Abstract

Using point-by-point infrared femtosecond laser inscription, a fibre Bragg grating with a resonance wavelength of 1550.28±0.02 nm, 25 dB extinction ratio, and 1.10±0.02 nm bandwidth (measured at first minima) was inscribed in a high concentration (40 mol%) germania-doped silica fibre. At this wavelength, the high concentration germania doped silica fibre had a normalized frequency of V ≃ 3.06 permitting higher order mode propagation. Subsequently, two additional Bragg resonances were recorded at 1534.40 ± 0.02 and 1535.78 ± 0.02 nm, corresponding to the coupling of the forward propagating fundamental mode and counter propagating HE21 and TM01/TE01, respectively. Thermal tests revealed the grating was stable up to 800 °C for 30 minutes. Analysis determined the grating had first and second order coefficients dλB/dT = 11.1 pm/°C and d2λB/dT2 = 8.37 × 10−3 pm2/°C2 respectively.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Inscription of fibre Bragg gratings in non-sensitised fibres using VUV F2 laser radiation

P. E. Dyer, A. M. Johnson, and C. D. Walton
Opt. Express 16(23) 19297-19303 (2008)

High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection

P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson
Opt. Express 16(13) 9507-9512 (2008)

Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask

Christopher W. Smelser, Stephen J. Mihailov, and Dan Grobnic
Opt. Lett. 29(18) 2127-2129 (2004)

References

  • View by:
  • |
  • |
  • |

  1. F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO 2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).
  2. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 microm,” Opt. Lett. 21(24), 1966–1968 (1996).
    [PubMed]
  3. H. S. Seo, K. Oh, and U. C. Paek, “Gain optimization of germanosilicate fiber raman amplifier and its applications in the compensation of raman-induced crosstalk among wavelength division multiplexing channels,” IEEE J. Quantum Electron. 37, 1110–1116 (2001).
  4. E. M. Dianov and V. M. Mashinsky, “Germania-Based Core Optical Fibers,” J. Lightwave Tech.  23, 3500–3508 (2005).
  5. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004).
    [PubMed]
  6. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668 (1993).
  7. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
  8. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [PubMed]
  9. R. Kashyap, A. Swanton, and R. Smith, “Infinite length fibre gratings,” Electron. Lett. 35, 1871–1872 (1999).
  10. M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523, 207–229 (2013).
  11. J. Canning, “Photosensitization and Photostabilization of Laser-Induced Index Changes in Optical Fibers,” Opt. Fiber Technol. 6, 275–289 (2000).
  12. L. Dong, J. Pinkstone, P. S. J. Russell, and D. N. Payne, “Ultraviolet absorption in modified chemical vapor deposition preforms,” JOSA B 11, 2106–2111 (1994).
  13. O. I. Medvedkov, S. A. Vasiliev, P. I. Gnusin, and E. M. Dianov, “Photosensitivity of optical fibers with extremely high germanium concentration,” Opt. Mater. Express 2, 1478 (2012).
  14. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [PubMed]
  15. H. G. Limberger, C. Ban, R. P. Salathé, S. A. Slattery, and D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber,” Opt. Express 15(9), 5610–5615 (2007).
    [PubMed]
  16. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
    [PubMed]
  17. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).
  18. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [PubMed]
  19. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. 18, 230–235 (2000).
  20. Y.-G. Han, S. B. Lee, D. S. Moon, and Y. Chung, “Investigation of a multiwavelength raman fiber laser based on few-mode fiber Bragg gratings,” Opt. Lett. 30(17), 2200–2202 (2005).
    [PubMed]
  21. K. Okamoto, “Optical Fibres,” in Fundamentals of Optical Waveguides (Elsevier, 2006), Chap. 3.
  22. W. J. Tropf, M. E. Thomas, and T. J. Harris, Handbook Of Optics (Elsevier, 1995), Chap. 33.
  23. Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2- loaded fibers by use of femtosecond laser pulses,” Opt. Express 16(26), 21239–21247 (2008).
    [PubMed]
  24. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26(21), 1657–1659 (2001).
    [PubMed]
  25. G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Seff-Organization Effects in Ontical Fibe (1991).
  26. A. Donko, M. Nunez-Velazquez, and M. Beresna, “Femtosecond Inscription And Thermal Testing Of Bragg Gratings In High Concentration Germania-Doped Optical Fibre,” Figshare 2017 [retrieved 14 August 2017] https://doi.org/10.5258/SOTON/D0215 .
  27. E. F. Riebling, “Nonideal Mixing in Binary Ge0,-SiO, Glasses,” J. Am. Ceram. Soc. 51, 406–407 (1968).
  28. J. Oishi and T. Kimura, “Thermal Expansion of Fused Quartz Thermal Expansion of Fused Quartz,” Meterologia 5, 50–55 (1969).
  29. G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).

2013 (1)

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523, 207–229 (2013).

2012 (2)

O. I. Medvedkov, S. A. Vasiliev, P. I. Gnusin, and E. M. Dianov, “Photosensitivity of optical fibers with extremely high germanium concentration,” Opt. Mater. Express 2, 1478 (2012).

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).

2008 (1)

2007 (1)

2005 (3)

2004 (2)

2001 (3)

2000 (2)

T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. 18, 230–235 (2000).

J. Canning, “Photosensitization and Photostabilization of Laser-Induced Index Changes in Optical Fibers,” Opt. Fiber Technol. 6, 275–289 (2000).

1999 (1)

R. Kashyap, A. Swanton, and R. Smith, “Infinite length fibre gratings,” Electron. Lett. 35, 1871–1872 (1999).

1996 (2)

1994 (1)

L. Dong, J. Pinkstone, P. S. J. Russell, and D. N. Payne, “Ultraviolet absorption in modified chemical vapor deposition preforms,” JOSA B 11, 2106–2111 (1994).

1993 (1)

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668 (1993).

1989 (1)

1978 (2)

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO 2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).

1969 (1)

J. Oishi and T. Kimura, “Thermal Expansion of Fused Quartz Thermal Expansion of Fused Quartz,” Meterologia 5, 50–55 (1969).

1968 (1)

E. F. Riebling, “Nonideal Mixing in Binary Ge0,-SiO, Glasses,” J. Am. Ceram. Soc. 51, 406–407 (1968).

Abeywickrema, U.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).

Adamovsky, G.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).

Ahn, T. J.

Albert, J.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668 (1993).

Ams, M.

Ban, C.

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).

Bilodeau, F.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668 (1993).

Boskovic, A.

Bufetov, I. A.

Canning, J.

J. Canning, “Photosensitization and Photostabilization of Laser-Induced Index Changes in Optical Fibers,” Opt. Fiber Technol. 6, 275–289 (2000).

Chan, J. W.

Chernikov, S. V.

Chung, Y.

Davis, K. M.

Dianov, E. M.

Djambova, T. V.

Dong, L.

L. Dong, J. Pinkstone, P. S. J. Russell, and D. N. Payne, “Ultraviolet absorption in modified chemical vapor deposition preforms,” JOSA B 11, 2106–2111 (1994).

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).

Dvoyrin, V. V.

Fedin, I.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).

Floyd, B. M.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).

Galeener, F. L.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO 2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).

Geils, R. H.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO 2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).

Glenn, W. H.

Gnusin, P. I.

Grattan, K. T. V.

Gruner-Nielsen, L.

Gupta, S.

Guryanov, A. N.

Han, W. T.

Han, Y.-G.

Hill, K. O.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668 (1993).

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).

Hirao, K.

Huser, T.

Johnson, D. C.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668 (1993).

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).

Kashyap, R.

R. Kashyap, A. Swanton, and R. Smith, “Infinite length fibre gratings,” Electron. Lett. 35, 1871–1872 (1999).

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).

Khopin, V. F.

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).

Kim, B. H.

Kim, D. Y.

Kimura, T.

J. Oishi and T. Kimura, “Thermal Expansion of Fused Quartz Thermal Expansion of Fused Quartz,” Meterologia 5, 50–55 (1969).

Krol, D. M.

Lancry, M.

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523, 207–229 (2013).

Lee, B. H.

Lee, S. B.

Levring, O. A.

Li, Y.

Liao, C. R.

Limberger, H. G.

Lyuksyutov, S. F.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).

Mackey, J. R.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).

Malo, B.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668 (1993).

Marshall, G.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).

Mashinsky, V. M.

Medvedkov, O. I.

Meltz, G.

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[PubMed]

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Seff-Organization Effects in Ontical Fibe (1991).

Mikkelsen, J. C.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO 2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).

Miura, K.

Mizunami, T.

Moon, D. S.

Morey, W. W.

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[PubMed]

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Seff-Organization Effects in Ontical Fibe (1991).

Mosby, W. J.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO 2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).

Neustruev, V. B.

Niiho, T.

Nikogosyan, D. N.

Oh, K.

H. S. Seo, K. Oh, and U. C. Paek, “Gain optimization of germanosilicate fiber raman amplifier and its applications in the compensation of raman-induced crosstalk among wavelength division multiplexing channels,” IEEE J. Quantum Electron. 37, 1110–1116 (2001).

Oishi, J.

J. Oishi and T. Kimura, “Thermal Expansion of Fused Quartz Thermal Expansion of Fused Quartz,” Meterologia 5, 50–55 (1969).

Paek, U. C.

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26(21), 1657–1659 (2001).
[PubMed]

H. S. Seo, K. Oh, and U. C. Paek, “Gain optimization of germanosilicate fiber raman amplifier and its applications in the compensation of raman-induced crosstalk among wavelength division multiplexing channels,” IEEE J. Quantum Electron. 37, 1110–1116 (2001).

Park, Y.

Payne, D. N.

L. Dong, J. Pinkstone, P. S. J. Russell, and D. N. Payne, “Ultraviolet absorption in modified chemical vapor deposition preforms,” JOSA B 11, 2106–2111 (1994).

Pinkstone, J.

L. Dong, J. Pinkstone, P. S. J. Russell, and D. N. Payne, “Ultraviolet absorption in modified chemical vapor deposition preforms,” JOSA B 11, 2106–2111 (1994).

Poumellec, B.

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523, 207–229 (2013).

Rackaitis, M.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).

Riebling, E. F.

E. F. Riebling, “Nonideal Mixing in Binary Ge0,-SiO, Glasses,” J. Am. Ceram. Soc. 51, 406–407 (1968).

Risbud, S.

Russell, P. S. J.

L. Dong, J. Pinkstone, P. S. J. Russell, and D. N. Payne, “Ultraviolet absorption in modified chemical vapor deposition preforms,” JOSA B 11, 2106–2111 (1994).

Salathé, R. P.

Salgansky, M. Y.

Seo, H. S.

H. S. Seo, K. Oh, and U. C. Paek, “Gain optimization of germanosilicate fiber raman amplifier and its applications in the compensation of raman-induced crosstalk among wavelength division multiplexing channels,” IEEE J. Quantum Electron. 37, 1110–1116 (2001).

Shubin, A. V.

Slattery, S. A.

Smith, R.

R. Kashyap, A. Swanton, and R. Smith, “Infinite length fibre gratings,” Electron. Lett. 35, 1871–1872 (1999).

Spence, D.

Sugimoto, N.

Sun, T.

Swanton, A.

R. Kashyap, A. Swanton, and R. Smith, “Infinite length fibre gratings,” Electron. Lett. 35, 1871–1872 (1999).

Taylor, J. R.

Vasiliev, S. A.

Wang, D. N.

Withford, M.

Appl. Phys. Lett. (2)

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO 2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).

Electron. Lett. (3)

R. Kashyap, A. Swanton, and R. Smith, “Infinite length fibre gratings,” Electron. Lett. 35, 1871–1872 (1999).

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett. 29, 1668 (1993).

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170 (2004).

IEEE J. Quantum Electron. (1)

H. S. Seo, K. Oh, and U. C. Paek, “Gain optimization of germanosilicate fiber raman amplifier and its applications in the compensation of raman-induced crosstalk among wavelength division multiplexing channels,” IEEE J. Quantum Electron. 37, 1110–1116 (2001).

J. Am. Ceram. Soc. (1)

E. F. Riebling, “Nonideal Mixing in Binary Ge0,-SiO, Glasses,” J. Am. Ceram. Soc. 51, 406–407 (1968).

J. Lightwave Tech (1)

E. M. Dianov and V. M. Mashinsky, “Germania-Based Core Optical Fibers,” J. Lightwave Tech.  23, 3500–3508 (2005).

J. Lightwave Technol. (1)

JOSA B (1)

L. Dong, J. Pinkstone, P. S. J. Russell, and D. N. Payne, “Ultraviolet absorption in modified chemical vapor deposition preforms,” JOSA B 11, 2106–2111 (1994).

Meterologia (1)

J. Oishi and T. Kimura, “Thermal Expansion of Fused Quartz Thermal Expansion of Fused Quartz,” Meterologia 5, 50–55 (1969).

Opt. Commun. (1)

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, and M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).

Opt. Express (3)

Opt. Fiber Technol. (1)

J. Canning, “Photosensitization and Photostabilization of Laser-Induced Index Changes in Optical Fibers,” Opt. Fiber Technol. 6, 275–289 (2000).

Opt. Lett. (7)

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[PubMed]

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004).
[PubMed]

A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 microm,” Opt. Lett. 21(24), 1966–1968 (1996).
[PubMed]

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[PubMed]

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26(21), 1657–1659 (2001).
[PubMed]

Y.-G. Han, S. B. Lee, D. S. Moon, and Y. Chung, “Investigation of a multiwavelength raman fiber laser based on few-mode fiber Bragg gratings,” Opt. Lett. 30(17), 2200–2202 (2005).
[PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[PubMed]

Opt. Mater. Express (1)

Phys. Rep. (1)

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523, 207–229 (2013).

Other (4)

K. Okamoto, “Optical Fibres,” in Fundamentals of Optical Waveguides (Elsevier, 2006), Chap. 3.

W. J. Tropf, M. E. Thomas, and T. J. Harris, Handbook Of Optics (Elsevier, 1995), Chap. 33.

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Seff-Organization Effects in Ontical Fibe (1991).

A. Donko, M. Nunez-Velazquez, and M. Beresna, “Femtosecond Inscription And Thermal Testing Of Bragg Gratings In High Concentration Germania-Doped Optical Fibre,” Figshare 2017 [retrieved 14 August 2017] https://doi.org/10.5258/SOTON/D0215 .

Supplementary Material (1)

NameDescription
» Dataset 1       Dataset for Femtosecond Inscription And Thermal Testing Of Bragg Gratings In High Concentration Germania-Doped Optical Fibre

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Refractive index profile of the NA~0.41 germania-doped silica fibre showing a slight graded index distribution between cladding and core.
Fig. 2
Fig. 2 Schematic of the femtosecond inscription set-up. O-Objective, D-dichroic mirror, F-fibre, DS-diffraction slit, (C)-synchronisation controller, CCD-CCD camera, OSA-optical spectrum analyser.
Fig. 3
Fig. 3 (a) Transmission spectra of the FBG of resonance wavelength λB = 1550.28 nm. Additional resonances at λB = 1534.40 nm and λB = 1535.78 nm were also observed, attributable to the forward propagating HE11 mode coupling to the counter propagating higher order modes. (b) Simulated electric field (x component) of the HE11, TE01, TM01 and HE21 modes. The HE11 and HE21 had effective modal indices of neff = 1.4850 and neff = 1.4578, respectively. The TE01 and TM01 modes were degenerate with an effective modal index of neff = 1.4583.
Fig. 4
Fig. 4 (a) Transmission spectra of the FBG during thermal testing. The spectra only shows the shift of the fundamental Bragg resonance of λB = 1550.28 nm (at room temperature) from 50 to 750 °C. All other spectral features were observed to shift uniformly with the main Bragg resonance. (b) Thermal sensitivity plot of the high concentration germania fibre (solid). Regression analysis determined a quadratic correlation between the Bragg wavelength shift and temperature. Dataset 1 is available at [26].

Tables (1)

Tables Icon

Table 1 – Calculated effective modal indices and measured wavelengths of Bragg resonances. Below, a comparison of the simulated and theoretical results using Eq. (1) and (2). The simulated and theoretical results are in agreement to 1%.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ x λ y = 2 n HE11 n HE11 + n TM01
λ x λ Z = 2 n HE11 n HE11 + n HE21

Metrics