Crossref]

Gauza, S.

C.-H. Wen, S. Gauza, and S.-T. Wu, “Photostability of liquid crystals and alignment layers,” J. Soc. Inf. Disp. 13(9), 805–811 (2005).
[Crossref]

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[Crossref]

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Gou, F.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

H. Chen, F. Gou, and S. T. Wu, “Submillisecond-response nematic liquid crystals for augmented reality displays,” Opt. Mater. Express 7(1), 195–201 (2017).
[Crossref]

Haller, I.

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
[Crossref]

Hasebe, H.

H. Hasebe and S. Kobayashi, “A full-color field sequential LCD using modulated backlight,” in SID Int. Symp. Dig. Tech. Pap. (1985), pp. 81–83.

Herman, J.

R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

Hess, L. D.

Hu, M.

H. Chen, F. Peng, M. Hu, and S. T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
[Crossref]

Huang, Y.

Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
[Crossref]

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Huang, Y. P.

Y. P. Huang, F. C. Lin, and H. P. D. Shieh, “Eco-displays: The color LCD’s without color filters and polarizers,” J. Disp. Technol. 7(12), 630–632 (2011).
[Crossref]

Klasen-Memmer, M.

S. Siemianowski, M. Bremer, E. Plummer, B. Fiebranz, M. Klasen-Memmer, and J. Canisius, “Liquid crystal technologies towards realising a field sequential colour (FSC) display,” in SID Int. Symp. Dig. Tech. Pap. (2016), pp. 175–178.

Kobayashi, S.

H. Hasebe and S. Kobayashi, “A full-color field sequential LCD using modulated backlight,” in SID Int. Symp. Dig. Tech. Pap. (1985), pp. 81–83.

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Kula, P.

R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

Kuo, H.-C.

Y.-W. Li, C.-W. Lin, K.-Y. Chen, K.-H. Fan-Chiang, H.-C. Kuo, and H.-C. Tsai, “Front-lit LCOS for wearable applications,” in SID Int. Symp. Dig. Tech. Pap. (2014), pp. 234–236.

Kwok, H. S.

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Lan, Y.-F.

Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
[Crossref]

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Lanman, D.

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 86 (2017).
[Crossref]

Lee, Y.-H.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Li, H.

P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).

Li, Y.-W.

Y.-W. Li, C.-W. Lin, K.-Y. Chen, K.-H. Fan-Chiang, H.-C. Kuo, and H.-C. Tsai, “Front-lit LCOS for wearable applications,” in SID Int. Symp. Dig. Tech. Pap. (2014), pp. 234–236.

Liang, X.

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Lin, C.-W.

Y.-W. Li, C.-W. Lin, K.-Y. Chen, K.-H. Fan-Chiang, H.-C. Kuo, and H.-C. Tsai, “Front-lit LCOS for wearable applications,” in SID Int. Symp. Dig. Tech. Pap. (2014), pp. 234–236.

Lin, F. C.

Y. P. Huang, F. C. Lin, and H. P. D. Shieh, “Eco-displays: The color LCD’s without color filters and polarizers,” J. Disp. Technol. 7(12), 630–632 (2011).
[Crossref]

Liu, S.

P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).

Livesay, C.

K. Beeson, S. Zimmerman, W. Livesay, R. Ross, C. Livesay, and K. Livesay, “LED-based light-recycling light sources for projection displays,” in SID Int. Symp. Dig. Tech. Pap. (2006), pp. 1823–1826.
[Crossref]

Livesay, K.

K. Beeson, S. Zimmerman, W. Livesay, R. Ross, C. Livesay, and K. Livesay, “LED-based light-recycling light sources for projection displays,” in SID Int. Symp. Dig. Tech. Pap. (2006), pp. 1823–1826.
[Crossref]

Livesay, W.

K. Beeson, S. Zimmerman, W. Livesay, R. Ross, C. Livesay, and K. Livesay, “LED-based light-recycling light sources for projection displays,” in SID Int. Symp. Dig. Tech. Pap. (2006), pp. 1823–1826.
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Matsuda, N.

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 86 (2017).
[Crossref]

Okabe, E.

Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
[Crossref]

Peng, F.

H. Chen, F. Peng, M. Hu, and S. T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
[Crossref]

Plummer, E.

S. Siemianowski, M. Bremer, E. Plummer, B. Fiebranz, M. Klasen-Memmer, and J. Canisius, “Liquid crystal technologies towards realising a field sequential colour (FSC) display,” in SID Int. Symp. Dig. Tech. Pap. (2016), pp. 175–178.

Ross, R.

K. Beeson, S. Zimmerman, W. Livesay, R. Ross, C. Livesay, and K. Livesay, “LED-based light-recycling light sources for projection displays,” in SID Int. Symp. Dig. Tech. Pap. (2006), pp. 1823–1826.
[Crossref]

Seed, A. J.

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[Crossref]

Shieh, H. P. D.

Y. P. Huang, F. C. Lin, and H. P. D. Shieh, “Eco-displays: The color LCD’s without color filters and polarizers,” J. Disp. Technol. 7(12), 630–632 (2011).
[Crossref]

Siemianowski, S.

S. Siemianowski, M. Bremer, E. Plummer, B. Fiebranz, M. Klasen-Memmer, and J. Canisius, “Liquid crystal technologies towards realising a field sequential colour (FSC) display,” in SID Int. Symp. Dig. Tech. Pap. (2016), pp. 175–178.

Srivastava, A. K.

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Sun, J.

J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. Part B Polym. Phys. 52(3), 183–192 (2014).

J. Sun, Y. Chen, and S.-T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
[Crossref] [PubMed]

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Sun, P.

P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).

Tan, G.

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
[Crossref]

Tang, H.

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Tao, X.

P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).

Tobata, H.

Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
[Crossref]

Tsai, C.-Y.

Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
[Crossref]

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

Tsai, H.-C.

Y.-W. Li, C.-W. Lin, K.-Y. Chen, K.-H. Fan-Chiang, H.-C. Kuo, and H.-C. Tsai, “Front-lit LCOS for wearable applications,” in SID Int. Symp. Dig. Tech. Pap. (2014), pp. 234–236.

Wang, C.

P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).

Wang, H.

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[Crossref]

Wen, C.-H.

C.-H. Wen, S. Gauza, and S.-T. Wu, “Photostability of liquid crystals and alignment layers,” J. Soc. Inf. Disp. 13(9), 805–811 (2005).
[Crossref]

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[Crossref]

Wu, C.-S.

S.-T. Wu and C.-S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett. 68(11), 1455–1457 (1996).
[Crossref]

S.-T. Wu and C.-S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

Wu, S. T.

H. Chen, F. Gou, and S. T. Wu, “Submillisecond-response nematic liquid crystals for augmented reality displays,” Opt. Mater. Express 7(1), 195–201 (2017).
[Crossref]

H. Chen, F. Peng, M. Hu, and S. T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
[Crossref]

Wu, S.-T.

Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
[Crossref]

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. Part B Polym. Phys. 52(3), 183–192 (2014).

J. Sun, Y. Chen, and S.-T. Wu, “Submillisecond-response and scattering-free infrared liquid crystal phase modulators,” Opt. Express 20(18), 20124–20129 (2012).
[Crossref] [PubMed]

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

C.-H. Wen, S. Gauza, and S.-T. Wu, “Photostability of liquid crystals and alignment layers,” J. Soc. Inf. Disp. 13(9), 805–811 (2005).
[Crossref]

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[Crossref]

S.-T. Wu and C.-S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett. 68(11), 1455–1457 (1996).
[Crossref]

S.-T. Wu and C.-S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

S.-T. Wu, “Design of a liquid crystal based tunable electrooptic filter,” Appl. Opt. 28(1), 48–52 (1989).
[Crossref] [PubMed]

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
[Crossref] [PubMed]

Xianyu, H.

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Xie, T.

P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).

Yamamoto, S.

Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
[Crossref]

Zhang, S.

P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).

Zheng, Z.

P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).

Zimmerman, S.

K. Beeson, S. Zimmerman, W. Livesay, R. Ross, C. Livesay, and K. Livesay, “LED-based light-recycling light sources for projection displays,” in SID Int. Symp. Dig. Tech. Pap. (2006), pp. 1823–1826.
[Crossref]

ACM Trans. Graph. (2)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

N. Matsuda, A. Fix, and D. Lanman, “Focal surface displays,” ACM Trans. Graph. 36(4), 86 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S.-T. Wu and C.-S. Wu, “Mixed-mode twisted nematic liquid crystal cells for reflective displays,” Appl. Phys. Lett. 68(11), 1455–1457 (1996).
[Crossref]

Crystals (1)

R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]

J. Disp. Technol. (2)

Y. Chen, J. Sun, H. Xianyu, S.-T. Wu, X. Liang, and H. Tang, “High birefringence fluoro-terphenyls for thin-cell-gap TFT-LCDs,” J. Disp. Technol. 7(9), 478–481 (2011).
[Crossref]

Y. P. Huang, F. C. Lin, and H. P. D. Shieh, “Eco-displays: The color LCD’s without color filters and polarizers,” J. Disp. Technol. 7(12), 630–632 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

G. Tan, Y.-H. Lee, F. Gou, H. Chen, Y. Huang, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Review on polymer-stabilized short-pitch cholesteric liquid crystal displays,” J. Phys. D Appl. Phys. 50(49), 493001 (2017).
[Crossref]

J. Polym. Sci. Part B Polym. Phys. (1)

J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci. Part B Polym. Phys. 52(3), 183–192 (2014).

J. Soc. Inf. Disp. (2)

A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

C.-H. Wen, S. Gauza, and S.-T. Wu, “Photostability of liquid crystals and alignment layers,” J. Soc. Inf. Disp. 13(9), 805–811 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Gauza, H. Wang, C.-H. Wen, S.-T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42, 3463–3466 (2003).
[Crossref]

Liq. Cryst. (2)

S.-T. Wu and C.-S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

H. Chen, F. Peng, M. Hu, and S. T. Wu, “Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display,” Liq. Cryst. 42(12), 1730–1737 (2015).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (2)

H. Chen, F. Gou, and S. T. Wu, “Submillisecond-response nematic liquid crystals for augmented reality displays,” Opt. Mater. Express 7(1), 195–201 (2017).
[Crossref]

Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7(2), 254–257 (2017).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Proc. SPIE (1)

P. Sun, S. Chang, S. Zhang, T. Xie, H. Li, S. Liu, C. Wang, X. Tao, and Z. Zheng, “Computer-generated holographic near-eye display system based on LCoS phase only modulator,” Proc. SPIE 10396, 103961J (2017).

Prog. Solid State Chem. (1)

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
[Crossref]

Other (6)

K. Beeson, S. Zimmerman, W. Livesay, R. Ross, C. Livesay, and K. Livesay, “LED-based light-recycling light sources for projection displays,” in SID Int. Symp. Dig. Tech. Pap. (2006), pp. 1823–1826.
[Crossref]

D. Armitage, I. Underwood, and S.-T. Wu, Introduction to Microdisplays (John Wiley & Sons, 2006).

Y.-W. Li, C.-W. Lin, K.-Y. Chen, K.-H. Fan-Chiang, H.-C. Kuo, and H.-C. Tsai, “Front-lit LCOS for wearable applications,” in SID Int. Symp. Dig. Tech. Pap. (2014), pp. 234–236.

H. Hasebe and S. Kobayashi, “A full-color field sequential LCD using modulated backlight,” in SID Int. Symp. Dig. Tech. Pap. (1985), pp. 81–83.

S. Siemianowski, M. Bremer, E. Plummer, B. Fiebranz, M. Klasen-Memmer, and J. Canisius, “Liquid crystal technologies towards realising a field sequential colour (FSC) display,” in SID Int. Symp. Dig. Tech. Pap. (2016), pp. 175–178.

C. Wang and R. Hsu, “Digital modulation on micro display and spatial light modulator,” SID Int. Symp. Dig. Tech. Pap. 48(1), 238–241 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Temperature-dependent birefringence at λ = 633 nm, 1 kHz. (b) Dispersion of birefringence at 1 kHz, 40°C. Dots are measured data; lines in (a) and (b) are fitting curves with Eq. (1) and Eq. (2), respectively.
Fig. 2
Fig. 2 Temperature-dependent visco-elastic coefficient at λ = 633 nm and 1 kHz. Dots are measured data and lines are fitting curves with Eq. (3).
Fig. 3
Fig. 3 Measured photo-stability of LC-1 with an UV LED at (a) 365nm and (b) 385nm. Probing laser beam: λ = 633 nm. Measurement temperature: 40°C. Black rectangles denote birefringence and blue circles denote visco-elastic constant.
Fig. 4
Fig. 4 Measured and simulated V-Φ curves at 40°C, λ = 633 nm and 1 kHz. Dots are measured data in transmissive homogenous cells with d~3.4 μm; lines are simulated curves in reflective homogenous cells with d~1.7 μm.
Fig. 5
Fig. 5 Simulated V-Φ curves of LC-1 for RGB colors at 40°C in a reflective homogenous cell with d = 1.716 μm. Lines are V-Φ curves; dots mark the lower and upper limit of the 2π phase change range with V2 = 5 V.
Fig. 6
Fig. 6 Measured VT curve in a reflective 90° MTN cell with d = 1.32 μm at 40°C, λ = 633 nm and 1 kHz. Dots mark the gray levels in Table 7.

Tables (7)

Tables Icon

Table 1 Measured physical properties of LC-1, LC-2, and LC-3 at T = 25°C.

Tables Icon

Table 2 Fitting parameters obtained through Eqs. (1)-(3).

Tables Icon

Table 3 Response time of measured, extrapolated and simulated results at 40°C, λ = 633 nm and 1 kHz.

Tables Icon

Table 4 Selected nine phase levels between 0 and 2π, and the corresponding operation voltage of LC-1. The listed data are obtained from Fig. 4.

Tables Icon

Table 5 Measured PTP response time of LC-1 in a transmissive homogenous cell with d = 3.4 μm. Note: the LCoS response time with d = 1.7 μm is 4x faster than the data shown here.

Tables Icon

Table 6 Simulated response time of LC-1 at 40°C in a reflective homogenous cell with d = 1.716 μm.

Tables Icon

Table 7 Measured GTG response time of LC-1 in a 90° MTN cell with d = 1.32 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δn=Δ n 0 S=Δ n 0 ( 1T/ T c ) β .
Δn=G λ 2 λ *2 λ 2 λ *2 ,
γ 1 K 11 =A exp( E a / k B T ) ( 1T/ T c ) β .
τ on = τ 0 ( V 2 / V th ) 2 1 ,
τ off = τ 0 | ( V 1 / V th ) 2 1 | ,

Metrics