Abstract

High-density photonic integrated circuits (PICs) are expected to replace their current electronic counterparts in the future. The most crucial prerequisite for realizing successful PICs is to develop a low-loss coupling technique between active and passive photonic components based on various nanoscale materials and devices. Here we propose and demonstrate an on-chip integration technique in which a high-refractive-index layer constitutes the coplanar structural backbone across the entire PIC chip. To prove the concept, patterns of a two-dimensional photonic crystal (PhC) band-edge laser and grating couplers are engraved into the backbone layer, and colloidal quantum dots (CQDs) for optical gain are selectively deposited in the PhC area by a conventional lift-off process. Using optical excitation, we observe that the CQD–PhC structure emits coherent single-mode laser light, which is subsequently coupled to and propagates through an adjacent slab waveguide in the well-defined directions corresponding to the selected band-edge point, finally emerging through the grating coupler. Our study demonstrates a simple but highly suggestive PIC platform that automatically guarantees high coupling efficiencies between the micro- and nanophotonic devices to be integrated (through high degrees of modal matching in the vertical direction) and will therefore advance the development of high-density PIC technologies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and characterization of on-chip silicon nitride microdisk integrated with colloidal quantum dots

Weiqiang Xie, Yunpeng Zhu, Tangi Aubert, Zeger Hens, Edouard Brainis, and Dries Van Thourhout
Opt. Express 24(2) A114-A122 (2016)

Photonic band-edge micro lasers with quantum dot gain

Masahiro Nomura, Satoshi Iwamoto, Aniwat Tandaechanurat, Yasutomo Ota, Naoto Kumagai, and Yasuhiko Arakawa
Opt. Express 17(2) 640-648 (2009)

Nanosecond colloidal quantum dot lasers for sensing

B. Guilhabert, C. Foucher, A-M. Haughey, E. Mutlugun, Y. Gao, J. Herrnsdorf, H.D. Sun, H.V. Demir, M.D. Dawson, and N. Laurand
Opt. Express 22(6) 7308-7319 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. Nojima, “Optical-gain enhancement in two-dimensional active photonic crystals,” J. Appl. Phys. 90(2), 545–551 (2001).
    [Crossref]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [Crossref]
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [Crossref] [PubMed]
  5. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004).
    [Crossref] [PubMed]
  6. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
    [Crossref] [PubMed]
  7. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
    [Crossref] [PubMed]
  8. F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
    [Crossref] [PubMed]
  9. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
    [Crossref] [PubMed]
  10. C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
    [Crossref]
  11. S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
    [Crossref] [PubMed]
  12. M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
    [Crossref] [PubMed]
  13. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
    [Crossref] [PubMed]
  14. S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
    [Crossref]
  15. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
    [Crossref] [PubMed]
  16. M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
    [Crossref]
  17. C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
    [Crossref] [PubMed]
  18. H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
    [Crossref] [PubMed]
  19. H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108(18), 181104 (2016).
    [Crossref]
  20. H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
    [Crossref]
  21. M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
    [Crossref] [PubMed]
  22. L. Pavesi and G. Guillot, Optical interconnects: The silicon approach (Springer, 2007)
  23. J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, “Preparation of highly luminescent nanocrystals and their application to light‐emitting diodes,” Adv. Mater. 19(15), 1927–1932 (2007).
    [Crossref]
  24. K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
    [Crossref]
  25. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [Crossref]
  26. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
    [Crossref]
  27. R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady‐state analysis of a directional square lattice band‐edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
    [Crossref]

2017 (1)

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

2016 (4)

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
[Crossref] [PubMed]

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108(18), 181104 (2016).
[Crossref]

2015 (1)

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

2014 (1)

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

2013 (2)

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

2012 (2)

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

2011 (1)

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

2009 (1)

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

2008 (1)

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

2007 (1)

J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, “Preparation of highly luminescent nanocrystals and their application to light‐emitting diodes,” Adv. Mater. 19(15), 1927–1932 (2007).
[Crossref]

2006 (2)

2005 (1)

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady‐state analysis of a directional square lattice band‐edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
[Crossref]

2004 (2)

D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004).
[Crossref] [PubMed]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

2002 (1)

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

2001 (1)

S. Nojima, “Optical-gain enhancement in two-dimensional active photonic crystals,” J. Appl. Phys. 90(2), 545–551 (2001).
[Crossref]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Adachi, M. M.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Ahn, S.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

Alexander-Webber, J. A.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Amsden, J. J.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

Arakawa, Y.

Bae, S.

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108(18), 181104 (2016).
[Crossref]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Baik, H.

J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, “Preparation of highly luminescent nanocrystals and their application to light‐emitting diodes,” Adv. Mater. 19(15), 1927–1932 (2007).
[Crossref]

Barbosa, C. L.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady‐state analysis of a directional square lattice band‐edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
[Crossref]

Barrelet, C. J.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

Benfenati, V.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

Bicanic, K. T.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Breen, C.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Cavallini, S.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

Cazo, R. M.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady‐state analysis of a directional square lattice band‐edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
[Crossref]

Cha, H.

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108(18), 181104 (2016).
[Crossref]

Chang, H.

H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
[Crossref] [PubMed]

Chen, S.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

Cho, J.

J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, “Preparation of highly luminescent nanocrystals and their application to light‐emitting diodes,” Adv. Mater. 19(15), 1927–1932 (2007).
[Crossref]

Cho, K.-S.

H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
[Crossref] [PubMed]

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Choi, B. L.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Chong, W. K.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

Chutinan, A.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

Coe-Sullivan, S.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Dang, C.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

de Luna Bugallo, A.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Durand, C.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Emery, T.

Eymery, J.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Fan, F.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Feng, L.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Gather, M. C.

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Halioua, Y.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Han, J. Y.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Hatami, F.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Hattori, H. T.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady‐state analysis of a directional square lattice band‐edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
[Crossref]

Hawrylak, P.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Herz, L. M.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Hoogland, S.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Hörantner, M. T.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Huang, J.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Hwang, S.-W.

H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
[Crossref] [PubMed]

Imada, M.

D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004).
[Crossref] [PubMed]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

Ishida, S.

Iwamoto, S.

Jacopin, G.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Jain, A.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Jang, E.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, “Preparation of highly luminescent nanocrystals and their application to light‐emitting diodes,” Adv. Mater. 19(15), 1927–1932 (2007).
[Crossref]

Jeon, H.

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108(18), 181104 (2016).
[Crossref]

H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
[Crossref] [PubMed]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Johnston, M. B.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Joo, W.-J.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Julien, F. H.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Jun, S.

J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, “Preparation of highly luminescent nanocrystals and their application to light‐emitting diodes,” Adv. Mater. 19(15), 1927–1932 (2007).
[Crossref]

Kang, M.

H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
[Crossref] [PubMed]

Kaplan, D. L.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

Kim, B.-K.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Kim, H.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, “Preparation of highly luminescent nanocrystals and their application to light‐emitting diodes,” Adv. Mater. 19(15), 1927–1932 (2007).
[Crossref]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Kim, J. M.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Kim, S.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kim, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kim, T.-H.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Klimov, V. I.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Korkusinski, M.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Kristensen, A.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

Kumagai, N.

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kwon, S.-J.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Lavenus, P.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Lee, E. K.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Lee, J.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Lee, M.

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108(18), 181104 (2016).
[Crossref]

H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
[Crossref] [PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Lee, S. J.

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

Lee, Y.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Lemmer, U.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

Li, X.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Li, Z.

Lieber, C. M.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

Lim, J.

J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, “Preparation of highly luminescent nanocrystals and their application to light‐emitting diodes,” Adv. Mater. 19(15), 1927–1932 (2007).
[Crossref]

Liu, M.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Lu, Y.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

Maier-Flaig, F.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

Majumdar, A.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Mathews, N.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

McBride, J. R.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Messanvi, A.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Min, K.

H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
[Crossref] [PubMed]

Mochizuki, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

Morris, S. M.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Muccini, M.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

Nakata, Y.

Natali, M.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

Nayak, P. K.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Nicholas, R. J.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Noda, S.

D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004).
[Crossref] [PubMed]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

Nojima, S.

S. Nojima, “Optical-gain enhancement in two-dimensional active photonic crystals,” J. Appl. Phys. 90(2), 545–551 (2001).
[Crossref]

Nomura, M.

Nurmikko, A.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Ohnishi, D.

Okano, T.

Omenetto, F. G.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Park, H.-G.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Park, Y.

H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
[Crossref] [PubMed]

Park, Y.-S.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Patel, J. B.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Psaltis, D.

Qian, F.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

Quintero-Bermudez, R.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Reid, K. R.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Riede, M. K.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Rigutti, L.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Roh, K.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

Roh, Y.-G.

H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
[Crossref] [PubMed]

Rosenthal, S. J.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Sabatini, R. P.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Saliba, M.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Saravanapavanantham, M.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Sargent, E. H.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Schaibley, J. R.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Scherer, A.

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
[Crossref] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Schneider, V. M.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady‐state analysis of a directional square lattice band‐edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
[Crossref]

Snaith, H. J.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Steckel, J. S.

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Stranks, S. D.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Sum, T. C.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

Tchernycheva, M.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Tian, B.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

Toffanin, S.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

Vannahme, C.

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Voznyy, O.

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

Vuckovic, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Wang, J. T.-W.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Watanabe, K.

Wenger, B.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Wood, S. M.

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

Wu, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Wu, Y.

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

Xu, X.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yan, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Yao, W.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Yun, S. H.

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Zamboni, R.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

Zhang, H.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Zhang, Z.

ACS Nano (1)

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10(4), 3959–3967 (2016).
[Crossref] [PubMed]

Adv. Mater. (2)

M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hörantner, J. T.-W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, “Structured organic–inorganic perovskite toward a distributed feedback laser,” Adv. Mater. 28(5), 923–929 (2016).
[Crossref] [PubMed]

J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, “Preparation of highly luminescent nanocrystals and their application to light‐emitting diodes,” Adv. Mater. 19(15), 1927–1932 (2007).
[Crossref]

Appl. Phys. Lett. (3)

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101(9), 091110 (2012).
[Crossref]

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108(18), 181104 (2016).
[Crossref]

C. Dang, J. Lee, K. Roh, H. Kim, S. Ahn, H. Jeon, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films,” Appl. Phys. Lett. 103(17), 171104 (2013).
[Crossref]

J. Appl. Phys. (2)

S. Nojima, “Optical-gain enhancement in two-dimensional active photonic crystals,” J. Appl. Phys. 90(2), 545–551 (2001).
[Crossref]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Lab Chip (1)

C. Vannahme, F. Maier-Flaig, U. Lemmer, and A. Kristensen, “Single-mode biological distributed feedback laser,” Lab Chip 13(14), 2675–2678 (2013).
[Crossref] [PubMed]

Microw. Opt. Technol. Lett. (1)

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady‐state analysis of a directional square lattice band‐edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46(3), 210–214 (2005).
[Crossref]

Nano Lett. (1)

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Nanoscale (1)

H. Chang, K. Min, M. Lee, M. Kang, Y. Park, K.-S. Cho, Y.-G. Roh, S.-W. Hwang, and H. Jeon, “Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone,” Nanoscale 8(12), 6571–6576 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7(5), 335–339 (2012).
[Crossref] [PubMed]

Nat. Photonics (3)

H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2(10), 622–626 (2008).
[Crossref]

K.-S. Cho, E. K. Lee, W.-J. Joo, E. Jang, T.-H. Kim, S. J. Lee, S.-J. Kwon, J. Y. Han, B.-K. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” Nat. Photonics 3(6), 341–345 (2009).
[Crossref]

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Nature (3)

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015).
[Crossref] [PubMed]

F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, and E. H. Sargent, “Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,” Nature 544(7648), 75–79 (2017).
[Crossref] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002).
[Crossref]

Phys. Rev. Lett. (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Science (2)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Other (1)

L. Pavesi and G. Guillot, Optical interconnects: The silicon approach (Springer, 2007)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of on-chip integration of PhC band-edge laser, waveguide, and output coupler. (b) Refractive index profiles (left) and fundamental TE-guided mode profiles (right) of the CQD–PhC band-edge laser section (red) and Si3N4 waveguide section (blue) at a wavelength of 615 nm. (c) FDTD-simulated TE-guided mode propagation across the interface between the CQD–PhC laser structure and the Si3N4 waveguide. (d) FDTD simulation near the joint between the waveguide and the grating coupler. The magnitude of the Poynting vector is plotted on a logarithmic scale.
Fig. 2
Fig. 2 (a) Photonic band structure of the 2D square-lattice PhC calculated by the plane-wave expansion method. The dashed lines represent the light lines in vacuum (upper) and in silica (lower). (b), (c) Resonant mode spectra calculated for the (b) X and (c) M symmetry points. The insets show the FDTD-calculated band-edge mode profiles within a unit cell.
Fig. 3
Fig. 3 Device images. (a) Optical microscope image of one unit of fully fabricated device structure. An octagonal CQD–PhC laser (center) and eight grating couplers are integrated with a pattern-free region of Si3N4 waveguide in between. A linear polarizer filter is inserted to differentiate the images of the output couplers depending on the orientation of the one-dimensional (1D) grating. (b), (c) SEM images taken from the top of (b) the a = 255 nm PhC laser (before CQD deposition) and (c) the 1D grating coupler. (d), (e) Tilted SEM images of (d) the boundary between the CQD–PhC laser and the bare Si3N4 waveguide and (e) the grating coupler. Insets show amplified SEM images of (d) the CQD–PhC laser section (top view after CQD deposition) and (e) the grating coupler (tilted view).
Fig. 4
Fig. 4 Emission properties of the CQD–PhC X-point band-edge laser. (a) Photoluminescence spectra at various excitation pulse energies. (b) Light input versus light output relationship. (c)–(f) CCD images and (g)–(j) emission spectra of the full device under optical excitation: (c), (g) below laser threshold, (d), (h) above laser threshold, (e), (i) above threshold and at 0° polarization angle, and (f), (h) above threshold and at 90° polarization angle.
Fig. 5
Fig. 5 Emission properties of the CQD–PhC M-point band-edge laser. (a) Photoluminescence spectra at various excitation pulse energies. (b) Light input versus light output relationship. (c)–(f) CCD images and (g)–(j) emission spectra of the full device under optical excitation: (c), (g) below laser threshold, (d), (h) above laser threshold, (e), (i) above threshold and at 45° polarization angle, and (f), (j) above threshold and at 135° polarization angle.
Fig. 6
Fig. 6 Refractive index dispersions of the CdSe/CdS/ZnS CQDs. (a) Real part (n) and (b) imaginary part (k).
Fig. 7
Fig. 7 Electric field vector plots of the FDTD-simulated band-edge modes. (a) X3/X4 and (b) M3/M4. Each arrow denotes the in-plane electric field component at that point while the color of the arrow represents the magnitude of electric field.
Fig. 8
Fig. 8 FDTD-simulated propagation of band-edge mode. Profile of electric field magnitude at (a) X-point (X3/X4) and at (b) M-point (M3/M4).
Fig. 9
Fig. 9 Micro-photoluminescence measurement setup.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η= η F | E in (y,z) E out * (y,z)dydz | 2 | E in(y,z) | 2 dydz | E out(y,z) | 2 dydz ,
η F = 4 n in n out ( n in + n out ) 2 .

Metrics