Abstract

We present a high-core-count 32-core multicore erbium/ytterbium-doped fiber amplifier (32c-MC-EYDFA) in a cladding pumped configuration. A side pumping technique is employed for ease of pump coupling in this monolithic all-fiber amplifier. A minimum gain of >17 dB and an average noise figure (NF) of 6.5 dB is obtained over all cores in the wavelength range 1534 nm-1561 nm for −4 dBm input signal power. The core-to-core variation for both amplifier gain and NF is measured to be <2 dB. The 32c-MC-EYDFA was then tested in a repeatered multicore fiber (MCF) loop system and transmission over distances >1850 km was successfully demonstrated. We also compare the total power consumption of our MC-EYDFAs with that of 32 conventional single core erbium doped fiber amplifiers (EDFAs) to illustrate the potential power saving benefits.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Cladding-pumped erbium-doped multicore fiber amplifier

K. S. Abedin, T. F. Taunay, M. Fishteyn, D. J. DiGiovanni, V.R. Supradeepa, J. M. Fini, M. F. Yan, B. Zhu, E. M. Monberg, and F.V. Dimarcello
Opt. Express 20(18) 20191-20200 (2012)

Hybrid cladding-pumped multicore EDFA/Raman amplification for space division multiplexing transmission systems

Takayuki Mizuno, Akira Isoda, Kohki Shibahara, Hirotaka Ono, Mitsunori Fukutoku, and Yutaka Miyamoto
Opt. Express 26(10) 13639-13646 (2018)

Amplification and noise properties of an erbium-doped multicore fiber amplifier

K. S. Abedin, T. F. Taunay, M. Fishteyn, M. F. Yan, B. Zhu, J. M. Fini, E. M. Monberg, F.V. Dimarcello, and P.W. Wisk
Opt. Express 19(17) 16715-16721 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7, 354–362 (2013).
  3. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, T. Morioka, and Y. Miyamoto, “Single-mode multicore fiber for dense space division multiplexing,” in Optoelectronics and Communications Conference/International Conference on Photonics in Switching (OECC/PS), MC1–4 (2016).
  4. Y. Sasaki, K. Takenaga, K. Aikawa, Y. Miyamoto, and T. Morioka, “Single-mode 37-core fiber with a cladding diameter of 248μm,” in Optical Fiber Communications Conference, Los Angeles, 19–23 March, Th1H.2, (2017).
  5. T. Sakamoto, T. Matsui, K. Saitoh, S. Saitoh, K. Takenaga, T. Mizuno, Y. Abe, K. Shibahara, Y. Tobita, S. Matsuo, K. Aikawa, S. Azoasa, K. Nakajima, and Y. Miyamoto, “Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250μm,” J. Lightwave Technol. 35(3), 443–449 (2017).
  6. J. Sakaguchi, J. M. Delgado, B. James Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, T. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core x 3-mode) heterogeneous few-mode multicore fiber,” J. Lightwave Technol. 34(1), 93–103 (2016).
  7. Y. Sasaki, R. Fukumoto, K. Takenaga, K. Aikawa, K. Saitoh, T. Morioka, and Y. Miyamoto, “Crosstalk-managed heterogeneous single mode 32-core fibre,” in European Conference and Exhibition on Optical Communication, Dusseldorf 18–22 Sep, W.2.B.2 (2016).
  8. B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguichi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s Transmission using a 22 core homogenous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication, Valencia, 27 Sep – 1 Oct, PDP.3.1 (2015).
  9. T. Kobayashi, M. Nakamura, F. Hamaoka, K. Shibahara, T. Mizuno, A. Sano, H. Kawakami, A. Isoda, M. Nagatani, H. Yamazaki, Y. Miyamoto, Y. Amma, Y. Sasaki, K. Takenaga, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, M. Nooruzzaman, and T. Morioka, “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels,” in Optical Fiber Communication Conference, Los Angeles, 19–23 March, Th5B.1 (2017) (Postdeadline).
  10. K. S. Abedin, T. F. Taunay, M. Fishteyn, M. F. Yan, B. Zhu, J. M. Fini, E. M. Monberg, F. V. Dimarcello, and P. W. Wisk, “Amplification and noise properties of an erbium-doped multicore fiber amplifier,” Opt. Express 19(17), 16715–16721 (2011).
    [PubMed]
  11. J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tsuchida, K. Maeda, M. Tadakuma, K. Imamura, R. Sugizaki, T. Kobayashi, Y. Tottori, M. Watanabe, and R. V. Jensen, “19-core MCF transmission system using EDFA with shared core pumping coupled via free-space optics,” Opt. Express 22(1), 90–95 (2014).
    [PubMed]
  12. Y. Jung, S. Alam, Y. Sasaki, and D. J. Richardson, “Compact 32-core multicore fiber isolator for high-density spatial division multiplexed transmission,” in European Conference on Optical Communication, Dusseldorf 18–22 Sep, W2.B4 (2016).
  13. K. S. Abedin, J. M. Fini, T. F. Thierry, V. R. Supradeepa, B. Zhu, M. F. Yan, L. Bansal, E. M. Monberg, and D. J. DiGiovanni, “Multicore Erbium doped fiber amplifiers for space division multiplexing systems,” J. Lightwave Technol. 32(16), 2800–2808 (2014).
  14. H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).
  15. Y. Mimura, Y. Tsuchida, K. Maeda, R. Miyabe, K. Aiso, H. Matsuura, and R. Sugizaki, “Batch multicore amplification with cladding-pumped multicore EDF,” in European Conference on Optical Communication, Tu.4.F.1 (2012).
  16. H. Ono, K. Takenaga, K. Ichii, S. Matsuo, T. Takahashi, H. Masuda, and M. Yamada, “12-Core double-clad Er/Yb-doped fiber amplifier employing free-space coupling pump/signal combiner module,” in European Conference on Optical Communication, London 22–26 Sep., We.4.A.4 (2013).
  17. L. Qian and R. Bolen, “Erbium-doped phosphosilicate fiber amplifiers: a comparison of configurations for the optimization of noise figure and conversion efficiency,” Proc. SPIE 5970, 877–885 (2005).
  18. S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. R. Hayes, M. N. Petrovich, G. Bai, H. Ono, K. Shibahara, A. Sano, A. Isoda, Y. Miyamoto, Y. Sasaki, Y. Amma, K. Takenaga, K. Aikawa, C. Castro, K. Pulverer, and M. Nooruzzaman, T. Morioka, S. U. Alam, and D. J. Richardson, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission systems,” in European Conference on Optical Communication, Dusseldorf 18–22 Sep, Th.3.A.1 (2016) (Postdeadline).
  19. T. Mizuno, A. Isoda, K. Shibahara, Y. Miyamoto, S. Jain, S. U. Alam, D. J. Richardson, C. Castro, K. Pulverer, Y. Sasaki, Y. Amma, K. Takenaga, K. Aikawa, and T. Morioka, “In-service crosstalk monitoring for dense space division multiplexed multi-core fiber transmission systems,” in Optical Fiber Communication Conference, Los Angeles, 19–23 March, M3J.2 (2017).
  20. J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S.-U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5–30 (2004).
  21. P. F. Wysocki, “Erbium-doped fiber amplifiers: advanced topics,” in Rare-earth doped fiber lasers and amplifiers, M. J. F. Digonnet ed. (Marcel Dekker, 2001).
  22. A. D. Ellis, R. M. Percival, A. Lord, and W. A. Stallard, “Automatic gain control in cascaded erbium doped fibre amplifier systems,” Electron. Lett. 27, 193–195 (1991).
  23. C. Castro, S. Jain, Y. Jung, E. D. Man, S. Calabro, K. Pulverer, M. Bohn, J. Hayes, S. Alam, D. J. Richardson, Y. Sasaki, T. Mizuno, K. Shibahara, T. Kobayashi, Y. Miyamoto, T. Morioka, and W. Rosenkranz, “Crosstalk Analysis of 32-Core Dense Space Division Multiplexed System for Higher Order Modulation Formats Using an Integrated Cladding-Pumped Amplifier,” in European Conference on Optical Communication, Gothenburg 17–21 Sep, M.2.E.5 (2017).
  24. https://www.lumentum.com/en/opticalcommunications/products/pump-lasers/14-pin-9xx-pump-lasers
  25. T. Theeg, H. Sayinc, J. Neumann, L. Overmeyer, and D. Kracht, “Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers,” Opt. Express 20(27), 28125–28141 (2012).
    [PubMed]
  26. Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE 6552, 65520R (2007).

2017 (1)

2016 (3)

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Lightwave Technol. 34(1), 55–66 (2016).

J. Sakaguchi, J. M. Delgado, B. James Puttnam, R. S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, T. Kokubun, T. Takahata, and T. Kobayashi, “Large spatial channel (36-core x 3-mode) heterogeneous few-mode multicore fiber,” J. Lightwave Technol. 34(1), 93–103 (2016).

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

2014 (2)

2013 (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7, 354–362 (2013).

2012 (1)

2011 (1)

2007 (1)

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE 6552, 65520R (2007).

2005 (1)

L. Qian and R. Bolen, “Erbium-doped phosphosilicate fiber amplifiers: a comparison of configurations for the optimization of noise figure and conversion efficiency,” Proc. SPIE 5970, 877–885 (2005).

2004 (1)

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S.-U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5–30 (2004).

1991 (1)

A. D. Ellis, R. M. Percival, A. Lord, and W. A. Stallard, “Automatic gain control in cascaded erbium doped fibre amplifier systems,” Electron. Lett. 27, 193–195 (1991).

Abe, Y.

Abedin, K. S.

Aikawa, K.

Alam, S.-U.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S.-U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5–30 (2004).

Awaji, Y.

Azoasa, S.

Bansal, L.

Bolen, R.

L. Qian and R. Bolen, “Erbium-doped phosphosilicate fiber amplifiers: a comparison of configurations for the optimization of noise figure and conversion efficiency,” Proc. SPIE 5970, 877–885 (2005).

Chen, H.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Clarkson, W. A.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S.-U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5–30 (2004).

Delgado, J. M.

DiGiovanni, D. J.

Dimarcello, F. V.

Ellis, A. D.

A. D. Ellis, R. M. Percival, A. Lord, and W. A. Stallard, “Automatic gain control in cascaded erbium doped fibre amplifier systems,” Electron. Lett. 27, 193–195 (1991).

Essiambre, R.-J.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Fini, J. M.

Fishteyn, M.

Fontaine, N. K.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Glick, Y.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE 6552, 65520R (2007).

Gregoire, N.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Grudinin, A. B.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S.-U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5–30 (2004).

Hayashi, T.

Huang, B.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Imamura, K.

James Puttnam, B.

Jensen, R. V.

Jin, C.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Katz, O.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE 6552, 65520R (2007).

Klaus, W.

Kobayashi, T.

Kokubun, T.

Koplowitch, T.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE 6552, 65520R (2007).

Kracht, D.

LaRochelle, S.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Lavi, R.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE 6552, 65520R (2007).

Li, G.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Lord, A.

A. D. Ellis, R. M. Percival, A. Lord, and W. A. Stallard, “Automatic gain control in cascaded erbium doped fibre amplifier systems,” Electron. Lett. 27, 193–195 (1991).

Luis, R. S.

Maeda, K.

Matsui, T.

Matsuo, S.

Mendinueta, J. M. D.

Messaddeq, Y.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Miyamoto, Y.

Mizuno, T.

Monberg, E. M.

Morency, S.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Nafcha, Y.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE 6552, 65520R (2007).

Nakajima, K.

Nakanishi, T.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7, 354–362 (2013).

Neumann, J.

Nilsson, J.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S.-U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5–30 (2004).

Overmeyer, L.

Percival, R. M.

A. D. Ellis, R. M. Percival, A. Lord, and W. A. Stallard, “Automatic gain control in cascaded erbium doped fibre amplifier systems,” Electron. Lett. 27, 193–195 (1991).

Puttnam, B. J.

Qian, L.

L. Qian and R. Bolen, “Erbium-doped phosphosilicate fiber amplifiers: a comparison of configurations for the optimization of noise figure and conversion efficiency,” Proc. SPIE 5970, 877–885 (2005).

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7, 354–362 (2013).

Ryf, R.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Sahu, J. K.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S.-U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5–30 (2004).

Saitoh, K.

Saitoh, S.

Sakaguchi, J.

Sakamoto, T.

Sayinc, H.

Selvas, R.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S.-U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5–30 (2004).

Shang, K.

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

Shibahara, K.

Sintov, Y.

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE 6552, 65520R (2007).

Stallard, W. A.

A. D. Ellis, R. M. Percival, A. Lord, and W. A. Stallard, “Automatic gain control in cascaded erbium doped fibre amplifier systems,” Electron. Lett. 27, 193–195 (1991).

Sugizaki, R.

Supradeepa, V. R.

Tadakuma, M.

Takahata, T.

Takenaga, K.

Taunay, T. F.

Theeg, T.

Thierry, T. F.

Tobita, Y.

Tottori, Y.

Tsuchida, Y.

Turner, P. W.

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S.-U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5–30 (2004).

Wada, N.

Watanabe, M.

Watanabe, T.

Wisk, P. W.

Yan, M. F.

Zhu, B.

Electron. Lett. (1)

A. D. Ellis, R. M. Percival, A. Lord, and W. A. Stallard, “Automatic gain control in cascaded erbium doped fibre amplifier systems,” Electron. Lett. 27, 193–195 (1991).

J. Lightwave Technol. (4)

Nat. Photonics (2)

H. Chen, C. Jin, B. Huang, N. K. Fontaine, R. Ryf, K. Shang, N. Gregoire, S. Morency, R.-J. Essiambre, G. Li, Y. Messaddeq, and S. LaRochelle, “Integrated cladding-pumped multicore few-mode erbium-doepd fibre amplifier for space-division-multiplexed communications,” Nat. Photonics 10, 529–533 (2016).

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7, 354–362 (2013).

Opt. Express (3)

Opt. Fiber Technol. (1)

J. Nilsson, W. A. Clarkson, R. Selvas, J. K. Sahu, P. W. Turner, S.-U. Alam, and A. B. Grudinin, “High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers,” Opt. Fiber Technol. 10, 5–30 (2004).

Proc. SPIE (2)

Y. Sintov, Y. Glick, T. Koplowitch, O. Katz, Y. Nafcha, and R. Lavi, “A novel side coupling technique for rugged all-fiber lasers and amplifiers,” Proc. SPIE 6552, 65520R (2007).

L. Qian and R. Bolen, “Erbium-doped phosphosilicate fiber amplifiers: a comparison of configurations for the optimization of noise figure and conversion efficiency,” Proc. SPIE 5970, 877–885 (2005).

Other (13)

S. Jain, T. Mizuno, Y. Jung, Q. Kang, J. R. Hayes, M. N. Petrovich, G. Bai, H. Ono, K. Shibahara, A. Sano, A. Isoda, Y. Miyamoto, Y. Sasaki, Y. Amma, K. Takenaga, K. Aikawa, C. Castro, K. Pulverer, and M. Nooruzzaman, T. Morioka, S. U. Alam, and D. J. Richardson, “32-core inline multicore fiber amplifier for dense space division multiplexed transmission systems,” in European Conference on Optical Communication, Dusseldorf 18–22 Sep, Th.3.A.1 (2016) (Postdeadline).

T. Mizuno, A. Isoda, K. Shibahara, Y. Miyamoto, S. Jain, S. U. Alam, D. J. Richardson, C. Castro, K. Pulverer, Y. Sasaki, Y. Amma, K. Takenaga, K. Aikawa, and T. Morioka, “In-service crosstalk monitoring for dense space division multiplexed multi-core fiber transmission systems,” in Optical Fiber Communication Conference, Los Angeles, 19–23 March, M3J.2 (2017).

Y. Jung, S. Alam, Y. Sasaki, and D. J. Richardson, “Compact 32-core multicore fiber isolator for high-density spatial division multiplexed transmission,” in European Conference on Optical Communication, Dusseldorf 18–22 Sep, W2.B4 (2016).

Y. Mimura, Y. Tsuchida, K. Maeda, R. Miyabe, K. Aiso, H. Matsuura, and R. Sugizaki, “Batch multicore amplification with cladding-pumped multicore EDF,” in European Conference on Optical Communication, Tu.4.F.1 (2012).

H. Ono, K. Takenaga, K. Ichii, S. Matsuo, T. Takahashi, H. Masuda, and M. Yamada, “12-Core double-clad Er/Yb-doped fiber amplifier employing free-space coupling pump/signal combiner module,” in European Conference on Optical Communication, London 22–26 Sep., We.4.A.4 (2013).

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Aikawa, K. Saitoh, T. Morioka, and Y. Miyamoto, “Single-mode multicore fiber for dense space division multiplexing,” in Optoelectronics and Communications Conference/International Conference on Photonics in Switching (OECC/PS), MC1–4 (2016).

Y. Sasaki, K. Takenaga, K. Aikawa, Y. Miyamoto, and T. Morioka, “Single-mode 37-core fiber with a cladding diameter of 248μm,” in Optical Fiber Communications Conference, Los Angeles, 19–23 March, Th1H.2, (2017).

Y. Sasaki, R. Fukumoto, K. Takenaga, K. Aikawa, K. Saitoh, T. Morioka, and Y. Miyamoto, “Crosstalk-managed heterogeneous single mode 32-core fibre,” in European Conference and Exhibition on Optical Communication, Dusseldorf 18–22 Sep, W.2.B.2 (2016).

B. J. Puttnam, R. S. Luis, W. Klaus, J. Sakaguichi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s Transmission using a 22 core homogenous single-mode multi-core fiber and wideband optical comb,” in European Conference on Optical Communication, Valencia, 27 Sep – 1 Oct, PDP.3.1 (2015).

T. Kobayashi, M. Nakamura, F. Hamaoka, K. Shibahara, T. Mizuno, A. Sano, H. Kawakami, A. Isoda, M. Nagatani, H. Yamazaki, Y. Miyamoto, Y. Amma, Y. Sasaki, K. Takenaga, K. Aikawa, K. Saitoh, Y. Jung, D. J. Richardson, K. Pulverer, M. Bohn, M. Nooruzzaman, and T. Morioka, “1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band dense SDM transmission over 205.6-km of single-mode heterogeneous multi-core fiber using 96-Gbaud PDM-16QAM channels,” in Optical Fiber Communication Conference, Los Angeles, 19–23 March, Th5B.1 (2017) (Postdeadline).

P. F. Wysocki, “Erbium-doped fiber amplifiers: advanced topics,” in Rare-earth doped fiber lasers and amplifiers, M. J. F. Digonnet ed. (Marcel Dekker, 2001).

C. Castro, S. Jain, Y. Jung, E. D. Man, S. Calabro, K. Pulverer, M. Bohn, J. Hayes, S. Alam, D. J. Richardson, Y. Sasaki, T. Mizuno, K. Shibahara, T. Kobayashi, Y. Miyamoto, T. Morioka, and W. Rosenkranz, “Crosstalk Analysis of 32-Core Dense Space Division Multiplexed System for Higher Order Modulation Formats Using an Integrated Cladding-Pumped Amplifier,” in European Conference on Optical Communication, Gothenburg 17–21 Sep, M.2.E.5 (2017).

https://www.lumentum.com/en/opticalcommunications/products/pump-lasers/14-pin-9xx-pump-lasers

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Microscope image of (a) passive 32c-MCF and a core pitch matched (b) 32c-MC-EYDF, and (c) Schematic with Core indexing in 32c-MCF.
Fig. 2
Fig. 2 Schematic of experimental setup for gain and noise figure measurement of 32c-MC-EYDFA.
Fig. 3
Fig. 3 (a) Gain, and (b) NF performance of the 32c-MC-EYDA for an input signal power of −4dBm.
Fig. 4
Fig. 4 Gain vs pump power for core 32.
Fig. 5
Fig. 5 Schematic setup for measuring transient performance of the 32c-EYDFA.
Fig. 6
Fig. 6 Output for core 32 (green), and input signal to the reamining cores.
Fig. 7
Fig. 7 Experimental setup for amplifier testing.
Fig. 8
Fig. 8 BER vs distance for different m-QAM modulation formats.

Tables (2)

Tables Icon

Table 1 Specifications of 32c-MCF and 32c-MC-EYDF

Tables Icon

Table 2 Power consumption of conventional EDFAs and our MC-EYDFA (*: 60% pump coupling efficiency, ** 90% pump coupling efficiency)

Metrics