Abstract

Laser-colorized indium-tin-oxide (ITO) films are fabricated using femtosecond laser processing. By varying the laser fluences, nanostructures with cotton, brick and ripple forms are generated on the surface of ITO films, which produces cyan, yellow and orange colors. The fluence-dependent nanostructures on the surface of ITO films also significantly attenuates blue light so these materials are suited to eye protection and the screening of images behind ITO films for information security.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples

Zhigui Ou, Min Huang, and Fuli Zhao
Opt. Express 22(14) 17254-17265 (2014)

Broadband antireflection film with moth-eye-like structure for flexible display applications

Guanjun Tan, Jiun-Haw Lee, Yi-Hsin Lan, Mao-Kuo Wei, Lung-Han Peng, I-Chun Cheng, and Shin-Tson Wu
Optica 4(7) 678-683 (2017)

The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass

Min Huang, Fuli Zhao, Ya Cheng, Ningsheng Xu, and Zhizhan Xu
Opt. Express 18(S4) A600-A619 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Eichstadt, G. R. B. E. Romer, and A. J. H. Veld, “Towards friction control using laser-induced periodic surface structures,” in Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing (Munich, 2011), pp. 7–15.
  2. A. Y. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses,” J. Appl. Phys. 117(3), 033103 (2015).
    [Crossref]
  3. C. Wang, H. I. Wang, W. T. Tang, C. W. Luo, T. Kobayashi, and J. Leu, “Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses,” Opt. Express 19(24), 24286–24297 (2011).
    [Crossref] [PubMed]
  4. M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Appl. Mater. Interfaces 8(38), 24989–24993 (2016).
    [Crossref] [PubMed]
  5. C. Wang, H. I. Wang, C. W. Luo, and J. Leu, “Anisotropic optical transmission of femtosecond laser induced periodic surface nanostructures on indium-tin-oxide films,” Appl. Phys. Lett. 101(10), 101911 (2012).
    [Crossref] [PubMed]
  6. A. Y. Vorobyev and C. L. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. Mech. Eng. 2, 452749 (2010).
    [Crossref]
  7. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
    [Crossref]
  8. A. Y. Vorobyev and C. L. Guoa, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [Crossref]
  9. J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures-a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
    [Crossref]
  10. X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
    [Crossref] [PubMed]
  11. A. Masamichi, K. Hideki, K. Hiroaki, S. Yasuyuki, I. Takafumi, and T. Yoshiro, “Pressure-sensitive touch panel based on piezoelectric poly(L-lactic acid) film,” Jpn. J. Appl. Phys. 52(9S1), 09KD17 (2013).
    [Crossref]
  12. C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
    [Crossref]
  13. C. W. Cheng and C. Y. Lin, “High precision patterning of ITO using femtosecond laser annealing process,” Appl. Surf. Sci. 314, 215–220 (2014).
    [Crossref]
  14. Anar Foundation, “Only for Children,” https://www.youtube.com/watch?v=6zoCDyQSH0o
  15. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  16. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
    [Crossref]
  17. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  18. S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
    [Crossref]
  19. T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
    [Crossref] [PubMed]
  20. I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
    [Crossref] [PubMed]
  21. A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
    [Crossref]

2017 (2)

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures-a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

2016 (1)

M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Appl. Mater. Interfaces 8(38), 24989–24993 (2016).
[Crossref] [PubMed]

2015 (2)

A. Y. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses,” J. Appl. Phys. 117(3), 033103 (2015).
[Crossref]

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
[Crossref] [PubMed]

2014 (2)

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

C. W. Cheng and C. Y. Lin, “High precision patterning of ITO using femtosecond laser annealing process,” Appl. Surf. Sci. 314, 215–220 (2014).
[Crossref]

2013 (1)

A. Masamichi, K. Hideki, K. Hiroaki, S. Yasuyuki, I. Takafumi, and T. Yoshiro, “Pressure-sensitive touch panel based on piezoelectric poly(L-lactic acid) film,” Jpn. J. Appl. Phys. 52(9S1), 09KD17 (2013).
[Crossref]

2012 (1)

C. Wang, H. I. Wang, C. W. Luo, and J. Leu, “Anisotropic optical transmission of femtosecond laser induced periodic surface nanostructures on indium-tin-oxide films,” Appl. Phys. Lett. 101(10), 101911 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

A. Y. Vorobyev and C. L. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. Mech. Eng. 2, 452749 (2010).
[Crossref]

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[Crossref]

2009 (2)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

2008 (1)

A. Y. Vorobyev and C. L. Guoa, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

2005 (1)

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

1999 (1)

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

1983 (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Banerjee, R.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Barua, A. K.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Basu, N.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Batabyal, A. K.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Behar-Cohen, F.

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
[Crossref] [PubMed]

Bonse, J.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures-a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Boulenguez, P.

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
[Crossref] [PubMed]

Carré, S.

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
[Crossref] [PubMed]

Chahory, S.

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
[Crossref] [PubMed]

Chang, J. K.

M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Appl. Mater. Interfaces 8(38), 24989–24993 (2016).
[Crossref] [PubMed]

Chao, Y. P.

M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Appl. Mater. Interfaces 8(38), 24989–24993 (2016).
[Crossref] [PubMed]

Chen, J. S.

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[Crossref]

Chen, M. H.

M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Appl. Mater. Interfaces 8(38), 24989–24993 (2016).
[Crossref] [PubMed]

Cheng, C. W.

C. W. Cheng and C. Y. Lin, “High precision patterning of ITO using femtosecond laser annealing process,” Appl. Surf. Sci. 314, 215–220 (2014).
[Crossref]

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[Crossref]

Chu, H. H.

M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Appl. Mater. Interfaces 8(38), 24989–24993 (2016).
[Crossref] [PubMed]

Das, S. K.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

El-Sayed, M. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Grunwald, R.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses,” J. Appl. Phys. 117(3), 033103 (2015).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

Guo, C. L.

A. Y. Vorobyev and C. L. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. Mech. Eng. 2, 452749 (2010).
[Crossref]

Guoa, C. L.

A. Y. Vorobyev and C. L. Guoa, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Hideki, K.

A. Masamichi, K. Hideki, K. Hiroaki, S. Yasuyuki, I. Takafumi, and T. Yoshiro, “Pressure-sensitive touch panel based on piezoelectric poly(L-lactic acid) film,” Jpn. J. Appl. Phys. 52(9S1), 09KD17 (2013).
[Crossref]

Hiroaki, K.

A. Masamichi, K. Hideki, K. Hiroaki, S. Yasuyuki, I. Takafumi, and T. Yoshiro, “Pressure-sensitive touch panel based on piezoelectric poly(L-lactic acid) film,” Jpn. J. Appl. Phys. 52(9S1), 09KD17 (2013).
[Crossref]

Hohm, S.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures-a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

Jaadane, I.

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
[Crossref] [PubMed]

Jonet, L.

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
[Crossref] [PubMed]

Kerszulis, J.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Khan, M.

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

Kirner, S. V.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures-a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

Kobayashi, T.

König, T. A. F.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Kristensen, A.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

Kruger, J.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures-a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

Krüger, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Kulkarni, A. K.

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

Ledin, P. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Lee, Y. J.

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[Crossref]

Leu, J.

C. Wang, H. I. Wang, C. W. Luo, and J. Leu, “Anisotropic optical transmission of femtosecond laser induced periodic surface nanostructures on indium-tin-oxide films,” Appl. Phys. Lett. 101(10), 101911 (2012).
[Crossref] [PubMed]

C. Wang, H. I. Wang, W. T. Tang, C. W. Luo, T. Kobayashi, and J. Leu, “Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses,” Opt. Express 19(24), 24286–24297 (2011).
[Crossref] [PubMed]

Levy, U.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

Lim, T. S.

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

Lin, C. Y.

C. W. Cheng and C. Y. Lin, “High precision patterning of ITO using femtosecond laser annealing process,” Appl. Surf. Sci. 314, 215–220 (2014).
[Crossref]

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[Crossref]

Lin, Z. R.

M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Appl. Mater. Interfaces 8(38), 24989–24993 (2016).
[Crossref] [PubMed]

Luo, C. W.

M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Appl. Mater. Interfaces 8(38), 24989–24993 (2016).
[Crossref] [PubMed]

C. Wang, H. I. Wang, C. W. Luo, and J. Leu, “Anisotropic optical transmission of femtosecond laser induced periodic surface nanostructures on indium-tin-oxide films,” Appl. Phys. Lett. 101(10), 101911 (2012).
[Crossref] [PubMed]

C. Wang, H. I. Wang, W. T. Tang, C. W. Luo, T. Kobayashi, and J. Leu, “Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses,” Opt. Express 19(24), 24286–24297 (2011).
[Crossref] [PubMed]

Mahmoud, M. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Martinsons, C.

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
[Crossref] [PubMed]

Masamichi, A.

A. Masamichi, K. Hideki, K. Hiroaki, S. Yasuyuki, I. Takafumi, and T. Yoshiro, “Pressure-sensitive touch panel based on piezoelectric poly(L-lactic acid) film,” Jpn. J. Appl. Phys. 52(9S1), 09KD17 (2013).
[Crossref]

Mortensen, N. A.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Ray, S.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Reynolds, J. R.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Rosenfeld, A.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures-a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Savoldelli, M.

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
[Crossref] [PubMed]

Schulz, K. H.

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

Shen, W. C.

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Takafumi, I.

A. Masamichi, K. Hideki, K. Hiroaki, S. Yasuyuki, I. Takafumi, and T. Yoshiro, “Pressure-sensitive touch panel based on piezoelectric poly(L-lactic acid) film,” Jpn. J. Appl. Phys. 52(9S1), 09KD17 (2013).
[Crossref]

Tang, W. T.

Torriglia, A.

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
[Crossref] [PubMed]

Tseng, S. Y.

M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Appl. Mater. Interfaces 8(38), 24989–24993 (2016).
[Crossref] [PubMed]

Tseng, Y. H.

M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Appl. Mater. Interfaces 8(38), 24989–24993 (2016).
[Crossref] [PubMed]

Tsukruk, V. V.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses,” J. Appl. Phys. 117(3), 033103 (2015).
[Crossref]

A. Y. Vorobyev and C. L. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. Mech. Eng. 2, 452749 (2010).
[Crossref]

A. Y. Vorobyev and C. L. Guoa, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

Wang, C.

C. Wang, H. I. Wang, C. W. Luo, and J. Leu, “Anisotropic optical transmission of femtosecond laser induced periodic surface nanostructures on indium-tin-oxide films,” Appl. Phys. Lett. 101(10), 101911 (2012).
[Crossref] [PubMed]

C. Wang, H. I. Wang, W. T. Tang, C. W. Luo, T. Kobayashi, and J. Leu, “Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses,” Opt. Express 19(24), 24286–24297 (2011).
[Crossref] [PubMed]

Wang, H. I.

C. Wang, H. I. Wang, C. W. Luo, and J. Leu, “Anisotropic optical transmission of femtosecond laser induced periodic surface nanostructures on indium-tin-oxide films,” Appl. Phys. Lett. 101(10), 101911 (2012).
[Crossref] [PubMed]

C. Wang, H. I. Wang, W. T. Tang, C. W. Luo, T. Kobayashi, and J. Leu, “Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses,” Opt. Express 19(24), 24286–24297 (2011).
[Crossref] [PubMed]

Yan, W.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

Yasuyuki, S.

A. Masamichi, K. Hideki, K. Hiroaki, S. Yasuyuki, I. Takafumi, and T. Yoshiro, “Pressure-sensitive touch panel based on piezoelectric poly(L-lactic acid) film,” Jpn. J. Appl. Phys. 52(9S1), 09KD17 (2013).
[Crossref]

Yoshiro, T.

A. Masamichi, K. Hideki, K. Hiroaki, S. Yasuyuki, I. Takafumi, and T. Yoshiro, “Pressure-sensitive touch panel based on piezoelectric poly(L-lactic acid) film,” Jpn. J. Appl. Phys. 52(9S1), 09KD17 (2013).
[Crossref]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Zhu, X.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

M. H. Chen, Y. H. Tseng, Y. P. Chao, S. Y. Tseng, Z. R. Lin, H. H. Chu, J. K. Chang, and C. W. Luo, “Effects on organic photovoltaics using femtosecond-laser-treated indium tin oxides,” ACS Appl. Mater. Interfaces 8(38), 24989–24993 (2016).
[Crossref] [PubMed]

ACS Nano (1)

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Adv. Mech. Eng. (1)

A. Y. Vorobyev and C. L. Guo, “Metallic light absorbers produced by femtosecond laser pulses,” Adv. Mech. Eng. 2, 452749 (2010).
[Crossref]

Appl. Phys. Lett. (2)

A. Y. Vorobyev and C. L. Guoa, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

C. Wang, H. I. Wang, C. W. Luo, and J. Leu, “Anisotropic optical transmission of femtosecond laser induced periodic surface nanostructures on indium-tin-oxide films,” Appl. Phys. Lett. 101(10), 101911 (2012).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

C. W. Cheng and C. Y. Lin, “High precision patterning of ITO using femtosecond laser annealing process,” Appl. Surf. Sci. 314, 215–220 (2014).
[Crossref]

Free Radic. Biol. Med. (1)

I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radic. Biol. Med. 84, 373–384 (2015).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures-a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

J. Appl. Phys. (4)

A. Y. Vorobyev and C. Guo, “Multifunctional surfaces produced by femtosecond laser pulses,” J. Appl. Phys. 117(3), 033103 (2015).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Masamichi, K. Hideki, K. Hiroaki, S. Yasuyuki, I. Takafumi, and T. Yoshiro, “Pressure-sensitive touch panel based on piezoelectric poly(L-lactic acid) film,” Jpn. J. Appl. Phys. 52(9S1), 09KD17 (2013).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Sci. Adv. (1)

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3(5), e1602487 (2017).
[Crossref] [PubMed]

Thin Solid Films (2)

C. W. Cheng, C. Y. Lin, W. C. Shen, Y. J. Lee, and J. S. Chen, “Patterning crystalline indium tin oxide by high repetition rate femtosecond laser-induced crystallization,” Thin Solid Films 518(23), 7138–7142 (2010).
[Crossref]

A. K. Kulkarni, K. H. Schulz, T. S. Lim, and M. Khan, “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques,” Thin Solid Films 345(2), 273–277 (1999).
[Crossref]

Other (2)

Anar Foundation, “Only for Children,” https://www.youtube.com/watch?v=6zoCDyQSH0o

J. Eichstadt, G. R. B. E. Romer, and A. J. H. Veld, “Towards friction control using laser-induced periodic surface structures,” in Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing (Munich, 2011), pp. 7–15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 SEM images showing the morphology of the ITO films before and after laser processing. (a) The surface morphology of an untreated ITO film. (b) A laser-annealed ITO film (UDL-1, fluence = 646 mJ/cm2) with scanning along the y-axis and polarization (blue arrow) parallel to the laser line-spot (red). (c)–(f) Laser-annealed ITO films [UDL-2 (fluence = 217 mJ/cm2), UDL-3 (fluence = 197 mJ/cm2), UDL-4 (fluence = 68 mJ/cm2) and UDL-5 (fluence = 60 mJ/cm2)] with scanning along the y-axis and polarization (blue arrow) perpendicular to the laser line-spot (red)
Fig. 2
Fig. 2 (a) The colors of ITO films before and after laser processing. (b) The reflectance (R0) and transmittance (T0) spectra for an ITO film before laser processing. (c) The ratio of the reflectance spectra for the ITO films before (R0) and after (R) laser processing. (d) The ratio of the transmittance spectra for the ITO films before (T0) and after (T) laser processing. The blue shaded area covers the wavelengths that cause damage to eyes.
Fig. 3
Fig. 3 (a) The schematic for capturing the images in (b)–(e), where θ is the view angle. (b)–(e) Observing the image on a screen through an untreated ITO film and a laser-colorized ITO film (UDL-5) at various view angles.
Fig. 4
Fig. 4 (a) XRD patterns for untreated and laser treated ITO films (UDL-1, UDL-2, UDL-3, UDL-4 and UDL-5). (b) The fluence-dependent position of peak (222). (c) The fluence-dependent FWHM of peak (222). (d) The fluence-dependent grain size. (Red dash lines in (b)–(d) are the position, FWHM, and grain size of peak (222) in untreated ITO thin film, respectively.)
Fig. 5
Fig. 5 Resistance difference between an untreated ITO film (Ω0 = 3.25 × 106 ohm, probe distance = 1 mm, thickness = 80 nm) and laser treated ITO films (UDL-1, UDL-2, UDL-3, UDL-4 and UDL-5).
Fig. 6
Fig. 6 (a) TEM image of the brick-like structure on UDL-5. Inset: TEM image of brick-like structure on UDL-5 corresponding to EDS mapping images in the (b)–(e), which characterize the silicon (Glass substrate), indium, oxygen and tin elements, respectively. (The TEM images and EDS analysis are provided by MSSCORPS CO.)
Fig. 7
Fig. 7 The absolute reflectance spectra of all ITO films after laser processing.
Fig. 8
Fig. 8 (a) The schematics of angle-dependent (θd) diffraction spectrum measuring system and the surface morphology of a laser-annealed ITO film (UDL-5) used in this study. (b) The diffraction spectra as a function of diffraction angle (θd). D/D0 is the diffraction intensity ratios between an untreated ITO film and a laser-annealed ITO film (UDL-5).

Tables (1)

Tables Icon

Table 1 Laser fluence and the structure formation on the colorized ITO films.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔΩ = Ω UDL5 Ω 0 Ω 0 .
ρ 0 = Ω 0 × A 0 L 0  =3.25× 10 6 × A 0 L 0  ,  
ρ UDL5 = Ω UDL5 × 0.27  A 0 L 0 =3.75× 10 6 × 0.27  A 0 L 0 .
ρ UDL5 ρ 0 =0.31.

Metrics