Abstract

A widely tunable V-cavity semiconductor laser with kilohertz linewidth is demonstrated using simple self-injection method. The tunable laser is packaged into a small-form-factor 9-pin TOSA and can be tuned over 22 channels at 100 GHz spacing with side mode suppression ratios over 36 dB. Self-injection method is used for linewidth reduction by applying optical feedback. Linewidth of the V-cavity laser can be compressed from several megahertz to tens of kilohertz. The linewidth reduction method is essentially channel independent and can be easily realized. It can meet the requirements of many applications such as high-order modulation, coherent communication and sensing.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking

Z. G. Lu, J. R. Liu, P. J. Poole, C. Y. Song, and S. D. Chang
Opt. Express 26(9) 11909-11914 (2018)

Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication

Hang Guan, Ari Novack, Tal Galfsky, Yangjin Ma, Saeed Fathololoumi, Alexandre Horth, Tam N. Huynh, Jose Roman, Ruizhi Shi, Michael Caverley, Yang Liu, Thomas Baehr-Jones, Keren Bergman, and Michael Hochberg
Opt. Express 26(7) 7920-7933 (2018)

Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity

Fang Wei, Fei Yang, Xi Zhang, Dan Xu, Meng Ding, Li Zhang, Dijun Chen, Haiwen Cai, Zujie Fang, and Gu Xijia
Opt. Express 24(15) 17406-17415 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Conference on Optical Fiber Communication/national Fiber Optic Engineers Conference (2008), pp. 1–3.
  2. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
  3. E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging Appl. Opt. (2014), paper JTu2C.3.
  4. M. Kourogi, C. Shin, and M. Ohtsu, “A 250 Hz Spectral Linewidth 1.5 prn MQW-DFB Laser Diode with Negative-Electrical-Feedback,” IEEE Photonics Technol. Lett. 3(6), 496–498 (1991).
  5. N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).
  6. K. Aoyama, R. Yoshioka, N. Yokota, H. Yasaka, and W. Kobayashi, “Narrow-linewidth laser diode with compact optical feedback system,” in International Topical Meeting on Microwave Photonics (2014), pp. 79–81.
  7. X. M. Zhang, N. Wang, L. Gao, M. Feng, B. Chen, Y. H. Tsang, and A. Q. Liu, “Narrow-Linewidth External-Cavity Tunable Lasers,” in International Conference on Optical Communications and Networks (2011), pp. 1–2.
  8. Z. Y. Dai and X. X. Zhang, “Stable high power narrow linewidth single frequency fiber laser using a FBG F-P etalon and a fiber saturable absorber,” in Photonics Optoelectronic (2010), pp. 1–4.
  9. L. Q. Yu, D. Lu, B. W. Pan, L. M. Zhang, L. Guo, Z. S. Li, and L. J. Zhao, “Widely tunable narrow-linewidth lasers using self-injection DBR lasers,” IEEE Photonics Technol. Lett. 27(1), 50–53 (2015).
  10. V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).
  11. B. Sprenger, H. G. L. Schwefel, and L. J. Wang, “Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser,” Opt. Lett. 34(21), 3370–3372 (2009).
    [PubMed]
  12. K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Opt. Lett. 32(3), 244–246 (2007).
    [PubMed]
  13. B. Sprenger, H. G. L. Schwefel, Z. H. Lu, S. Svitlov, and L. J. Wang, “CaF2 Whispering-Gallery-Mode-Resonator Stabilized-Narrow-Linewidth Laser,” Opt. Lett. 35(17), 2870–2872 (2010).
    [PubMed]
  14. S. Zhang, J. Meng, S. Guo, L. Wang, and J.-J. He, “Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning,” Opt. Express 21(11), 13564–13571 (2013).
    [PubMed]
  15. J. J. Meng, X. H. Xiong, H. B. Xing, H. S. Jin, D. Zhong, L. Zou, J. S. Zhao, and J. J. He, “Full C-Band Tunable V-Cavity-Laser Based TOSA and SFP Transceiver Modules,” IEEE Photonics Technol. Lett. 29(12), 1035–1038 (2017).
  16. K. Shi, D. A. Reid, L. P. Barry, Y. L. Yu, and F. Smyth, “Linewidth Calibration of SG-DBR Lasers,” IEEE Photonics Technol. Lett. 22(23), 1729–1731 (2010).

2017 (1)

J. J. Meng, X. H. Xiong, H. B. Xing, H. S. Jin, D. Zhong, L. Zou, J. S. Zhao, and J. J. He, “Full C-Band Tunable V-Cavity-Laser Based TOSA and SFP Transceiver Modules,” IEEE Photonics Technol. Lett. 29(12), 1035–1038 (2017).

2015 (1)

L. Q. Yu, D. Lu, B. W. Pan, L. M. Zhang, L. Guo, Z. S. Li, and L. J. Zhao, “Widely tunable narrow-linewidth lasers using self-injection DBR lasers,” IEEE Photonics Technol. Lett. 27(1), 50–53 (2015).

2013 (1)

2012 (1)

N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).

2011 (2)

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).

V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).

2010 (2)

B. Sprenger, H. G. L. Schwefel, Z. H. Lu, S. Svitlov, and L. J. Wang, “CaF2 Whispering-Gallery-Mode-Resonator Stabilized-Narrow-Linewidth Laser,” Opt. Lett. 35(17), 2870–2872 (2010).
[PubMed]

K. Shi, D. A. Reid, L. P. Barry, Y. L. Yu, and F. Smyth, “Linewidth Calibration of SG-DBR Lasers,” IEEE Photonics Technol. Lett. 22(23), 1729–1731 (2010).

2009 (1)

2007 (1)

1991 (1)

M. Kourogi, C. Shin, and M. Ohtsu, “A 250 Hz Spectral Linewidth 1.5 prn MQW-DFB Laser Diode with Negative-Electrical-Feedback,” IEEE Photonics Technol. Lett. 3(6), 496–498 (1991).

Aoyama, K.

K. Aoyama, R. Yoshioka, N. Yokota, H. Yasaka, and W. Kobayashi, “Narrow-linewidth laser diode with compact optical feedback system,” in International Topical Meeting on Microwave Photonics (2014), pp. 79–81.

Barry, L. P.

K. Shi, D. A. Reid, L. P. Barry, Y. L. Yu, and F. Smyth, “Linewidth Calibration of SG-DBR Lasers,” IEEE Photonics Technol. Lett. 22(23), 1729–1731 (2010).

Byrd, J.

V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).

Chen, B.

N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).

X. M. Zhang, N. Wang, L. Gao, M. Feng, B. Chen, Y. H. Tsang, and A. Q. Liu, “Narrow-Linewidth External-Cavity Tunable Lasers,” in International Conference on Optical Communications and Networks (2011), pp. 1–2.

Dale, E.

V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging Appl. Opt. (2014), paper JTu2C.3.

Eliyahu, D.

V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging Appl. Opt. (2014), paper JTu2C.3.

Feng, M.

N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).

X. M. Zhang, N. Wang, L. Gao, M. Feng, B. Chen, Y. H. Tsang, and A. Q. Liu, “Narrow-Linewidth External-Cavity Tunable Lasers,” in International Conference on Optical Communications and Networks (2011), pp. 1–2.

Feng, Z. Q.

N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).

Fox, R. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).

Gao, L.

N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).

X. M. Zhang, N. Wang, L. Gao, M. Feng, B. Chen, Y. H. Tsang, and A. Q. Liu, “Narrow-Linewidth External-Cavity Tunable Lasers,” in International Conference on Optical Communications and Networks (2011), pp. 1–2.

Guo, L.

L. Q. Yu, D. Lu, B. W. Pan, L. M. Zhang, L. Guo, Z. S. Li, and L. J. Zhao, “Widely tunable narrow-linewidth lasers using self-injection DBR lasers,” IEEE Photonics Technol. Lett. 27(1), 50–53 (2015).

Guo, S.

He, J. J.

J. J. Meng, X. H. Xiong, H. B. Xing, H. S. Jin, D. Zhong, L. Zou, J. S. Zhao, and J. J. He, “Full C-Band Tunable V-Cavity-Laser Based TOSA and SFP Transceiver Modules,” IEEE Photonics Technol. Lett. 29(12), 1035–1038 (2017).

He, J.-J.

Ilchenko, V. S.

V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging Appl. Opt. (2014), paper JTu2C.3.

Jiang, Y. Y.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).

Jin, H. S.

J. J. Meng, X. H. Xiong, H. B. Xing, H. S. Jin, D. Zhong, L. Zou, J. S. Zhao, and J. J. He, “Full C-Band Tunable V-Cavity-Laser Based TOSA and SFP Transceiver Modules,” IEEE Photonics Technol. Lett. 29(12), 1035–1038 (2017).

Kieu, K.

Kobayashi, W.

K. Aoyama, R. Yoshioka, N. Yokota, H. Yasaka, and W. Kobayashi, “Narrow-linewidth laser diode with compact optical feedback system,” in International Topical Meeting on Microwave Photonics (2014), pp. 79–81.

Kourogi, M.

M. Kourogi, C. Shin, and M. Ohtsu, “A 250 Hz Spectral Linewidth 1.5 prn MQW-DFB Laser Diode with Negative-Electrical-Feedback,” IEEE Photonics Technol. Lett. 3(6), 496–498 (1991).

Lam, M. Y.

N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).

Lemke, N. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).

Li, Z. S.

L. Q. Yu, D. Lu, B. W. Pan, L. M. Zhang, L. Guo, Z. S. Li, and L. J. Zhao, “Widely tunable narrow-linewidth lasers using self-injection DBR lasers,” IEEE Photonics Technol. Lett. 27(1), 50–53 (2015).

Liang, W.

V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging Appl. Opt. (2014), paper JTu2C.3.

Liu, A. Q.

N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).

X. M. Zhang, N. Wang, L. Gao, M. Feng, B. Chen, Y. H. Tsang, and A. Q. Liu, “Narrow-Linewidth External-Cavity Tunable Lasers,” in International Conference on Optical Communications and Networks (2011), pp. 1–2.

Lu, D.

L. Q. Yu, D. Lu, B. W. Pan, L. M. Zhang, L. Guo, Z. S. Li, and L. J. Zhao, “Widely tunable narrow-linewidth lasers using self-injection DBR lasers,” IEEE Photonics Technol. Lett. 27(1), 50–53 (2015).

Lu, Z. H.

Ludlow, A. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).

Ma, L.-S.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).

Maleki, L.

V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging Appl. Opt. (2014), paper JTu2C.3.

Mansuripur, M.

Matsko, A. B.

V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging Appl. Opt. (2014), paper JTu2C.3.

Meng, J.

Meng, J. J.

J. J. Meng, X. H. Xiong, H. B. Xing, H. S. Jin, D. Zhong, L. Zou, J. S. Zhao, and J. J. He, “Full C-Band Tunable V-Cavity-Laser Based TOSA and SFP Transceiver Modules,” IEEE Photonics Technol. Lett. 29(12), 1035–1038 (2017).

Oates, C. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).

Ohtsu, M.

M. Kourogi, C. Shin, and M. Ohtsu, “A 250 Hz Spectral Linewidth 1.5 prn MQW-DFB Laser Diode with Negative-Electrical-Feedback,” IEEE Photonics Technol. Lett. 3(6), 496–498 (1991).

Pan, B. W.

L. Q. Yu, D. Lu, B. W. Pan, L. M. Zhang, L. Guo, Z. S. Li, and L. J. Zhao, “Widely tunable narrow-linewidth lasers using self-injection DBR lasers,” IEEE Photonics Technol. Lett. 27(1), 50–53 (2015).

Reid, D. A.

K. Shi, D. A. Reid, L. P. Barry, Y. L. Yu, and F. Smyth, “Linewidth Calibration of SG-DBR Lasers,” IEEE Photonics Technol. Lett. 22(23), 1729–1731 (2010).

Savchenkov, A. A.

V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging Appl. Opt. (2014), paper JTu2C.3.

Schwefel, H. G. L.

Seidel, D.

V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging Appl. Opt. (2014), paper JTu2C.3.

Seimetz, M.

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Conference on Optical Fiber Communication/national Fiber Optic Engineers Conference (2008), pp. 1–3.

Sherman, J. A.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).

Shi, K.

K. Shi, D. A. Reid, L. P. Barry, Y. L. Yu, and F. Smyth, “Linewidth Calibration of SG-DBR Lasers,” IEEE Photonics Technol. Lett. 22(23), 1729–1731 (2010).

Shin, C.

M. Kourogi, C. Shin, and M. Ohtsu, “A 250 Hz Spectral Linewidth 1.5 prn MQW-DFB Laser Diode with Negative-Electrical-Feedback,” IEEE Photonics Technol. Lett. 3(6), 496–498 (1991).

Smyth, F.

K. Shi, D. A. Reid, L. P. Barry, Y. L. Yu, and F. Smyth, “Linewidth Calibration of SG-DBR Lasers,” IEEE Photonics Technol. Lett. 22(23), 1729–1731 (2010).

Sprenger, B.

Svitlov, S.

Tsang, Y. H.

N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).

X. M. Zhang, N. Wang, L. Gao, M. Feng, B. Chen, Y. H. Tsang, and A. Q. Liu, “Narrow-Linewidth External-Cavity Tunable Lasers,” in International Conference on Optical Communications and Networks (2011), pp. 1–2.

Wang, L.

Wang, L. J.

Wang, N.

N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).

X. M. Zhang, N. Wang, L. Gao, M. Feng, B. Chen, Y. H. Tsang, and A. Q. Liu, “Narrow-Linewidth External-Cavity Tunable Lasers,” in International Conference on Optical Communications and Networks (2011), pp. 1–2.

Xing, H. B.

J. J. Meng, X. H. Xiong, H. B. Xing, H. S. Jin, D. Zhong, L. Zou, J. S. Zhao, and J. J. He, “Full C-Band Tunable V-Cavity-Laser Based TOSA and SFP Transceiver Modules,” IEEE Photonics Technol. Lett. 29(12), 1035–1038 (2017).

Xiong, X. H.

J. J. Meng, X. H. Xiong, H. B. Xing, H. S. Jin, D. Zhong, L. Zou, J. S. Zhao, and J. J. He, “Full C-Band Tunable V-Cavity-Laser Based TOSA and SFP Transceiver Modules,” IEEE Photonics Technol. Lett. 29(12), 1035–1038 (2017).

Yasaka, H.

K. Aoyama, R. Yoshioka, N. Yokota, H. Yasaka, and W. Kobayashi, “Narrow-linewidth laser diode with compact optical feedback system,” in International Topical Meeting on Microwave Photonics (2014), pp. 79–81.

Yokota, N.

K. Aoyama, R. Yoshioka, N. Yokota, H. Yasaka, and W. Kobayashi, “Narrow-linewidth laser diode with compact optical feedback system,” in International Topical Meeting on Microwave Photonics (2014), pp. 79–81.

Yoshioka, R.

K. Aoyama, R. Yoshioka, N. Yokota, H. Yasaka, and W. Kobayashi, “Narrow-linewidth laser diode with compact optical feedback system,” in International Topical Meeting on Microwave Photonics (2014), pp. 79–81.

Yu, L. Q.

L. Q. Yu, D. Lu, B. W. Pan, L. M. Zhang, L. Guo, Z. S. Li, and L. J. Zhao, “Widely tunable narrow-linewidth lasers using self-injection DBR lasers,” IEEE Photonics Technol. Lett. 27(1), 50–53 (2015).

Yu, Y. L.

K. Shi, D. A. Reid, L. P. Barry, Y. L. Yu, and F. Smyth, “Linewidth Calibration of SG-DBR Lasers,” IEEE Photonics Technol. Lett. 22(23), 1729–1731 (2010).

Zhang, L. M.

L. Q. Yu, D. Lu, B. W. Pan, L. M. Zhang, L. Guo, Z. S. Li, and L. J. Zhao, “Widely tunable narrow-linewidth lasers using self-injection DBR lasers,” IEEE Photonics Technol. Lett. 27(1), 50–53 (2015).

Zhang, S.

Zhang, X. M.

N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).

X. M. Zhang, N. Wang, L. Gao, M. Feng, B. Chen, Y. H. Tsang, and A. Q. Liu, “Narrow-Linewidth External-Cavity Tunable Lasers,” in International Conference on Optical Communications and Networks (2011), pp. 1–2.

Zhao, J. S.

J. J. Meng, X. H. Xiong, H. B. Xing, H. S. Jin, D. Zhong, L. Zou, J. S. Zhao, and J. J. He, “Full C-Band Tunable V-Cavity-Laser Based TOSA and SFP Transceiver Modules,” IEEE Photonics Technol. Lett. 29(12), 1035–1038 (2017).

Zhao, L. J.

L. Q. Yu, D. Lu, B. W. Pan, L. M. Zhang, L. Guo, Z. S. Li, and L. J. Zhao, “Widely tunable narrow-linewidth lasers using self-injection DBR lasers,” IEEE Photonics Technol. Lett. 27(1), 50–53 (2015).

Zhong, D.

J. J. Meng, X. H. Xiong, H. B. Xing, H. S. Jin, D. Zhong, L. Zou, J. S. Zhao, and J. J. He, “Full C-Band Tunable V-Cavity-Laser Based TOSA and SFP Transceiver Modules,” IEEE Photonics Technol. Lett. 29(12), 1035–1038 (2017).

Zou, L.

J. J. Meng, X. H. Xiong, H. B. Xing, H. S. Jin, D. Zhong, L. Zou, J. S. Zhao, and J. J. He, “Full C-Band Tunable V-Cavity-Laser Based TOSA and SFP Transceiver Modules,” IEEE Photonics Technol. Lett. 29(12), 1035–1038 (2017).

IEEE Photonics Technol. Lett. (5)

M. Kourogi, C. Shin, and M. Ohtsu, “A 250 Hz Spectral Linewidth 1.5 prn MQW-DFB Laser Diode with Negative-Electrical-Feedback,” IEEE Photonics Technol. Lett. 3(6), 496–498 (1991).

N. Wang, M. Feng, Z. Q. Feng, M. Y. Lam, L. Gao, B. Chen, A. Q. Liu, Y. H. Tsang, and X. M. Zhang, “Narrow-linewidth tunable lasers with retro-reflective external cavity,” IEEE Photonics Technol. Lett. 24(18), 1591–1593 (2012).

L. Q. Yu, D. Lu, B. W. Pan, L. M. Zhang, L. Guo, Z. S. Li, and L. J. Zhao, “Widely tunable narrow-linewidth lasers using self-injection DBR lasers,” IEEE Photonics Technol. Lett. 27(1), 50–53 (2015).

J. J. Meng, X. H. Xiong, H. B. Xing, H. S. Jin, D. Zhong, L. Zou, J. S. Zhao, and J. J. He, “Full C-Band Tunable V-Cavity-Laser Based TOSA and SFP Transceiver Modules,” IEEE Photonics Technol. Lett. 29(12), 1035–1038 (2017).

K. Shi, D. A. Reid, L. P. Barry, Y. L. Yu, and F. Smyth, “Linewidth Calibration of SG-DBR Lasers,” IEEE Photonics Technol. Lett. 22(23), 1729–1731 (2010).

Nat. Photonics (1)

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

V. S. Ilchenko, E. Dale, W. Liang, J. Byrd, D. Eliyahu, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator,” Proc. SPIE 7913(1), 79131G (2011).

Other (5)

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Ultra-narrow line tunable semiconductor lasers for coherent LIDAR applications,” in Imaging Appl. Opt. (2014), paper JTu2C.3.

K. Aoyama, R. Yoshioka, N. Yokota, H. Yasaka, and W. Kobayashi, “Narrow-linewidth laser diode with compact optical feedback system,” in International Topical Meeting on Microwave Photonics (2014), pp. 79–81.

X. M. Zhang, N. Wang, L. Gao, M. Feng, B. Chen, Y. H. Tsang, and A. Q. Liu, “Narrow-Linewidth External-Cavity Tunable Lasers,” in International Conference on Optical Communications and Networks (2011), pp. 1–2.

Z. Y. Dai and X. X. Zhang, “Stable high power narrow linewidth single frequency fiber laser using a FBG F-P etalon and a fiber saturable absorber,” in Photonics Optoelectronic (2010), pp. 1–4.

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Conference on Optical Fiber Communication/national Fiber Optic Engineers Conference (2008), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Top view of an InGaAsP/InP based V-cavity laser and (b) the picture of the small-form-factor 9pin TOSA.
Fig. 2
Fig. 2 Schematic diagram of the linewidth measurement system using optical self-injection method. VOA: variable optical attenuator; CF: coated fiber; PM: power meter; ISO: isolator; AOM: acousto-optic modulator; OSA: optical spectrum analyzer; EXA: Agilent EXA spectrum analyzer.
Fig. 3
Fig. 3 (a) Optical spectra of the V-cavity laser; (b) Measured wavelength tuning as a function of the current of the channel selector electrode
Fig. 4
Fig. 4 Linewidth profile measured by delayed self-heterodyne method under different feedback strengths.
Fig. 5
Fig. 5 (a) Linewidth of all 22 channels without feedback, (b) linewidth of all 22 channels with different feedback strengths.
Fig. 6
Fig. 6 (a) Linewidth versus feedback power when adjusting the VOA; (b) Linewidth versus feedback power for 4 channels by using different splitters.
Fig. 7
Fig. 7 Linewidths of all channels for different lengths of the feedback path when the splitting ratio is fixed at 70:30 with the 30% branch as the feedback path.
Fig. 8
Fig. 8 Linewidth reduction with different lengths of feedback path
Fig. 9
Fig. 9 Output power of different channels with and without feedback.

Metrics