Abstract

We design and analyze a hybrid optomechanical setup to achieve an effective coupling between the mechanical motions of a micromechanical cantilever and a single atom trapped inside a cavity, which is mediated by a direct interaction between the micromechanical cantilever and the atomic internal state via the quantum vacuum effect. Moreover, the optomechanical coupling between the mechanical motion of the cantilever and the cavity field can be mediated by the interaction with the atom. Their couplings are demonstrated in detail by analyzing the normal-mode splitting of the mechanical motion and the optical response of the hybrid optomechanical system. It is found that double optomechanically-induced transparency can be observed in the output probe field in the presence of the mediated coupling. In particular, both the width of the splitting peaks and the separation between the two absorption dips increase with the increasing strength of the vacuum coupling and with the decreasing trapped position of the atom. These characteristics can be used to study the strong coupling between a single atom and a massive micromechanical cantilever.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters

Wenjie Nie, Aixi Chen, and Yueheng Lan
Opt. Express 23(24) 30970-30984 (2015)

Theoretical scheme for the realization of the sphere-coherent motional states in an atom-assisted optomechanical cavity

F. Bemani, R. Roknizadeh, and M. H. Naderi
J. Opt. Soc. Am. B 32(7) 1360-1368 (2015)

A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system

Yueming Wang, Bin Liu, Jinling Lian, and Jiuqing Liang
Opt. Express 20(9) 10106-10114 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [Crossref] [PubMed]
  2. P. Meystre, “A short walk through quantum optomechanics,” Ann. Phys. 525, 215–233 (2013).
    [Crossref]
  3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
    [Crossref]
  4. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
    [Crossref]
  5. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724 (2009).
    [Crossref]
  6. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
    [Crossref] [PubMed]
  7. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63 (2012).
    [Crossref] [PubMed]
  8. D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” PNAS 107, 1005–1010 (2010).
    [Crossref] [PubMed]
  9. O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Optically levitating dielectrics in the quantum regime: Theory and protocols,” Phys. Rev. A 83, 013803 (2011).
    [Crossref]
  10. Z.-q. Yin, A. A. Geraci, and T. Li, “Optomechanics of levitated dielectric particles,” Int. J. Mod. Phys. B 27, 1330018 (2013).
    [Crossref]
  11. M. L. Juan, G. Molina-Terriza, T. Volz, and O. Romero-Isart, “Near-field levitated quantum optomechanics with nanodiamonds,” Phys. Rev. A 94, 023841 (2016).
    [Crossref]
  12. T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
    [Crossref] [PubMed]
  13. T. M. Hoang, J. Ahn, J. Bang, and T. Li, “Electron spin control of optically levitated nanodiamonds in vacuum,” Nat. Commun. 7, 12250 (2016).
    [Crossref]
  14. J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
    [Crossref]
  15. J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
    [Crossref]
  16. L. F. Buchmann, L. Zhang, A. Chiruvelli, and P. Meystre, “Macroscopic tunneling of a membrane in an optomechanical double-well potential,” Phys. Rev. Lett. 108, 210403 (2012).
    [Crossref] [PubMed]
  17. R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
    [Crossref] [PubMed]
  18. C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
    [Crossref] [PubMed]
  19. K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
    [Crossref] [PubMed]
  20. C. Doolin, P. H. Kim, B. D. Hauer, A. J. R. MacDonald, and J. P. Davis, “Multidimensional optomechanical cantilevers for high-frequency force sensing,” New J. Phys. 16, 035001 (2014).
    [Crossref]
  21. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
    [Crossref]
  22. Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
    [Crossref] [PubMed]
  23. P. Stadler, W. Belzig, and G. Rastelli, “Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current,” Phys. Rev. Lett. 113, 047201 (2014).
    [Crossref] [PubMed]
  24. W. J. Nie, A. X. Chen, and Y. H. Lan, “Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters,” Opt. Express 23, 30970–30984 (2015).
    [Crossref] [PubMed]
  25. X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
    [Crossref]
  26. M. Abdi and M. J. Hartmann, “Entangling the motion of two optically trapped objects via time-modulated driving fields,” New J. Phys. 17013056 (2015).
    [Crossref]
  27. R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
    [Crossref]
  28. K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
    [Crossref]
  29. E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
    [Crossref] [PubMed]
  30. J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, “Parametric normal-mode splitting in cavity optomechanics,” Phys. Rev. Lett. 101, 263602 (2008).
    [Crossref] [PubMed]
  31. S. Huang and G. S. Agarwal, “Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity,” Phys. Rev. A 80, 033807 (2009).
    [Crossref]
  32. G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
    [Crossref]
  33. S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).
    [Crossref]
  34. S. Huang and G. S. Agarwal, “Electromagnetically induced transparency with quantized fields in optocavity mechanics,” Phys. Rev. A 83, 043826 (2011).
    [Crossref]
  35. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
    [Crossref]
  36. K. Qu and G. S. Agarwal, “Fano resonances and their control in optomechanics,” Phys. Rev. A 87, 063813 (2013).
    [Crossref]
  37. M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
    [Crossref]
  38. A. Kronwald and F. Marquardt, “Optomechanically induced transparency in the nonlinear quantum regime,” Phys. Rev. Lett. 111, 133601 (2013).
    [Crossref] [PubMed]
  39. H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
    [Crossref] [PubMed]
  40. H. Xiong, Y.-M. Huang, L.-L. Wan, and Y. Wu, “Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency,” Phys. Rev. A 94, 013816 (2016).
    [Crossref]
  41. P.-C. Ma, J.-Q. Zhang, Y. Xiao, M. Feng, and Z.-M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).
    [Crossref]
  42. S. Haroche and J. M. Raimond, Exploring the Quantum: Atoms cavities and Photons (Oxford University, 2006).
    [Crossref]
  43. H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
    [Crossref]
  44. C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
    [Crossref]
  45. C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
    [Crossref]
  46. Y. Xiao, Y.-F. Yu, and Z.-M. Zhang, “Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble,” Opt. Express 22, 17979–17989 (2014).
    [Crossref] [PubMed]
  47. A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein, “Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system,” Nat. Nanotech. 10, 55 (2015).
    [Crossref]
  48. W. J. Nie, A. Chen, and Y. H. Lan, “ Optical-response properties in levitated optomechanical systems beyond the low-excitation limit,” Phys. Rev. A 93, 023841 (2016).
    [Crossref]
  49. L. Li, W. J. Nie, and A. Chen, “Transparency and tunable slow and fast light in a nonlinear optomechanical cavity,” Sci. Rep. 6, 35090 (2016).
    [Crossref] [PubMed]
  50. M. J. Akram, F. Ghafoor, and F. Saif, “Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics,” J. Phys. B: At. Mol. Opt. Phys. 48, 065502 (2015).
    [Crossref]
  51. H. Wang, X. Gu, . Y.-x. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).
    [Crossref]
  52. F. Brennecke, S. Ritter, T. Donner, and Tilman Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
    [Crossref] [PubMed]
  53. R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
    [Crossref] [PubMed]
  54. L. Zhou, H. Pu, K. Zhang, X.-D. Zhao, and W. P. Zhang, “Cavity-induced switching between localized and extended states in a noninteracting Bose-Einstein condensate,” Phys. Rev. A 84, 043606 (2011).
    [Crossref]
  55. K. A. Yasir, L. Zhuang, and W.-M. Liu, “Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate,” Phys. Rev. A 95, 013810 (2017).
    [Crossref]
  56. K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
    [Crossref] [PubMed]
  57. J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
    [Crossref] [PubMed]
  58. S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
    [Crossref] [PubMed]
  59. L. F. Wei, Y.-X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?” Phys. Rev. Lett. 97, 237201 (2006).
    [Crossref]
  60. W. Y. Huo and G. L. Long, “Generation of squeezed states of nanomechanical resonator using three-wave mixing,” Appl. Phys. Lett. 92, 133102 (2008).
    [Crossref]
  61. A. V. Parafilo, S. I. Kulinich, L. Y. Gorelik, M. N. Kiselev, R. I. Shekhter, and M. Jonson, “Spin-mediated photomechanical coupling of a nanoelectromechanical shuttle,” Appl. Phys. Lett. 117, 057202 (2016).
    [Crossref]
  62. D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
    [Crossref] [PubMed]
  63. C. A. Muschik, S. Moulieras, A. Bachtold, F. H. L. Koppens, M. Lewenstein, and D. E. Chang, “Harnessing vacuum forces for quantum sensing of graphene motion,” Phys. Rev. Lett. 112, 223601 (2014).
    [Crossref] [PubMed]
  64. S. Ribeiro and H. Terças, “Sympathetic laser cooling of graphene with Casimir-Polder forces,” Phys. Rev. A 94, 043420 (2016).
    [Crossref]
  65. G. Morigi, J. Eschner, S. Mancini, and D. Vitali, “Coherent generation of EPR-entangled light pulses mediated by a single trapped atom,” Phys. Rev. A 73, 033822 (2006).
    [Crossref]
  66. X. Z. Yuan, “Entangling an optical cavity and a nanomechanical resonator beam by means of a quantum dot,” Phys. Rev. A 88, 052317 (2013).
    [Crossref]
  67. D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7, 159–165 (2011).
    [Crossref]
  68. C. Maschler and H. Ritsch, “Cold atom dynamics in a quantum optical lattice potential,” Phys. Rev. Lett. 95, 260401 (2005).
    [Crossref]
  69. C. Maschler and H. Ritsch, “Quantum motion of laser-driven atoms in a cavity field,” Opt. Commun. 243, 145 (2004).
    [Crossref]
  70. C.W. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
    [Crossref]
  71. Z.-Q. Yin, W. L. Yang, L. Sun, and L. M. Duan, “Quantum network of superconducting qubits through an optomechanical interface,” Phys. Rev. A 91, 012333 (2015).
    [Crossref]
  72. S. Y. Buhmann, L. Knöll, D.-G. Welsch, and H. T. Dung, “Casimir-Polder forces: A nonperturbative approach,” Phys. Rev. A 70, 052117 (2004).
    [Crossref]
  73. S. Y. Buhmann and D.-G. Welsch, “Dispersion forces in macroscopic quantum electrodynamics,” Prog. Quant. Electron. 31, 51 (2007).
    [Crossref]
  74. A. Lambrecht and S. Reynaud, “Casimir force between metallic mirrors,” Eur. Phys. J. D 8, 309 (2000).
    [Crossref]
  75. C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
    [Crossref] [PubMed]
  76. D. Hungera, S. Camerera, M. Korppia, A. Jöckela, T. W. Hänscha, and P. Treutleina, “Coupling ultracold atoms to mechanical oscillators,” Comptes Rendus Physique 12, 871 (2011).
    [Crossref]
  77. V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001).
    [Crossref]
  78. E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288 (1987).
    [Crossref]
  79. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
    [Crossref]
  80. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

2017 (1)

K. A. Yasir, L. Zhuang, and W.-M. Liu, “Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate,” Phys. Rev. A 95, 013810 (2017).
[Crossref]

2016 (10)

A. V. Parafilo, S. I. Kulinich, L. Y. Gorelik, M. N. Kiselev, R. I. Shekhter, and M. Jonson, “Spin-mediated photomechanical coupling of a nanoelectromechanical shuttle,” Appl. Phys. Lett. 117, 057202 (2016).
[Crossref]

S. Ribeiro and H. Terças, “Sympathetic laser cooling of graphene with Casimir-Polder forces,” Phys. Rev. A 94, 043420 (2016).
[Crossref]

H. Xiong, Y.-M. Huang, L.-L. Wan, and Y. Wu, “Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency,” Phys. Rev. A 94, 013816 (2016).
[Crossref]

W. J. Nie, A. Chen, and Y. H. Lan, “ Optical-response properties in levitated optomechanical systems beyond the low-excitation limit,” Phys. Rev. A 93, 023841 (2016).
[Crossref]

L. Li, W. J. Nie, and A. Chen, “Transparency and tunable slow and fast light in a nonlinear optomechanical cavity,” Sci. Rep. 6, 35090 (2016).
[Crossref] [PubMed]

M. L. Juan, G. Molina-Terriza, T. Volz, and O. Romero-Isart, “Near-field levitated quantum optomechanics with nanodiamonds,” Phys. Rev. A 94, 023841 (2016).
[Crossref]

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref] [PubMed]

T. M. Hoang, J. Ahn, J. Bang, and T. Li, “Electron spin control of optically levitated nanodiamonds in vacuum,” Nat. Commun. 7, 12250 (2016).
[Crossref]

R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
[Crossref] [PubMed]

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
[Crossref]

2015 (8)

M. Abdi and M. J. Hartmann, “Entangling the motion of two optically trapped objects via time-modulated driving fields,” New J. Phys. 17013056 (2015).
[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref] [PubMed]

W. J. Nie, A. X. Chen, and Y. H. Lan, “Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters,” Opt. Express 23, 30970–30984 (2015).
[Crossref] [PubMed]

M. J. Akram, F. Ghafoor, and F. Saif, “Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics,” J. Phys. B: At. Mol. Opt. Phys. 48, 065502 (2015).
[Crossref]

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein, “Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system,” Nat. Nanotech. 10, 55 (2015).
[Crossref]

Z.-Q. Yin, W. L. Yang, L. Sun, and L. M. Duan, “Quantum network of superconducting qubits through an optomechanical interface,” Phys. Rev. A 91, 012333 (2015).
[Crossref]

J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

2014 (8)

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref] [PubMed]

C. A. Muschik, S. Moulieras, A. Bachtold, F. H. L. Koppens, M. Lewenstein, and D. E. Chang, “Harnessing vacuum forces for quantum sensing of graphene motion,” Phys. Rev. Lett. 112, 223601 (2014).
[Crossref] [PubMed]

Y. Xiao, Y.-F. Yu, and Z.-M. Zhang, “Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble,” Opt. Express 22, 17979–17989 (2014).
[Crossref] [PubMed]

H. Wang, X. Gu, . Y.-x. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).
[Crossref]

P.-C. Ma, J.-Q. Zhang, Y. Xiao, M. Feng, and Z.-M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).
[Crossref]

C. Doolin, P. H. Kim, B. D. Hauer, A. J. R. MacDonald, and J. P. Davis, “Multidimensional optomechanical cantilevers for high-frequency force sensing,” New J. Phys. 16, 035001 (2014).
[Crossref]

P. Stadler, W. Belzig, and G. Rastelli, “Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current,” Phys. Rev. Lett. 113, 047201 (2014).
[Crossref] [PubMed]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

2013 (9)

P. Meystre, “A short walk through quantum optomechanics,” Ann. Phys. 525, 215–233 (2013).
[Crossref]

Z.-q. Yin, A. A. Geraci, and T. Li, “Optomechanics of levitated dielectric particles,” Int. J. Mod. Phys. B 27, 1330018 (2013).
[Crossref]

X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

K. Qu and G. S. Agarwal, “Fano resonances and their control in optomechanics,” Phys. Rev. A 87, 063813 (2013).
[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

A. Kronwald and F. Marquardt, “Optomechanically induced transparency in the nonlinear quantum regime,” Phys. Rev. Lett. 111, 133601 (2013).
[Crossref] [PubMed]

X. Z. Yuan, “Entangling an optical cavity and a nanomechanical resonator beam by means of a quantum dot,” Phys. Rev. A 88, 052317 (2013).
[Crossref]

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

2012 (2)

L. F. Buchmann, L. Zhang, A. Chiruvelli, and P. Meystre, “Macroscopic tunneling of a membrane in an optomechanical double-well potential,” Phys. Rev. Lett. 108, 210403 (2012).
[Crossref] [PubMed]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63 (2012).
[Crossref] [PubMed]

2011 (11)

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Optically levitating dielectrics in the quantum regime: Theory and protocols,” Phys. Rev. A 83, 013803 (2011).
[Crossref]

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[Crossref] [PubMed]

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7, 159–165 (2011).
[Crossref]

S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

L. Zhou, H. Pu, K. Zhang, X.-D. Zhao, and W. P. Zhang, “Cavity-induced switching between localized and extended states in a noninteracting Bose-Einstein condensate,” Phys. Rev. A 84, 043606 (2011).
[Crossref]

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).
[Crossref]

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency with quantized fields in optocavity mechanics,” Phys. Rev. A 83, 043826 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[Crossref]

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

D. Hungera, S. Camerera, M. Korppia, A. Jöckela, T. W. Hänscha, and P. Treutleina, “Coupling ultracold atoms to mechanical oscillators,” Comptes Rendus Physique 12, 871 (2011).
[Crossref]

2010 (4)

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[Crossref] [PubMed]

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” PNAS 107, 1005–1010 (2010).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

2009 (5)

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724 (2009).
[Crossref]

S. Huang and G. S. Agarwal, “Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity,” Phys. Rev. A 80, 033807 (2009).
[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

2008 (9)

W. Y. Huo and G. L. Long, “Generation of squeezed states of nanomechanical resonator using three-wave mixing,” Appl. Phys. Lett. 92, 133102 (2008).
[Crossref]

F. Brennecke, S. Ritter, T. Donner, and Tilman Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref] [PubMed]

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[Crossref]

C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
[Crossref]

J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, “Parametric normal-mode splitting in cavity optomechanics,” Phys. Rev. Lett. 101, 263602 (2008).
[Crossref] [PubMed]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref] [PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[Crossref]

2007 (1)

S. Y. Buhmann and D.-G. Welsch, “Dispersion forces in macroscopic quantum electrodynamics,” Prog. Quant. Electron. 31, 51 (2007).
[Crossref]

2006 (3)

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

L. F. Wei, Y.-X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?” Phys. Rev. Lett. 97, 237201 (2006).
[Crossref]

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, “Coherent generation of EPR-entangled light pulses mediated by a single trapped atom,” Phys. Rev. A 73, 033822 (2006).
[Crossref]

2005 (1)

C. Maschler and H. Ritsch, “Cold atom dynamics in a quantum optical lattice potential,” Phys. Rev. Lett. 95, 260401 (2005).
[Crossref]

2004 (2)

C. Maschler and H. Ritsch, “Quantum motion of laser-driven atoms in a cavity field,” Opt. Commun. 243, 145 (2004).
[Crossref]

S. Y. Buhmann, L. Knöll, D.-G. Welsch, and H. T. Dung, “Casimir-Polder forces: A nonperturbative approach,” Phys. Rev. A 70, 052117 (2004).
[Crossref]

2001 (1)

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001).
[Crossref]

2000 (1)

A. Lambrecht and S. Reynaud, “Casimir force between metallic mirrors,” Eur. Phys. J. D 8, 309 (2000).
[Crossref]

1987 (1)

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288 (1987).
[Crossref]

Abdi, M.

M. Abdi and M. J. Hartmann, “Entangling the motion of two optically trapped objects via time-modulated driving fields,” New J. Phys. 17013056 (2015).
[Crossref]

Agarwal, G. S.

K. Qu and G. S. Agarwal, “Fano resonances and their control in optomechanics,” Phys. Rev. A 87, 063813 (2013).
[Crossref]

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency with quantized fields in optocavity mechanics,” Phys. Rev. A 83, 043826 (2011).
[Crossref]

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).
[Crossref]

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]

S. Huang and G. S. Agarwal, “Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity,” Phys. Rev. A 80, 033807 (2009).
[Crossref]

Ahn, J.

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref] [PubMed]

T. M. Hoang, J. Ahn, J. Bang, and T. Li, “Electron spin control of optically levitated nanodiamonds in vacuum,” Nat. Commun. 7, 12250 (2016).
[Crossref]

Akram, M. J.

M. J. Akram, F. Ghafoor, and F. Saif, “Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics,” J. Phys. B: At. Mol. Opt. Phys. 48, 065502 (2015).
[Crossref]

Aksyuk, V.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[Crossref] [PubMed]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[Crossref]

Allman, M. S.

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

Alton, D. J.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7, 159–165 (2011).
[Crossref]

Anant, V.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
[Crossref]

Anetsberger, G.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Aoki, T.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7, 159–165 (2011).
[Crossref]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Aspelmeyer, M.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Optically levitating dielectrics in the quantum regime: Theory and protocols,” Phys. Rev. A 83, 013803 (2011).
[Crossref]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724 (2009).
[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

Bachtold, A.

C. A. Muschik, S. Moulieras, A. Bachtold, F. H. L. Koppens, M. Lewenstein, and D. E. Chang, “Harnessing vacuum forces for quantum sensing of graphene motion,” Phys. Rev. Lett. 112, 223601 (2014).
[Crossref] [PubMed]

Bang, J.

T. M. Hoang, J. Ahn, J. Bang, and T. Li, “Electron spin control of optically levitated nanodiamonds in vacuum,” Nat. Commun. 7, 12250 (2016).
[Crossref]

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref] [PubMed]

Bäuerle, D.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

Bawaj, M.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Belzig, W.

P. Stadler, W. Belzig, and G. Rastelli, “Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current,” Phys. Rev. Lett. 113, 047201 (2014).
[Crossref] [PubMed]

Biancofiore, C.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Blaser, F.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

Böhm, H. R.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

Brennecke, F.

F. Brennecke, S. Ritter, T. Donner, and Tilman Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref] [PubMed]

Buchmann, L. F.

L. F. Buchmann, L. Zhang, A. Chiruvelli, and P. Meystre, “Macroscopic tunneling of a membrane in an optomechanical double-well potential,” Phys. Rev. Lett. 108, 210403 (2012).
[Crossref] [PubMed]

Buhmann, S. Y.

S. Y. Buhmann and D.-G. Welsch, “Dispersion forces in macroscopic quantum electrodynamics,” Prog. Quant. Electron. 31, 51 (2007).
[Crossref]

S. Y. Buhmann, L. Knöll, D.-G. Welsch, and H. T. Dung, “Casimir-Polder forces: A nonperturbative approach,” Phys. Rev. A 70, 052117 (2004).
[Crossref]

Camerer, S.

S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Camerera, S.

D. Hungera, S. Camerera, M. Korppia, A. Jöckela, T. W. Hänscha, and P. Treutleina, “Coupling ultracold atoms to mechanical oscillators,” Comptes Rendus Physique 12, 871 (2011).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[Crossref]

Chang, D. E.

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref] [PubMed]

C. A. Muschik, S. Moulieras, A. Bachtold, F. H. L. Koppens, M. Lewenstein, and D. E. Chang, “Harnessing vacuum forces for quantum sensing of graphene motion,” Phys. Rev. Lett. 112, 223601 (2014).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[Crossref]

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” PNAS 107, 1005–1010 (2010).
[Crossref] [PubMed]

Chen, A.

W. J. Nie, A. Chen, and Y. H. Lan, “ Optical-response properties in levitated optomechanical systems beyond the low-excitation limit,” Phys. Rev. A 93, 023841 (2016).
[Crossref]

L. Li, W. J. Nie, and A. Chen, “Transparency and tunable slow and fast light in a nonlinear optomechanical cavity,” Sci. Rep. 6, 35090 (2016).
[Crossref] [PubMed]

Chen, A. X.

Chiruvelli, A.

L. F. Buchmann, L. Zhang, A. Chiruvelli, and P. Meystre, “Macroscopic tunneling of a membrane in an optomechanical double-well potential,” Phys. Rev. Lett. 108, 210403 (2012).
[Crossref] [PubMed]

Cho, S. U.

J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Cicak, K.

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

Cirac, J. I.

O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Optically levitating dielectrics in the quantum regime: Theory and protocols,” Phys. Rev. A 83, 013803 (2011).
[Crossref]

Clerk, A. A.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref] [PubMed]

Dantan, A.

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

Davanço, M.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[Crossref] [PubMed]

Davis, J. P.

C. Doolin, P. H. Kim, B. D. Hauer, A. J. R. MacDonald, and J. P. Davis, “Multidimensional optomechanical cantilevers for high-frequency force sensing,” New J. Phys. 16, 035001 (2014).
[Crossref]

DeJesus, E. X.

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288 (1987).
[Crossref]

Deléglise, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63 (2012).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

Dobrindt, J. M.

J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, “Parametric normal-mode splitting in cavity optomechanics,” Phys. Rev. Lett. 101, 263602 (2008).
[Crossref] [PubMed]

Donner, T.

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

F. Brennecke, S. Ritter, T. Donner, and Tilman Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref] [PubMed]

Doolin, C.

C. Doolin, P. H. Kim, B. D. Hauer, A. J. R. MacDonald, and J. P. Davis, “Multidimensional optomechanical cantilevers for high-frequency force sensing,” New J. Phys. 16, 035001 (2014).
[Crossref]

Drewsen, M.

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

Duan, L. M.

Z.-Q. Yin, W. L. Yang, L. Sun, and L. M. Duan, “Quantum network of superconducting qubits through an optomechanical interface,” Phys. Rev. A 91, 012333 (2015).
[Crossref]

Dung, H. T.

S. Y. Buhmann, L. Knöll, D.-G. Welsch, and H. T. Dung, “Casimir-Polder forces: A nonperturbative approach,” Phys. Rev. A 70, 052117 (2004).
[Crossref]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[Crossref]

Eschner, J.

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, “Coherent generation of EPR-entangled light pulses mediated by a single trapped atom,” Phys. Rev. A 73, 033822 (2006).
[Crossref]

Esslinger, Tilman

F. Brennecke, S. Ritter, T. Donner, and Tilman Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref] [PubMed]

Evers, J.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Faber, A.

A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein, “Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system,” Nat. Nanotech. 10, 55 (2015).
[Crossref]

Favero, I.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[Crossref] [PubMed]

Feng, M.

P.-C. Ma, J.-Q. Zhang, Y. Xiao, M. Feng, and Z.-M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).
[Crossref]

Galassi, M.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Gardiner, C.W.

C.W. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
[Crossref]

Gärttner, M.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

Genes, C.

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
[Crossref]

Geng, Z.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Geraci, A. A.

Z.-q. Yin, A. A. Geraci, and T. Li, “Optomechanics of levitated dielectric particles,” Int. J. Mod. Phys. B 27, 1330018 (2013).
[Crossref]

Ghafoor, F.

M. J. Akram, F. Ghafoor, and F. Saif, “Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics,” J. Phys. B: At. Mol. Opt. Phys. 48, 065502 (2015).
[Crossref]

Gigan, S.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

Giovannetti, V.

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001).
[Crossref]

Girvin, S. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[Crossref]

Giuseppe, G. Di

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Gong, Z. R.

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[Crossref]

Gorelik, L. Y.

A. V. Parafilo, S. I. Kulinich, L. Y. Gorelik, M. N. Kiselev, R. I. Shekhter, and M. Jonson, “Spin-mediated photomechanical coupling of a nanoelectromechanical shuttle,” Appl. Phys. Lett. 117, 057202 (2016).
[Crossref]

Gröblacher, S.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
[Crossref]

R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
[Crossref] [PubMed]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724 (2009).
[Crossref]

Gu, X.

H. Wang, X. Gu, . Y.-x. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).
[Crossref]

Günter, G.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Hakonen, P. J.

J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Hammerer, K.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724 (2009).
[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

Hänsch, T. W.

S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Hänscha, T. W.

D. Hungera, S. Camerera, M. Korppia, A. Jöckela, T. W. Hänscha, and P. Treutleina, “Coupling ultracold atoms to mechanical oscillators,” Comptes Rendus Physique 12, 871 (2011).
[Crossref]

Harlow, J. W.

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

Haroche, S.

S. Haroche and J. M. Raimond, Exploring the Quantum: Atoms cavities and Photons (Oxford University, 2006).
[Crossref]

Harris, J. G. E.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[Crossref]

Hartmann, M. J.

M. Abdi and M. J. Hartmann, “Entangling the motion of two optically trapped objects via time-modulated driving fields,” New J. Phys. 17013056 (2015).
[Crossref]

Hauer, B. D.

C. Doolin, P. H. Kim, B. D. Hauer, A. J. R. MacDonald, and J. P. Davis, “Multidimensional optomechanical cantilevers for high-frequency force sensing,” New J. Phys. 16, 035001 (2014).
[Crossref]

Heikkilä, T. T.

J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Hertzberg, J. B.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[Crossref]

Hoang, T. M.

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref] [PubMed]

T. M. Hoang, J. Ahn, J. Bang, and T. Li, “Electron spin control of optically levitated nanodiamonds in vacuum,” Nat. Commun. 7, 12250 (2016).
[Crossref]

Hofmann, C. S.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Hong, S.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
[Crossref]

Huang, S.

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).
[Crossref]

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency with quantized fields in optocavity mechanics,” Phys. Rev. A 83, 043826 (2011).
[Crossref]

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]

S. Huang and G. S. Agarwal, “Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity,” Phys. Rev. A 80, 033807 (2009).
[Crossref]

Huang, Y.-M.

H. Xiong, Y.-M. Huang, L.-L. Wan, and Y. Wu, “Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency,” Phys. Rev. A 94, 013816 (2016).
[Crossref]

Hunger, D.

S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Hungera, D.

D. Hungera, S. Camerera, M. Korppia, A. Jöckela, T. W. Hänscha, and P. Treutleina, “Coupling ultracold atoms to mechanical oscillators,” Comptes Rendus Physique 12, 871 (2011).
[Crossref]

Huo, W. Y.

W. Y. Huo and G. L. Long, “Generation of squeezed states of nanomechanical resonator using three-wave mixing,” Appl. Phys. Lett. 92, 133102 (2008).
[Crossref]

Ian, H.

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[Crossref]

Jähne, K.

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

Jayich, A. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[Crossref]

Jing, H.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Jöckel, A.

A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein, “Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system,” Nat. Nanotech. 10, 55 (2015).
[Crossref]

S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Jöckela, A.

D. Hungera, S. Camerera, M. Korppia, A. Jöckela, T. W. Hänscha, and P. Treutleina, “Coupling ultracold atoms to mechanical oscillators,” Comptes Rendus Physique 12, 871 (2011).
[Crossref]

Jonson, M.

A. V. Parafilo, S. I. Kulinich, L. Y. Gorelik, M. N. Kiselev, R. I. Shekhter, and M. Jonson, “Spin-mediated photomechanical coupling of a nanoelectromechanical shuttle,” Appl. Phys. Lett. 117, 057202 (2016).
[Crossref]

Juan, M. L.

M. L. Juan, G. Molina-Terriza, T. Volz, and O. Romero-Isart, “Near-field levitated quantum optomechanics with nanodiamonds,” Phys. Rev. A 94, 023841 (2016).
[Crossref]

O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Optically levitating dielectrics in the quantum regime: Theory and protocols,” Phys. Rev. A 83, 013803 (2011).
[Crossref]

Kampschulte, T.

A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein, “Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system,” Nat. Nanotech. 10, 55 (2015).
[Crossref]

Kanamoto, R.

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[Crossref] [PubMed]

Karrai, K.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[Crossref] [PubMed]

Karuza, M.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Kaufman, C.

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288 (1987).
[Crossref]

Kiesel, N.

O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Optically levitating dielectrics in the quantum regime: Theory and protocols,” Phys. Rev. A 83, 013803 (2011).
[Crossref]

Kim, P. H.

C. Doolin, P. H. Kim, B. D. Hauer, A. J. R. MacDonald, and J. P. Davis, “Multidimensional optomechanical cantilevers for high-frequency force sensing,” New J. Phys. 16, 035001 (2014).
[Crossref]

Kimble, H. J.

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref] [PubMed]

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7, 159–165 (2011).
[Crossref]

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” PNAS 107, 1005–1010 (2010).
[Crossref] [PubMed]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63 (2012).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref] [PubMed]

J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, “Parametric normal-mode splitting in cavity optomechanics,” Phys. Rev. Lett. 101, 263602 (2008).
[Crossref] [PubMed]

Kiselev, M. N.

A. V. Parafilo, S. I. Kulinich, L. Y. Gorelik, M. N. Kiselev, R. I. Shekhter, and M. Jonson, “Spin-mediated photomechanical coupling of a nanoelectromechanical shuttle,” Appl. Phys. Lett. 117, 057202 (2016).
[Crossref]

Knöll, L.

S. Y. Buhmann, L. Knöll, D.-G. Welsch, and H. T. Dung, “Casimir-Polder forces: A nonperturbative approach,” Phys. Rev. A 70, 052117 (2004).
[Crossref]

Koppens, F. H. L.

C. A. Muschik, S. Moulieras, A. Bachtold, F. H. L. Koppens, M. Lewenstein, and D. E. Chang, “Harnessing vacuum forces for quantum sensing of graphene motion,” Phys. Rev. Lett. 112, 223601 (2014).
[Crossref] [PubMed]

Korppi, M.

A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein, “Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system,” Nat. Nanotech. 10, 55 (2015).
[Crossref]

S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Korppia, M.

D. Hungera, S. Camerera, M. Korppia, A. Jöckela, T. W. Hänscha, and P. Treutleina, “Coupling ultracold atoms to mechanical oscillators,” Comptes Rendus Physique 12, 871 (2011).
[Crossref]

Kotthaus, J. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Krause, A. G.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
[Crossref]

Kronwald, A.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref] [PubMed]

A. Kronwald and F. Marquardt, “Optomechanically induced transparency in the nonlinear quantum regime,” Phys. Rev. Lett. 111, 133601 (2013).
[Crossref] [PubMed]

Kulinich, S. I.

A. V. Parafilo, S. I. Kulinich, L. Y. Gorelik, M. N. Kiselev, R. I. Shekhter, and M. Jonson, “Spin-mediated photomechanical coupling of a nanoelectromechanical shuttle,” Appl. Phys. Lett. 117, 057202 (2016).
[Crossref]

Lambrecht, A.

A. Lambrecht and S. Reynaud, “Casimir force between metallic mirrors,” Eur. Phys. J. D 8, 309 (2000).
[Crossref]

Lan, Y. H.

W. J. Nie, A. Chen, and Y. H. Lan, “ Optical-response properties in levitated optomechanical systems beyond the low-excitation limit,” Phys. Rev. A 93, 023841 (2016).
[Crossref]

W. J. Nie, A. X. Chen, and Y. H. Lan, “Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters,” Opt. Express 23, 30970–30984 (2015).
[Crossref] [PubMed]

Langer, G.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

Lee, H.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7, 159–165 (2011).
[Crossref]

Lehnert, K. W.

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

Lei, C. U.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref] [PubMed]

Lewenstein, M.

C. A. Muschik, S. Moulieras, A. Bachtold, F. H. L. Koppens, M. Lewenstein, and D. E. Chang, “Harnessing vacuum forces for quantum sensing of graphene motion,” Phys. Rev. Lett. 112, 223601 (2014).
[Crossref] [PubMed]

Li, Dale

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

Li, L.

L. Li, W. J. Nie, and A. Chen, “Transparency and tunable slow and fast light in a nonlinear optomechanical cavity,” Sci. Rep. 6, 35090 (2016).
[Crossref] [PubMed]

Li, T.

T. M. Hoang, J. Ahn, J. Bang, and T. Li, “Electron spin control of optically levitated nanodiamonds in vacuum,” Nat. Commun. 7, 12250 (2016).
[Crossref]

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref] [PubMed]

Z.-q. Yin, A. A. Geraci, and T. Li, “Optomechanics of levitated dielectric particles,” Int. J. Mod. Phys. B 27, 1330018 (2013).
[Crossref]

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[Crossref]

Liu, W.-M.

K. A. Yasir, L. Zhuang, and W.-M. Liu, “Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate,” Phys. Rev. A 95, 013810 (2017).
[Crossref]

Liu, Y. X.

X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
[Crossref]

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[Crossref]

Liu, Y.-C.

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

Liu, Y.-X.

L. F. Wei, Y.-X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?” Phys. Rev. Lett. 97, 237201 (2006).
[Crossref]

Long, G. L.

W. Y. Huo and G. L. Long, “Generation of squeezed states of nanomechanical resonator using three-wave mixing,” Appl. Phys. Lett. 92, 133102 (2008).
[Crossref]

Lü, X.-Y.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Luan, X.

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

Ludwig, M.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[Crossref] [PubMed]

Ma, P.-C.

P.-C. Ma, J.-Q. Zhang, Y. Xiao, M. Feng, and Z.-M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).
[Crossref]

Ma, Y.

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref] [PubMed]

MacDonald, A. J. R.

C. Doolin, P. H. Kim, B. D. Hauer, A. J. R. MacDonald, and J. P. Davis, “Multidimensional optomechanical cantilevers for high-frequency force sensing,” New J. Phys. 16, 035001 (2014).
[Crossref]

Mancini, S.

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, “Coherent generation of EPR-entangled light pulses mediated by a single trapped atom,” Phys. Rev. A 73, 033822 (2006).
[Crossref]

Marquardt, F.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref] [PubMed]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

A. Kronwald and F. Marquardt, “Optomechanically induced transparency in the nonlinear quantum regime,” Phys. Rev. Lett. 111, 133601 (2013).
[Crossref] [PubMed]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[Crossref] [PubMed]

Marquardt, Florian

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[Crossref]

Maschler, C.

C. Maschler and H. Ritsch, “Cold atom dynamics in a quantum optical lattice potential,” Phys. Rev. Lett. 95, 260401 (2005).
[Crossref]

C. Maschler and H. Ritsch, “Quantum motion of laser-driven atoms in a cavity field,” Opt. Commun. 243, 145 (2004).
[Crossref]

Massel, F.

J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Metzger, C.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[Crossref] [PubMed]

Meystre, P.

P. Meystre, “A short walk through quantum optomechanics,” Ann. Phys. 525, 215–233 (2013).
[Crossref]

L. F. Buchmann, L. Zhang, A. Chiruvelli, and P. Meystre, “Macroscopic tunneling of a membrane in an optomechanical double-well potential,” Phys. Rev. Lett. 108, 210403 (2012).
[Crossref] [PubMed]

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[Crossref] [PubMed]

Miao, H.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[Crossref] [PubMed]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

Miranowicz, A.

H. Wang, X. Gu, . Y.-x. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).
[Crossref]

Molina-Terriza, G.

M. L. Juan, G. Molina-Terriza, T. Volz, and O. Romero-Isart, “Near-field levitated quantum optomechanics with nanodiamonds,” Phys. Rev. A 94, 023841 (2016).
[Crossref]

Molinelli, C.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Morigi, G.

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, “Coherent generation of EPR-entangled light pulses mediated by a single trapped atom,” Phys. Rev. A 73, 033822 (2006).
[Crossref]

Moulieras, S.

C. A. Muschik, S. Moulieras, A. Bachtold, F. H. L. Koppens, M. Lewenstein, and D. E. Chang, “Harnessing vacuum forces for quantum sensing of graphene motion,” Phys. Rev. Lett. 112, 223601 (2014).
[Crossref] [PubMed]

Moura, J. P.

R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
[Crossref] [PubMed]

Muschik, C. A.

C. A. Muschik, S. Moulieras, A. Bachtold, F. H. L. Koppens, M. Lewenstein, and D. E. Chang, “Harnessing vacuum forces for quantum sensing of graphene motion,” Phys. Rev. Lett. 112, 223601 (2014).
[Crossref] [PubMed]

Natali, R.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

Neuenhahn, C.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[Crossref] [PubMed]

Nie, W. J.

L. Li, W. J. Nie, and A. Chen, “Transparency and tunable slow and fast light in a nonlinear optomechanical cavity,” Sci. Rep. 6, 35090 (2016).
[Crossref] [PubMed]

W. J. Nie, A. Chen, and Y. H. Lan, “ Optical-response properties in levitated optomechanical systems beyond the low-excitation limit,” Phys. Rev. A 93, 023841 (2016).
[Crossref]

W. J. Nie, A. X. Chen, and Y. H. Lan, “Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters,” Opt. Express 23, 30970–30984 (2015).
[Crossref] [PubMed]

Nori, F.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

H. Wang, X. Gu, . Y.-x. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).
[Crossref]

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[Crossref]

L. F. Wei, Y.-X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?” Phys. Rev. Lett. 97, 237201 (2006).
[Crossref]

Norte, R. A.

R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
[Crossref] [PubMed]

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
[Crossref]

Ortlieb, A.

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[Crossref] [PubMed]

Ostby, E.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7, 159–165 (2011).
[Crossref]

Özdemir, S. K.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Painter, O.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[Crossref]

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” PNAS 107, 1005–1010 (2010).
[Crossref] [PubMed]

Papp, S. B.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” PNAS 107, 1005–1010 (2010).
[Crossref] [PubMed]

Parafilo, A. V.

A. V. Parafilo, S. I. Kulinich, L. Y. Gorelik, M. N. Kiselev, R. I. Shekhter, and M. Jonson, “Spin-mediated photomechanical coupling of a nanoelectromechanical shuttle,” Appl. Phys. Lett. 117, 057202 (2016).
[Crossref]

Paternostro, M.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

Peng, B.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Pflanzer, A. C.

O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Optically levitating dielectrics in the quantum regime: Theory and protocols,” Phys. Rev. A 83, 013803 (2011).
[Crossref]

Pirkkalainen, J.-M.

J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Polzik, E. S.

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

Pu, H.

L. Zhou, H. Pu, K. Zhang, X.-D. Zhao, and W. P. Zhang, “Cavity-induced switching between localized and extended states in a noninteracting Bose-Einstein condensate,” Phys. Rev. A 84, 043606 (2011).
[Crossref]

Qu, K.

K. Qu and G. S. Agarwal, “Fano resonances and their control in optomechanics,” Phys. Rev. A 87, 063813 (2013).
[Crossref]

Quidant, R.

O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Optically levitating dielectrics in the quantum regime: Theory and protocols,” Phys. Rev. A 83, 013803 (2011).
[Crossref]

Raimond, J. M.

S. Haroche and J. M. Raimond, Exploring the Quantum: Atoms cavities and Photons (Oxford University, 2006).
[Crossref]

Rakher, M. T.

A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein, “Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system,” Nat. Nanotech. 10, 55 (2015).
[Crossref]

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[Crossref] [PubMed]

Rastelli, G.

P. Stadler, W. Belzig, and G. Rastelli, “Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current,” Phys. Rev. Lett. 113, 047201 (2014).
[Crossref] [PubMed]

Regal, C. A.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” PNAS 107, 1005–1010 (2010).
[Crossref] [PubMed]

Reynaud, S.

A. Lambrecht and S. Reynaud, “Casimir force between metallic mirrors,” Eur. Phys. J. D 8, 309 (2000).
[Crossref]

Ribeiro, S.

S. Ribeiro and H. Terças, “Sympathetic laser cooling of graphene with Casimir-Polder forces,” Phys. Rev. A 94, 043420 (2016).
[Crossref]

Riedinger, R.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
[Crossref]

Ritsch, H.

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

C. Maschler and H. Ritsch, “Cold atom dynamics in a quantum optical lattice potential,” Phys. Rev. Lett. 95, 260401 (2005).
[Crossref]

C. Maschler and H. Ritsch, “Quantum motion of laser-driven atoms in a cavity field,” Opt. Commun. 243, 145 (2004).
[Crossref]

Ritter, S.

F. Brennecke, S. Ritter, T. Donner, and Tilman Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref] [PubMed]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Robert-de-Saint-Vincent, M.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Robicheaux, F.

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref] [PubMed]

Romero-Isart, O.

M. L. Juan, G. Molina-Terriza, T. Volz, and O. Romero-Isart, “Near-field levitated quantum optomechanics with nanodiamonds,” Phys. Rev. A 94, 023841 (2016).
[Crossref]

O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Optically levitating dielectrics in the quantum regime: Theory and protocols,” Phys. Rev. A 83, 013803 (2011).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[Crossref]

Saif, F.

M. J. Akram, F. Ghafoor, and F. Saif, “Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics,” J. Phys. B: At. Mol. Opt. Phys. 48, 065502 (2015).
[Crossref]

Schempp, H.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Schliesser, A.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63 (2012).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Schwab, K. C.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref] [PubMed]

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

Shang, J.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
[Crossref]

Shekhter, R. I.

A. V. Parafilo, S. I. Kulinich, L. Y. Gorelik, M. N. Kiselev, R. I. Shekhter, and M. Jonson, “Spin-mediated photomechanical coupling of a nanoelectromechanical shuttle,” Appl. Phys. Lett. 117, 057202 (2016).
[Crossref]

Sillanpää, M. A.

J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Simmonds, R. W.

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

Sinha, K.

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref] [PubMed]

Sirois, A. J.

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

Slater, J. A.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
[Crossref]

Srinivasan, K.

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[Crossref] [PubMed]

Stadler, P.

P. Stadler, W. Belzig, and G. Rastelli, “Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current,” Phys. Rev. Lett. 113, 047201 (2014).
[Crossref] [PubMed]

Stern, N. P.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7, 159–165 (2011).
[Crossref]

Suh, J.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref] [PubMed]

Sun, C. P.

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[Crossref]

L. F. Wei, Y.-X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?” Phys. Rev. Lett. 97, 237201 (2006).
[Crossref]

Sun, L.

Z.-Q. Yin, W. L. Yang, L. Sun, and L. M. Duan, “Quantum network of superconducting qubits through an optomechanical interface,” Phys. Rev. A 91, 012333 (2015).
[Crossref]

Taylor, J. M.

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref] [PubMed]

Terças, H.

S. Ribeiro and H. Terças, “Sympathetic laser cooling of graphene with Casimir-Polder forces,” Phys. Rev. A 94, 043420 (2016).
[Crossref]

Teufel, J. D.

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[Crossref]

Tombesi, P.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

Treutlein, P.

A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein, “Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system,” Nat. Nanotech. 10, 55 (2015).
[Crossref]

S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Treutleina, P.

D. Hungera, S. Camerera, M. Korppia, A. Jöckela, T. W. Hänscha, and P. Treutleina, “Coupling ultracold atoms to mechanical oscillators,” Comptes Rendus Physique 12, 871 (2011).
[Crossref]

Tuorila, J.

J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Unterreithmeier, Q. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Vahala, K. J.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7, 159–165 (2011).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref] [PubMed]

Vanner, M. R.

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724 (2009).
[Crossref]

Verhagen, E.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63 (2012).
[Crossref] [PubMed]

Vitali, D.

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, “Coherent generation of EPR-entangled light pulses mediated by a single trapped atom,” Phys. Rev. A 73, 033822 (2006).
[Crossref]

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001).
[Crossref]

Volz, T.

M. L. Juan, G. Molina-Terriza, T. Volz, and O. Romero-Isart, “Near-field levitated quantum optomechanics with nanodiamonds,” Phys. Rev. A 94, 023841 (2016).
[Crossref]

Wallquist, M.

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

Wan, L.-L.

H. Xiong, Y.-M. Huang, L.-L. Wan, and Y. Wu, “Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency,” Phys. Rev. A 94, 013816 (2016).
[Crossref]

Wang, H.

H. Wang, X. Gu, . Y.-x. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).
[Crossref]

Wei, L. F.

L. F. Wei, Y.-X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?” Phys. Rev. Lett. 97, 237201 (2006).
[Crossref]

Weidemüller, M.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Weig, E. M.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

Weinstein, A. J.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref] [PubMed]

Weis, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63 (2012).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

Welsch, D.-G.

S. Y. Buhmann and D.-G. Welsch, “Dispersion forces in macroscopic quantum electrodynamics,” Prog. Quant. Electron. 31, 51 (2007).
[Crossref]

S. Y. Buhmann, L. Knöll, D.-G. Welsch, and H. T. Dung, “Casimir-Polder forces: A nonperturbative approach,” Phys. Rev. A 70, 052117 (2004).
[Crossref]

Whitlock, S.

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

Whittaker, J. D.

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

Wilson, D. J.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” PNAS 107, 1005–1010 (2010).
[Crossref] [PubMed]

Wilson-Rae, I.

J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, “Parametric normal-mode splitting in cavity optomechanics,” Phys. Rev. Lett. 101, 263602 (2008).
[Crossref] [PubMed]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[Crossref]

Wollman, E. E.

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref] [PubMed]

Wong, C.W.

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

Wu, Y.

H. Xiong, Y.-M. Huang, L.-L. Wan, and Y. Wu, “Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency,” Phys. Rev. A 94, 013816 (2016).
[Crossref]

Xiao, Y.

P.-C. Ma, J.-Q. Zhang, Y. Xiao, M. Feng, and Z.-M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).
[Crossref]

Y. Xiao, Y.-F. Yu, and Z.-M. Zhang, “Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble,” Opt. Express 22, 17979–17989 (2014).
[Crossref] [PubMed]

Xiao, Y.-F.

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

Xiong, H.

H. Xiong, Y.-M. Huang, L.-L. Wan, and Y. Wu, “Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency,” Phys. Rev. A 94, 013816 (2016).
[Crossref]

Xu, X. W.

X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
[Crossref]

Y.-x. Liu, .

H. Wang, X. Gu, . Y.-x. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).
[Crossref]

Yang, L.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Yang, W. L.

Z.-Q. Yin, W. L. Yang, L. Sun, and L. M. Duan, “Quantum network of superconducting qubits through an optomechanical interface,” Phys. Rev. A 91, 012333 (2015).
[Crossref]

Yasir, K. A.

K. A. Yasir, L. Zhuang, and W.-M. Liu, “Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate,” Phys. Rev. A 95, 013810 (2017).
[Crossref]

Ye, J.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Yin, Z.-Q.

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref] [PubMed]

Z.-Q. Yin, W. L. Yang, L. Sun, and L. M. Duan, “Quantum network of superconducting qubits through an optomechanical interface,” Phys. Rev. A 91, 012333 (2015).
[Crossref]

Z.-q. Yin, A. A. Geraci, and T. Li, “Optomechanics of levitated dielectric particles,” Int. J. Mod. Phys. B 27, 1330018 (2013).
[Crossref]

Yu, Y.-F.

Yuan, X. Z.

X. Z. Yuan, “Entangling an optical cavity and a nanomechanical resonator beam by means of a quantum dot,” Phys. Rev. A 88, 052317 (2013).
[Crossref]

Zeilinger, A.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

Zhang, J.

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

Zhang, J.-Q.

P.-C. Ma, J.-Q. Zhang, Y. Xiao, M. Feng, and Z.-M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).
[Crossref]

Zhang, K.

L. Zhou, H. Pu, K. Zhang, X.-D. Zhao, and W. P. Zhang, “Cavity-induced switching between localized and extended states in a noninteracting Bose-Einstein condensate,” Phys. Rev. A 84, 043606 (2011).
[Crossref]

Zhang, L.

L. F. Buchmann, L. Zhang, A. Chiruvelli, and P. Meystre, “Macroscopic tunneling of a membrane in an optomechanical double-well potential,” Phys. Rev. Lett. 108, 210403 (2012).
[Crossref] [PubMed]

Zhang, W. P.

L. Zhou, H. Pu, K. Zhang, X.-D. Zhao, and W. P. Zhang, “Cavity-induced switching between localized and extended states in a noninteracting Bose-Einstein condensate,” Phys. Rev. A 84, 043606 (2011).
[Crossref]

Zhang, Z.-M.

P.-C. Ma, J.-Q. Zhang, Y. Xiao, M. Feng, and Z.-M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).
[Crossref]

Y. Xiao, Y.-F. Yu, and Z.-M. Zhang, “Controllable optomechanically induced transparency and ponderomotive squeezing in an optomechanical system assisted by an atomic ensemble,” Opt. Express 22, 17979–17989 (2014).
[Crossref] [PubMed]

Zhao, X.-D.

L. Zhou, H. Pu, K. Zhang, X.-D. Zhao, and W. P. Zhang, “Cavity-induced switching between localized and extended states in a noninteracting Bose-Einstein condensate,” Phys. Rev. A 84, 043606 (2011).
[Crossref]

Zhao, Y. J.

X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
[Crossref]

Zhou, L.

L. Zhou, H. Pu, K. Zhang, X.-D. Zhao, and W. P. Zhang, “Cavity-induced switching between localized and extended states in a noninteracting Bose-Einstein condensate,” Phys. Rev. A 84, 043606 (2011).
[Crossref]

Zhuang, L.

K. A. Yasir, L. Zhuang, and W.-M. Liu, “Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate,” Phys. Rev. A 95, 013810 (2017).
[Crossref]

Zoller, P.

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” PNAS 107, 1005–1010 (2010).
[Crossref] [PubMed]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

C.W. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
[Crossref]

Zwickl, B. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[Crossref]

Ann. Phys. (1)

P. Meystre, “A short walk through quantum optomechanics,” Ann. Phys. 525, 215–233 (2013).
[Crossref]

Appl. Phys. Lett. (2)

W. Y. Huo and G. L. Long, “Generation of squeezed states of nanomechanical resonator using three-wave mixing,” Appl. Phys. Lett. 92, 133102 (2008).
[Crossref]

A. V. Parafilo, S. I. Kulinich, L. Y. Gorelik, M. N. Kiselev, R. I. Shekhter, and M. Jonson, “Spin-mediated photomechanical coupling of a nanoelectromechanical shuttle,” Appl. Phys. Lett. 117, 057202 (2016).
[Crossref]

Comptes Rendus Physique (1)

D. Hungera, S. Camerera, M. Korppia, A. Jöckela, T. W. Hänscha, and P. Treutleina, “Coupling ultracold atoms to mechanical oscillators,” Comptes Rendus Physique 12, 871 (2011).
[Crossref]

Eur. Phys. J. D (1)

A. Lambrecht and S. Reynaud, “Casimir force between metallic mirrors,” Eur. Phys. J. D 8, 309 (2000).
[Crossref]

Int. J. Mod. Phys. B (1)

Z.-q. Yin, A. A. Geraci, and T. Li, “Optomechanics of levitated dielectric particles,” Int. J. Mod. Phys. B 27, 1330018 (2013).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

M. J. Akram, F. Ghafoor, and F. Saif, “Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics,” J. Phys. B: At. Mol. Opt. Phys. 48, 065502 (2015).
[Crossref]

Nano Letters (1)

K. Srinivasan, H. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters 11, 791–797 (2011).
[Crossref] [PubMed]

Nat. Commun. (3)

T. M. Hoang, J. Ahn, J. Bang, and T. Li, “Electron spin control of optically levitated nanodiamonds in vacuum,” Nat. Commun. 7, 12250 (2016).
[Crossref]

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).
[Crossref] [PubMed]

J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system,” Nat. Commun. 6, 6981 (2015).
[Crossref] [PubMed]

Nat. Nanotech. (1)

A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein, “Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system,” Nat. Nanotech. 10, 55 (2015).
[Crossref]

Nat. Phys. (1)

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7, 159–165 (2011).
[Crossref]

Nature (1)

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature 482, 63 (2012).
[Crossref] [PubMed]

Nature (London) (6)

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature (London) 444, 67–70 (2006).
[Crossref]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724 (2009).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008).
[Crossref]

J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359 (2011).
[Crossref]

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature (London) 530, 313–316 (2016).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011).
[Crossref]

Nature Phys. (1)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys. 5, 909–914 (2009).
[Crossref]

New J. Phys. (2)

M. Abdi and M. J. Hartmann, “Entangling the motion of two optically trapped objects via time-modulated driving fields,” New J. Phys. 17013056 (2015).
[Crossref]

C. Doolin, P. H. Kim, B. D. Hauer, A. J. R. MacDonald, and J. P. Davis, “Multidimensional optomechanical cantilevers for high-frequency force sensing,” New J. Phys. 16, 035001 (2014).
[Crossref]

Opt. Commun. (1)

C. Maschler and H. Ritsch, “Quantum motion of laser-driven atoms in a cavity field,” Opt. Commun. 243, 145 (2004).
[Crossref]

Opt. Express (2)

Phys. Rev. A (27)

X. W. Xu, Y. J. Zhao, and Y. X. Liu, “Entangled-state engineering of vibrational modes in a multimembrane optomechanical system,” Phys. Rev. A 88, 022325 (2013).
[Crossref]

M. L. Juan, G. Molina-Terriza, T. Volz, and O. Romero-Isart, “Near-field levitated quantum optomechanics with nanodiamonds,” Phys. Rev. A 94, 023841 (2016).
[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

K. Qu and G. S. Agarwal, “Fano resonances and their control in optomechanics,” Phys. Rev. A 87, 063813 (2013).
[Crossref]

M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature,” Phys. Rev. A 88, 013804 (2013).
[Crossref]

S. Huang and G. S. Agarwal, “Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity,” Phys. Rev. A 80, 033807 (2009).
[Crossref]

G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A 81, 041803 (2010).
[Crossref]

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes,” Phys. Rev. A 83, 023823 (2011).
[Crossref]

S. Huang and G. S. Agarwal, “Electromagnetically induced transparency with quantized fields in optocavity mechanics,” Phys. Rev. A 83, 043826 (2011).
[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Optically levitating dielectrics in the quantum regime: Theory and protocols,” Phys. Rev. A 83, 013803 (2011).
[Crossref]

L. Zhou, H. Pu, K. Zhang, X.-D. Zhao, and W. P. Zhang, “Cavity-induced switching between localized and extended states in a noninteracting Bose-Einstein condensate,” Phys. Rev. A 84, 043606 (2011).
[Crossref]

K. A. Yasir, L. Zhuang, and W.-M. Liu, “Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate,” Phys. Rev. A 95, 013810 (2017).
[Crossref]

W. J. Nie, A. Chen, and Y. H. Lan, “ Optical-response properties in levitated optomechanical systems beyond the low-excitation limit,” Phys. Rev. A 93, 023841 (2016).
[Crossref]

H. Wang, X. Gu, . Y.-x. Liu, A. Miranowicz, and F. Nori, “Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system,” Phys. Rev. A 90, 023817 (2014).
[Crossref]

H. Xiong, Y.-M. Huang, L.-L. Wan, and Y. Wu, “Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency,” Phys. Rev. A 94, 013816 (2016).
[Crossref]

P.-C. Ma, J.-Q. Zhang, Y. Xiao, M. Feng, and Z.-M. Zhang, “Tunable double optomechanically induced transparency in an optomechanical system,” Phys. Rev. A 90, 043825 (2014).
[Crossref]

H. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas,” Phys. Rev. A 78, 013824 (2008).
[Crossref]

C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” Phys. Rev. A 77, 050307 (2008).
[Crossref]

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

S. Ribeiro and H. Terças, “Sympathetic laser cooling of graphene with Casimir-Polder forces,” Phys. Rev. A 94, 043420 (2016).
[Crossref]

G. Morigi, J. Eschner, S. Mancini, and D. Vitali, “Coherent generation of EPR-entangled light pulses mediated by a single trapped atom,” Phys. Rev. A 73, 033822 (2006).
[Crossref]

X. Z. Yuan, “Entangling an optical cavity and a nanomechanical resonator beam by means of a quantum dot,” Phys. Rev. A 88, 052317 (2013).
[Crossref]

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001).
[Crossref]

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288 (1987).
[Crossref]

Z.-Q. Yin, W. L. Yang, L. Sun, and L. M. Duan, “Quantum network of superconducting qubits through an optomechanical interface,” Phys. Rev. A 91, 012333 (2015).
[Crossref]

S. Y. Buhmann, L. Knöll, D.-G. Welsch, and H. T. Dung, “Casimir-Polder forces: A nonperturbative approach,” Phys. Rev. A 70, 052117 (2004).
[Crossref]

Phys. Rev. Lett. (15)

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, “Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons,” Phys. Rev. Lett. 110, 203601 (2013).
[Crossref] [PubMed]

S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

L. F. Wei, Y.-X. Liu, C. P. Sun, and F. Nori, “Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?” Phys. Rev. Lett. 97, 237201 (2006).
[Crossref]

C. Maschler and H. Ritsch, “Cold atom dynamics in a quantum optical lattice potential,” Phys. Rev. Lett. 95, 260401 (2005).
[Crossref]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[Crossref] [PubMed]

C. A. Muschik, S. Moulieras, A. Bachtold, F. H. L. Koppens, M. Lewenstein, and D. E. Chang, “Harnessing vacuum forces for quantum sensing of graphene motion,” Phys. Rev. Lett. 112, 223601 (2014).
[Crossref] [PubMed]

Y.-C. Liu, Y.-F. Xiao, X. Luan, and C.W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref] [PubMed]

P. Stadler, W. Belzig, and G. Rastelli, “Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current,” Phys. Rev. Lett. 113, 047201 (2014).
[Crossref] [PubMed]

L. F. Buchmann, L. Zhang, A. Chiruvelli, and P. Meystre, “Macroscopic tunneling of a membrane in an optomechanical double-well potential,” Phys. Rev. Lett. 108, 210403 (2012).
[Crossref] [PubMed]

R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum optomechanics experiments at room temperature,” Phys. Rev. Lett. 116, 147202 (2016).
[Crossref] [PubMed]

C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008).
[Crossref] [PubMed]

A. Kronwald and F. Marquardt, “Optomechanically induced transparency in the nonlinear quantum regime,” Phys. Rev. Lett. 111, 133601 (2013).
[Crossref] [PubMed]

J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, “Parametric normal-mode splitting in cavity optomechanics,” Phys. Rev. Lett. 101, 263602 (2008).
[Crossref] [PubMed]

T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z.-Q. Yin, and T. Li, “Torsional optomechanics of a levitated nonspherical nanoparticle,” Phys. Rev. Lett. 117, 123604 (2016).
[Crossref] [PubMed]

PNAS (1)

D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” PNAS 107, 1005–1010 (2010).
[Crossref] [PubMed]

Prog. Quant. Electron. (1)

S. Y. Buhmann and D.-G. Welsch, “Dispersion forces in macroscopic quantum electrodynamics,” Prog. Quant. Electron. 31, 51 (2007).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

Sci. Rep. (2)

H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” Sci. Rep. 5, 9663 (2015).
[Crossref] [PubMed]

L. Li, W. J. Nie, and A. Chen, “Transparency and tunable slow and fast light in a nonlinear optomechanical cavity,” Sci. Rep. 6, 35090 (2016).
[Crossref] [PubMed]

Science (4)

F. Brennecke, S. Ritter, T. Donner, and Tilman Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science 322, 235–238 (2008).
[Crossref] [PubMed]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520 (2010).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref] [PubMed]

Other (3)

S. Haroche and J. M. Raimond, Exploring the Quantum: Atoms cavities and Photons (Oxford University, 2006).
[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

C.W. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the setup studied in the paper. The optomechanical system consists of a micromechanical cantilever and a single two-level atom both placed inside a Fabry-Pérot cavity. The system is driven by an external field with frequency ωL and the cavity mode with frequency ωc is probed by a weak probe field with frequency ωp. The distance between the atom and the cantilever plane is so small that the internal state of the atom is influenced by the nearby plane due to the vacuum energy fluctuation.
Fig. 2
Fig. 2 The vacuum coupling strength λ0 as a function of the dimensionless distance ωa0d/c. The free-space spontaneous emission rate and the transition wavelength of the atom are Γ0 = 2π × 6.1 MHz and λa0 = 780 nm, respectively. The plasma frequency of copper λP = 136nm and γ = 0.0033ωP.
Fig. 3
Fig. 3 The normalized effective oscillation frequency ω m e f f / ω m (a) and the normalized effective damping rate γ m e f f / ω m (b) as functions of the normalized frequency ω/ωm. We select atomic parameters, i.e. the free-space spontaneous emission rate Γ0 = 2π × 6.1 MHz, the transition wavelength λa0 = 780 nm, the atomic mass M ≈ 1.42 × 10−25 Kg, the effective mass of the cantilever m = 0.05 × 10−12 Kg, the effective oscillation frequency of atom ωM = 2π × 1.9 MHz, the decay rate γM = 2π × 1 Hz, the Rabi frequency g0 = 2π × 10.9 MHz, the effective pump-atom detuning Δ a = 2 π × 30 GHz, the steady-state position sin(2kxs) = 0.3 and λ = 2π × 9.5 MHz. The other parameters are λL ≃ 780nm, L = 1 cm, κ = 2π × 105 Hz, ωm = ωM, γm = 2π × 300 Hz, Tm=TM = 0.1K and Δc = −ωm.
Fig. 4
Fig. 4 The displacement spectrum of the cantilever as a function of normalized frequency ω/ωm with different λ’s for sin(2kxs) = 0.3 (a) and different xs’s for λ = 2π × 3.8 MHz (b). Δc = 0 and other parameter values are the same as those in Fig. 3.
Fig. 5
Fig. 5 The absorption Re(εout) (solid line) and dispersion Im εout (dash line) in the output field are plotted as a function of δ/ωm with different λ’s. Other parameter values are the same as those in Fig. 3.
Fig. 6
Fig. 6 The interval δ12/ωm between the two absorption dips is plotted as a function of the effective coupling strength λ. Other parameter values are the same as those in Fig. 3.
Fig. 7
Fig. 7 The absorption Re(εout) (solid line) and dispersion Im(εout) (dash line) of the output field are plotted as a function of δ/ωm with different xs’s at given λ = 2π × 3.8 MHz. Other parameter values are the same as those in Fig. 3.
Fig. 8
Fig. 8 The number of the excited atom η are plotted as a function of sin (2kxs). Other parameter values are the same as those in Fig. 7.
Fig. 9
Fig. 9 The absorption Re(εout) of the output field is plotted as a function of δ/ωm with identical [Fig. 9(b)] and different [Fig. 9(a) and 9(c)] oscillation frequencies. The effective coupling strength λ = 2π×3.8 MHz and the steady-state position of the atom sin(2kxs)= 0.3. Other parameter values are the same as those in Fig. 7.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

H = ω c a a + p y 2 2 m + 1 2 m ω m 0 2 y 2 + p x 2 2 M + 1 2 M ω M 0 2 x 2 + [ ω a 0 + Δ ω a ( d + y ) ] σ + σ i g ( x ) ( σ + a σ a ) + i ( ε L a e i ω L t H . c . ) ,
H = Δ c 0 a a + p y 2 2 m + 1 2 m ω m 0 2 y 2 + p x 2 2 M + 1 2 M ω M 0 2 x 2 + Δ a 0 ( d + y ) σ + σ i g 0 cos ( k x ) ( σ + a σ a ) + i ( ε L a H . c . ) ,
σ ˙ = ( γ a i Δ a 0 ) σ + g ( x ) a σ z + σ z 2 γ a Γ i n ,
a ˙ = ( κ i Δ c 0 ) a + g ( x ) a σ + ε L + 2 κ a i n .
H = p y 2 2 m + 1 2 m ω m 0 2 y 2 + p x 2 2 M + 1 2 M ω M 0 2 x 2 Δ c 0 a a + g 0 2 a a cos 2 ( k x ) Δ a ( d ) λ 0 y + i ( ε L a H . c . ) ,
δ ω a g ( r ) = 3 c Γ 0 ω a 0 2 0 d u u 2 ω a 0 2 + u 2 Tr { G ( r , r , i u ) } ,
δ ω a e ( r ) = δ ω a g ( r ) 3 π c Γ 0 ω a 0 Tr Re { G ( r , r , ω a 0 ) } ,
λ 0 ( d ) = 2 c 3 Γ 0 π ω a 0 2 0 d u ω a 0 2 + u 2 0 d k | | k | | e 2 i d K 0 × [ ( ω c ) 2 r s + ( k | | 2 K 0 2 ) r p ] + Re c 3 Γ 0 2 ω a 0 3 0 d k | | k | | e 2 i d ( ω a 0 c ) 2 k | | 2 × [ ( ω a 0 c ) 2 r s + ( 2 k | | 2 ( ω a 0 c ) 2 ) r p ] .
x ˙ = p x / M , p ˙ x = M ω M 0 2 x + k g 0 2 a a sin ( 2 k x ) Δ a λ 0 y γ M p x + ξ M , y ˙ = p y / m , p ˙ y = m ω m 0 2 y λ 0 g 0 2 a a cos 2 ( k x ) ( Δ a λ 0 y ) 2 γ m p y + ξ m , a ˙ = ( i Δ c 0 + κ ) a i g 0 2 cos 2 ( k x ) a Δ a λ 0 y + ε L + 2 κ a i n ,
p x , y s = 0 , a s = ε L κ i Δ c , x s = k g 0 2 | a s | 2 sin ( 2 k x s ) M ω M 0 2 Δ a , y s = λ 0 g 0 2 | a s | 2 cos 2 ( k x s ) m ω m 0 2 Δ a   2 ,
δ x ˙ = ω M δ p x , δ p ˙ x = ω M δ x + G 12 δ y + G 2 a ( δ a + δ a ) γ M δ p x + ξ M , δ y ˙ = ω m δ p y , δ p ˙ y = ω m δ y + G 12 δ x + G 1 a ( δ a + δ a ) γ m δ p y + ξ m , δ a ˙ = ( i Δ c κ ) δ a i G 1 a δ y + i G 2 a δ x + 2 κ a i n ,
f ˙ ( t ) = J f ( t ) + n ( t ) ,
J = ( 0 ω m 0 0 0 0 ω m γ m G 12 0 2 G 1 a 0 0 0 0 ω M 0 0 G 12 0 ω M γ M 2 G 2 a 0 0 0 0 0 κ Δ c 2 G 1 a 0 2 G 2 a 0 Δ c κ ) .
δ y ( ω ) = ω m d ( ω ) [ A 1 ( ω ) ξ m ( ω ) + A 2 ( ω ) ξ M ( ω ) ] + 2 κ ω m d ( ω ) [ A 3 ( ω ) δ X i n ( ω ) + A 4 ( ω ) δ Y i n ( ω ) ] ,
A 1 ( ω ) = ( κ + i ω ) 2 ( ω 2 + i γ M ω + ω M 2 ) Δ c ( ω 2 Δ c 2 ω M G 2 a 2 Δ c ω M 2 i ω γ M Δ c ) , A 2 ( ω ) = ω M [ G 12 ( κ + i ω ) 2 + 2 G 1 a G 2 a Δ c + G 12 Δ c 2 ] , A 3 ( ω ) = 2 ( κ + i ω ) [ G 1 a ( ω 2 ω M 2 i ω γ M ) + G 12 G 2 a ω M ] , A 4 ( ω ) = 2 Δ c [ G 1 a ( ω M 2 ω 2 + i ω γ M ) G 12 G 2 a ω M ] , d ( ω ) = ( κ + i ω ) 2 B 0 Δ c B 1 ,
S y ( ω ) = d Ω 2 π e i ( ω + Ω ) t δ y ( ω ) δ ( Ω ) + δ y ( Ω ) δ ( ω ) 2 ,
ξ j ( ω ) ξ j ( Ω ) = 2 π γ j ω j ω [ 1 + coth ( ω 2 k B T j ) ] δ ( ω + Ω ) , δ X i n ( ω ) δ X i n ( Ω ) = δ Y i n ( ω ) δ Y i n ( Ω ) = π δ ( ω + Ω ) .
S y ( ω ) = | χ ( ω ) | 2 [ γ m ω ω m β m + γ M ω ω M | A 2 ( ω ) A 1 ( ω ) | 2 β M ] + | χ ( ω ) | 2 κ [ | A 3 ( ω ) A 1 ( ω ) | 2 + | A 4 ( ω ) A 1 ( ω ) | 2 ] ,
ω m e f f = Re [ d ( ω ) / A 1 ( ω ) + ω 2 ]
γ m e f f = Im [ d ( ω ) / A 1 ( ω ) ] / ω
a + = ε p [ β 3 i G 1 a i G 2 a ( G 1 a α 2 + G 2 a α 1 ) 2 β 4 + i G 1 a α 2 + i G 2 a α 1 ] 1 ,
2 κ a o u t ( t ) = 2 κ α s ε L + ( 2 κ a + ε p ) e i δ t + 2 κ ( a ) e i δ t .
ε o u t = 2 κ a + / ε p ,

Metrics