Abstract

We demonstrate a high-speed method to image objects through thin scattering media and around corners. The method employs a reference object of known shape to retrieve the speckle-like point spread function of the scatterer. We extract the point spread function of the scatterer from a dynamic scene that includes a static reference object and uses this to image the dynamic objects. Sharp images are reconstructed from the transmission through a diffuser and from the reflection off a rough surface. The sharp and clean reconstructed images from single shot data exemplify the robustness of the method.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference

Xiaoqing Xu, Xiangsheng Xie, Abhilash Thendiyammal, Huichang Zhuang, Junpeng Xie, Yikun Liu, Jianying Zhou, and Allard P Mosk
Opt. Express 26(12) 15073-15083 (2018)

Imaging moving targets through scattering media

Michelle Cua, Edward (Haojiang) Zhou, and Changhuei Yang
Opt. Express 25(4) 3935-3945 (2017)

Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function

Long Li, Quan Li, Shuai Sun, Hui-Zu Lin, Wei-Tao Liu, and Ping-Xing Chen
Opt. Lett. 43(8) 1670-1673 (2018)

References

  • View by:
  • |
  • |
  • |

  1. I. Freund, “Looking through walls and around corners,” Physica A 168, 49–65 (1990).
  2. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
  3. V. Tuchin, Tissue Optics, (SPIE, 2007).
  4. M. Gu, X. Gan, and X. Deng, Image Reconstruction. Microscopic Imaging through Turbid Media (Springer Berlin Heidelberg, 2015).
  5. P. S. Idell, J. D. Gonglewski, D. G. Voelz, and J. Knopp, “Image synthesis from nonimaged laser-speckle patterns: experimental verification,” Opt. Lett. 14(3), 154–156 (1989).
    [PubMed]
  6. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
    [PubMed]
  7. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
    [PubMed]
  8. C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
    [PubMed]
  9. X. Yang, C.-L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
    [PubMed]
  10. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
    [PubMed]
  11. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
    [PubMed]
  12. C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
    [PubMed]
  13. K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
    [PubMed]
  14. I. N. Papadopoulos, J. Jouhanneau, J. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).
  15. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
    [PubMed]
  16. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [PubMed]
  17. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [PubMed]
  18. M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23(10), 12648–12668 (2015).
    [PubMed]
  19. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [PubMed]
  20. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
  21. H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
    [PubMed]
  22. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
    [PubMed]
  23. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
    [PubMed]
  24. W. Harm, C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Lensless imaging through thin diffusive media,” Opt. Express 22(18), 22146–22156 (2014).
    [PubMed]
  25. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22(7), 7694–7701 (2014).
    [PubMed]
  26. S. Li and J. Zhong, “Dynamic imaging through turbid media based on digital holography,” J. Opt. Soc. Am. A 31(3), 480–486 (2014).
    [PubMed]
  27. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
  28. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [PubMed]
  29. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
  30. K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22(25), 31426–31433 (2014).
    [PubMed]
  31. X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22(3), 3405–3413 (2014).
    [PubMed]
  32. E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
    [PubMed]
  33. T. Wu, O. Katz, X. Shao, and S. Gigan, “Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis,” Opt. Lett. 41(21), 5003–5006 (2016).
    [PubMed]
  34. M. Cua, E. H. Zhou, and C. Yang, “Imaging moving targets through scattering media,” Opt. Express 25(4), 3935–3945 (2017).
    [PubMed]
  35. J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
    [PubMed]
  36. J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
    [PubMed]
  37. I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves Through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
    [PubMed]
  38. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
    [PubMed]
  39. S. Schott, J. Bertolotti, J. F. Léger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” Opt. Express 23(10), 13505–13516 (2015).
    [PubMed]
  40. X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
    [PubMed]
  41. H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
    [PubMed]
  42. E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
    [PubMed]
  43. S. Lee, K. Lee, S. Shin, and Y. Park, Generalized image deconvolution by exploiting spatially variant point spread functions,” arXiv:1703.08974 (2017).
  44. S. Sahoo, D. Tang, and C. Dang, “Single-shot multispectral imaging with a monochromatic camera,” arXiv:1707.09453 (2017).
  45. N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.
  46. T. Wu, J. Dong, X. Shao, and S. Gigan, “Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity,” Opt. Express 25(22), 27182–27194 (2017).
    [PubMed]
  47. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007).
  48. R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition) (Prentice-Hall, Inc., 2006).
  49. Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain, and M. G. Bawendi, “Incorporation of Luminescent Nanocrystals into Monodisperse Core–Shell Silica Microspheres,” Adv. Mater. 16, 2092–2097 (2004).

2017 (4)

I. N. Papadopoulos, J. Jouhanneau, J. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).

M. Cua, E. H. Zhou, and C. Yang, “Imaging moving targets through scattering media,” Opt. Express 25(4), 3935–3945 (2017).
[PubMed]

T. Wu, J. Dong, X. Shao, and S. Gigan, “Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity,” Opt. Express 25(22), 27182–27194 (2017).
[PubMed]

2016 (5)

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[PubMed]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[PubMed]

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
[PubMed]

T. Wu, O. Katz, X. Shao, and S. Gigan, “Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis,” Opt. Lett. 41(21), 5003–5006 (2016).
[PubMed]

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
[PubMed]

2015 (5)

2014 (9)

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[PubMed]

W. Harm, C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Lensless imaging through thin diffusive media,” Opt. Express 22(18), 22146–22156 (2014).
[PubMed]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22(7), 7694–7701 (2014).
[PubMed]

S. Li and J. Zhong, “Dynamic imaging through turbid media based on digital holography,” J. Opt. Soc. Am. A 31(3), 480–486 (2014).
[PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).

K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22(25), 31426–31433 (2014).
[PubMed]

X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22(3), 3405–3413 (2014).
[PubMed]

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[PubMed]

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
[PubMed]

2013 (1)

2012 (8)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[PubMed]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[PubMed]

X. Yang, C.-L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
[PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[PubMed]

2010 (3)

C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
[PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[PubMed]

2008 (1)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
[PubMed]

2007 (1)

2004 (1)

Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain, and M. G. Bawendi, “Incorporation of Luminescent Nanocrystals into Monodisperse Core–Shell Silica Microspheres,” Adv. Mater. 16, 2092–2097 (2004).

1990 (1)

I. Freund, “Looking through walls and around corners,” Physica A 168, 49–65 (1990).

1989 (1)

1988 (2)

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves Through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[PubMed]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[PubMed]

Antipa, N.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.

Bawendi, M. G.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[PubMed]

Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain, and M. G. Bawendi, “Incorporation of Luminescent Nanocrystals into Monodisperse Core–Shell Silica Microspheres,” Adv. Mater. 16, 2092–2097 (2004).

Bernet, S.

Bertolotti, J.

S. Schott, J. Bertolotti, J. F. Léger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” Opt. Express 23(10), 13505–13516 (2015).
[PubMed]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[PubMed]

Bourdieu, L.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[PubMed]

Chan, Y.

Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain, and M. G. Bawendi, “Incorporation of Luminescent Nanocrystals into Monodisperse Core–Shell Silica Microspheres,” Adv. Mater. 16, 2092–2097 (2004).

Chen, Y.

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[PubMed]

Cheng, Q.

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

Choi, W.

Choi, Y.

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23(10), 12648–12668 (2015).
[PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[PubMed]

Cua, M.

Cui, M.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[PubMed]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[PubMed]

Dimarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[PubMed]

Dong, J.

Edrei, E.

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
[PubMed]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[PubMed]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[PubMed]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
[PubMed]

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves Through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[PubMed]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[PubMed]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[PubMed]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[PubMed]

Fleischer, J. W.

Freund, I.

I. Freund, “Looking through walls and around corners,” Physica A 168, 49–65 (1990).

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves Through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[PubMed]

Gigan, S.

T. Wu, J. Dong, X. Shao, and S. Gigan, “Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity,” Opt. Express 25(22), 27182–27194 (2017).
[PubMed]

T. Wu, O. Katz, X. Shao, and S. Gigan, “Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis,” Opt. Lett. 41(21), 5003–5006 (2016).
[PubMed]

S. Schott, J. Bertolotti, J. F. Léger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” Opt. Express 23(10), 13505–13516 (2015).
[PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[PubMed]

Gonglewski, J. D.

Grange, R.

Guan, Y.

Gupta, O.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[PubMed]

Harm, W.

He, H.

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[PubMed]

H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
[PubMed]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[PubMed]

Hsieh, C.-L.

Idell, P. S.

Jain, R. K.

Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain, and M. G. Bawendi, “Incorporation of Luminescent Nanocrystals into Monodisperse Core–Shell Silica Microspheres,” Adv. Mater. 16, 2092–2097 (2004).

Jesacher, A.

Jouhanneau, J.

I. N. Papadopoulos, J. Jouhanneau, J. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).

Judkewitz, B.

I. N. Papadopoulos, J. Jouhanneau, J. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[PubMed]

Kane, C.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[PubMed]

Katz, O.

T. Wu, O. Katz, X. Shao, and S. Gigan, “Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis,” Opt. Lett. 41(21), 5003–5006 (2016).
[PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

Kim, M.

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23(10), 12648–12668 (2015).
[PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[PubMed]

Knopp, J.

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).

Laporte, G.

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[PubMed]

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[PubMed]

Léger, J. F.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[PubMed]

Li, S.

Liu, Y.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[PubMed]

Luo, Q.

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
[PubMed]

Ma, C.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[PubMed]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[PubMed]

Naik, D. N.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22(7), 7694–7701 (2014).
[PubMed]

Necula, S.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.

Newman, J. A.

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
[PubMed]

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
[PubMed]

Ng, R.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.

Osten, W.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22(7), 7694–7701 (2014).
[PubMed]

Papadopoulos, I. N.

I. N. Papadopoulos, J. Jouhanneau, J. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).

Pedrini, G.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22(7), 7694–7701 (2014).
[PubMed]

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[PubMed]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[PubMed]

Poulet, J. A.

I. N. Papadopoulos, J. Jouhanneau, J. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).

Psaltis, D.

Pu, Y.

Raskar, R.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[PubMed]

Ritsch-Marte, M.

Roider, C.

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves Through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[PubMed]

Ruan, H.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[PubMed]

Scarcelli, G.

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[PubMed]

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
[PubMed]

Schott, S.

Shao, X.

Shi, Y.

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

Si, K.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[PubMed]

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

Singh, A. K.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22(7), 7694–7701 (2014).
[PubMed]

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

Steckel, J. S.

Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain, and M. G. Bawendi, “Incorporation of Luminescent Nanocrystals into Monodisperse Core–Shell Silica Microspheres,” Adv. Mater. 16, 2092–2097 (2004).

Stone, A. D.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[PubMed]

Stroh, M.

Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain, and M. G. Bawendi, “Incorporation of Luminescent Nanocrystals into Monodisperse Core–Shell Silica Microspheres,” Adv. Mater. 16, 2092–2097 (2004).

Takasaki, K. T.

Takeda, M.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22(7), 7694–7701 (2014).
[PubMed]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Veeraraghavan, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[PubMed]

Vellekoop, I. M.

Velten, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[PubMed]

Voelz, D. G.

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Waller, L.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.

Wang, G. P.

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

Wang, H.

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

Wang, L. V.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[PubMed]

Wang, Y. M.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[PubMed]

Webb, K. J.

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
[PubMed]

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
[PubMed]

Willwacher, T.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[PubMed]

Wu, K.

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

Wu, T.

Xie, X.

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[PubMed]

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[PubMed]

Xu, X.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[PubMed]

Yang, C.

M. Cua, E. H. Zhou, and C. Yang, “Imaging moving targets through scattering media,” Opt. Express 25(4), 3935–3945 (2017).
[PubMed]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
[PubMed]

Yang, K.

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[PubMed]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[PubMed]

Yang, X.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
[PubMed]

Yoon, C.

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23(10), 12648–12668 (2015).
[PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[PubMed]

Zhong, J.

Zhou, E. H.

Zhou, J.

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[PubMed]

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[PubMed]

H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
[PubMed]

Zhuang, H.

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[PubMed]

Zimmer, J. P.

Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain, and M. G. Bawendi, “Incorporation of Luminescent Nanocrystals into Monodisperse Core–Shell Silica Microspheres,” Adv. Mater. 16, 2092–2097 (2004).

Adv. Mater. (1)

Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain, and M. G. Bawendi, “Incorporation of Luminescent Nanocrystals into Monodisperse Core–Shell Silica Microspheres,” Adv. Mater. 16, 2092–2097 (2004).

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).

Nat. Commun. (3)

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[PubMed]

Nat. Photonics (8)

C. Ma, X. Xu, Y. Liu, and L. V. Wang, “Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media,” Nat. Photonics 8(12), 931–936 (2014).
[PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[PubMed]

I. N. Papadopoulos, J. Jouhanneau, J. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11, 116–123 (2017).

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
[PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9, 563–571 (2015).
[PubMed]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[PubMed]

Opt. Express (12)

T. Wu, J. Dong, X. Shao, and S. Gigan, “Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity,” Opt. Express 25(22), 27182–27194 (2017).
[PubMed]

K. T. Takasaki and J. W. Fleischer, “Phase-space measurement for depth-resolved memory-effect imaging,” Opt. Express 22(25), 31426–31433 (2014).
[PubMed]

X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22(3), 3405–3413 (2014).
[PubMed]

W. Harm, C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Lensless imaging through thin diffusive media,” Opt. Express 22(18), 22146–22156 (2014).
[PubMed]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: a holographic approach,” Opt. Express 22(7), 7694–7701 (2014).
[PubMed]

H. He, Y. Guan, and J. Zhou, “Image restoration through thin turbid layers by correlation with a known object,” Opt. Express 21(10), 12539–12545 (2013).
[PubMed]

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[PubMed]

M. Cua, E. H. Zhou, and C. Yang, “Imaging moving targets through scattering media,” Opt. Express 25(4), 3935–3945 (2017).
[PubMed]

S. Schott, J. Bertolotti, J. F. Léger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” Opt. Express 23(10), 13505–13516 (2015).
[PubMed]

C.-L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18(20), 20723–20731 (2010).
[PubMed]

X. Yang, C.-L. Hsieh, Y. Pu, and D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20(3), 2500–2506 (2012).
[PubMed]

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23(10), 12648–12668 (2015).
[PubMed]

Opt. Lett. (3)

Optica (1)

Phys. Rev. Lett. (7)

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113(26), 263901 (2014).
[PubMed]

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
[PubMed]

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
[PubMed]

I. Freund, M. Rosenbluh, and S. Feng, “Memory Effects in Propagation of Optical Waves Through Disordered Media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[PubMed]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media,” Phys. Rev. Lett. 61(7), 834–837 (1988).
[PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[PubMed]

Physica A (1)

I. Freund, “Looking through walls and around corners,” Physica A 168, 49–65 (1990).

Sci. Rep. (3)

K. Wu, Q. Cheng, Y. Shi, H. Wang, and G. P. Wang, “Hiding scattering layers for noninvasive imaging of hidden objects,” Sci. Rep. 5, 8375 (2015).
[PubMed]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[PubMed]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[PubMed]

Other (7)

S. Lee, K. Lee, S. Shin, and Y. Park, Generalized image deconvolution by exploiting spatially variant point spread functions,” arXiv:1703.08974 (2017).

S. Sahoo, D. Tang, and C. Dang, “Single-shot multispectral imaging with a monochromatic camera,” arXiv:1707.09453 (2017).

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.

V. Tuchin, Tissue Optics, (SPIE, 2007).

M. Gu, X. Gan, and X. Deng, Image Reconstruction. Microscopic Imaging through Turbid Media (Springer Berlin Heidelberg, 2015).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007).

R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition) (Prentice-Hall, Inc., 2006).

Supplementary Material (1)

NameDescription
» Visualization 1       Visualization of the reconstruction depicted in Fig. 6

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 (a) The reference object. The scale bar is 500µm, which is the same for all images. (b) the speckle pattern of the reference object. (c) the reference object and the unknown object (d) the corresponding speckle pattern. (e) the reconstructed image.
Fig. 3
Fig. 3 Reconstructed images of the hidden object “T” versus assumed magnification factor. (a) the image of the transmittance plate. The magnifications of the “H” assumed in the deconvolution are (b) 0.3, (c) 0.4, (d) 0.53 (the experimental value), (e) 0.6, (f) 0.7.
Fig. 4
Fig. 4 Reconstructed images from part of the speckle pattern. (a) the half speckle pattern of the reference object “H”. (b) The speckle of the unknown object “T” and the reference object. (c) the corresponding reconstructed image. (d) the quarter speckle pattern of the reference object (e) quarter speckle pattern of the combined objects. (f) the corresponding reconstructed image.
Fig. 5
Fig. 5 The measurement of FOV and DOF. (a) The intensity of the reconstructed images of the pinhole moved in the lateral direction and the fitted curve of the memory-effect intensity correlations [38]. The value used for the effective thickness of the diffuser is 4.2 µm, leading to a FWHM of 4 mm. (b) The intensity of the reconstructed images of the pinhole versus axial position. The Gaussian fit has a FWHM of 20 mm. (c) Reconstructed images of the object located at different plane. A negative displacement corresponds to a larger distance between object and the diffuser.
Fig. 6
Fig. 6 The influence of background light (a) The intensity-normalized speckle pattern of the reference object (b) Speckle pattern of a 50 -µm pinhole on the same spatial scale. The expose time is 1 ms in both cases. (c) reconstructed image using the speckle of the reference object (d) reconstruction of the same object using the speckle of the point source (same spatial scale).
Fig. 7
Fig. 7 The experiment setup for imaging a dynamic object through a diffuser.
Fig. 8
Fig. 8 Imaging a moving object (a disk displayed on the projector) through a diffuser. (a) The reference object (bifurcation) and the disk (b) the approximated speckle pattern of the reference object (mean value of 360 speckle images with different positions of the disk.) (c), (d), (e): three original images with the disk in different positions. (f), (g), (h): the corresponding reconstructed images. The scale bar in (a) is 3mm and also applies to (c), (d) and (e). The scale bar in (b) is 0.3mm and also applies to (f), (g) and (h). (See Visualization 1 for an animation.)
Fig. 9
Fig. 9 Imaging an object around a metal plate. The mirror and the metal plate are conjugated by the 4f systems, of which the focus length of the lens is 150 mm. The dotted line represents the light which illuminates the unknown object and reflected by the metal plate.
Fig. 10
Fig. 10 Imaging in the reflection form a rough surface (a) The unknown object “T”. The scale bar is 500µm, which is the same for the else images. (b) The speckle pattern of the object “T”. (c) is a metal plate of which the surface is rather rough. (d) is the reference object “H” and (e) is the corresponding speckle pattern. (f) is the reconstructed image of the unknown object “T”.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S R = I R ( x , y ) P S F ( x , y ) ,
S s u m = S R + S T = ( I R + I T ) P S F ,
F { S R } = F { I R } × F { P S F } ,
F { S s u m }= F { I R + I T } × F { P S F } ,
I D = F 1 { F { I R } × F { S M } F { S R } } ,

Metrics