Abstract

We propose a convenient method for generating partial Poincaré beams of light having space-variant polarization. The beams can be constructed from the incidence of the fundamental Gaussian beam with circular or linear polarization to a wavelength-mismatched vortex plate. The polarization state covers only a small portion of the surface of the Poincaré sphere, particularly, being visualized by some interesting close curves. We demonstrate that the partial Poincaré beam can be decomposed into different spatial modes with orthogonal polarizations. Numerical analyses of the vortex vector beam and the polarization distribution are consistent with experimental results. The partial Poincaré beams could supplement the concept and application of Full Poincare beams.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid generation and analysis of vector vortex beams

Sandra Mamani, Ethan Bendau, Jeff Secor, Solyman Ashrafi, Jiufeng J. Tu, and Robert R. Alfano
Appl. Opt. 56(8) 2171-2175 (2017)

Full Poincaré beams II: partial polarization

Amber M. Beckley, Thomas G. Brown, and Miguel A. Alonso
Opt. Express 20(9) 9357-9362 (2012)

Polarization pattern of vector vortex beams generated by q-plates with different topological charges

Filippo Cardano, Ebrahim Karimi, Sergei Slussarenko, Lorenzo Marrucci, Corrado de Lisio, and Enrico Santamato
Appl. Opt. 51(10) C1-C6 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
    [Crossref]
  2. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  4. G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1-3), 25–31 (2000).
    [Crossref]
  5. C.-J. Cheng and M.-L. Chen, “Polarization encoding for optical encryption using twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 237(1-3), 45–52 (2004).
    [Crossref]
  6. J. Yu, C. Zhou, L. Zhu, Y. Lu, J. Wu, and W. Jia, “Generalized non-separable two-dimensional Dammann encoding method,” Opt. Commun. 382, 539–546 (2017).
    [Crossref]
  7. C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28(2), 99–101 (2003).
    [Crossref] [PubMed]
  8. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  9. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006).
    [Crossref] [PubMed]
  10. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
    [Crossref] [PubMed]
  11. C. S. Guo, S. J. Yue, X. L. Wang, J. Ding, and H. T. Wang, “Polarization-selective diffractive optical elements with a twisted-nematic liquid-crystal display,” Appl. Opt. 49(7), 1069–1074 (2010).
    [Crossref] [PubMed]
  12. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32(22), 3272–3274 (2007).
    [Crossref] [PubMed]
  13. T. H. Lu and L. H. Lin, “Observation of a superposition of orthogonally polarized geometric beams with a c-cut Nd:YVO4 crystal,” Appl. Phys. B 106(4), 863–866 (2012).
    [Crossref]
  14. T. H. Lu and C. H. He, “Generating orthogonally circular polarized states embedded in nonplanar geometric beams,” Opt. Express 23(16), 20876–20883 (2015).
    [Crossref] [PubMed]
  15. P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
    [Crossref] [PubMed]
  16. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007).
    [Crossref] [PubMed]
  17. S. Zhou, S. Wang, J. Chen, G. Rui, and Q. Zhan, “Creation of radially polarized optical fields with multiple controllable parameters using a vectorial optical field generator,” Photon. Res. 4(5), B35–B39 (2016).
    [Crossref]
  18. A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
    [Crossref]
  19. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1997).
  20. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light,” Phys. Rev. Lett. 107(5), 053601 (2011).
    [Crossref] [PubMed]
  21. E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, “Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light,” Appl. Opt. 51(15), 2925–2934 (2012).
    [Crossref] [PubMed]
  22. F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
    [Crossref] [PubMed]
  23. Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
    [Crossref]
  24. Z. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, and S. Wen, “Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere,” Photon. Res. 5(1), 15 (2017).
    [Crossref]
  25. X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Hybrid-order Poincaré sphere,” Phys. Rev. A 91(2), 023801 (2015).
    [Crossref]
  26. A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18(10), 10777–10785 (2010).
    [Crossref] [PubMed]
  27. Z. Liu, Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, and S. Wen, “Geometric phase Doppler effect: when structured light meets rotating structured materials,” Opt. Express 25(10), 11564–11573 (2017).
    [Crossref] [PubMed]
  28. L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref] [PubMed]

2017 (4)

J. Yu, C. Zhou, L. Zhu, Y. Lu, J. Wu, and W. Jia, “Generalized non-separable two-dimensional Dammann encoding method,” Opt. Commun. 382, 539–546 (2017).
[Crossref]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Z. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, and S. Wen, “Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere,” Photon. Res. 5(1), 15 (2017).
[Crossref]

Z. Liu, Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, and S. Wen, “Geometric phase Doppler effect: when structured light meets rotating structured materials,” Opt. Express 25(10), 11564–11573 (2017).
[Crossref] [PubMed]

2016 (4)

J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
[Crossref]

S. Zhou, S. Wang, J. Chen, G. Rui, and Q. Zhan, “Creation of radially polarized optical fields with multiple controllable parameters using a vectorial optical field generator,” Photon. Res. 4(5), B35–B39 (2016).
[Crossref]

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
[Crossref]

2015 (2)

X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Hybrid-order Poincaré sphere,” Phys. Rev. A 91(2), 023801 (2015).
[Crossref]

T. H. Lu and C. H. He, “Generating orthogonally circular polarized states embedded in nonplanar geometric beams,” Opt. Express 23(16), 20876–20883 (2015).
[Crossref] [PubMed]

2014 (1)

Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

2012 (2)

T. H. Lu and L. H. Lin, “Observation of a superposition of orthogonally polarized geometric beams with a c-cut Nd:YVO4 crystal,” Appl. Phys. B 106(4), 863–866 (2012).
[Crossref]

E. J. Galvez, S. Khadka, W. H. Schubert, and S. Nomoto, “Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light,” Appl. Opt. 51(15), 2925–2934 (2012).
[Crossref] [PubMed]

2011 (1)

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

2007 (3)

2006 (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006).
[Crossref] [PubMed]

2004 (1)

C.-J. Cheng and M.-L. Chen, “Polarization encoding for optical encryption using twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 237(1-3), 45–52 (2004).
[Crossref]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28(2), 99–101 (2003).
[Crossref] [PubMed]

2000 (1)

G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1-3), 25–31 (2000).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Ahmed, M. A.

Alfano, R. R.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Alonso, M. A.

Beckley, A. M.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Brown, T. G.

Chen, J.

Chen, M.-L.

C.-J. Cheng and M.-L. Chen, “Polarization encoding for optical encryption using twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 237(1-3), 45–52 (2004).
[Crossref]

Chen, X.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Cheng, C.-J.

C.-J. Cheng and M.-L. Chen, “Polarization encoding for optical encryption using twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 237(1-3), 45–52 (2004).
[Crossref]

Ding, J.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Dudley, A.

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
[Crossref]

Fan, D.

X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Hybrid-order Poincaré sphere,” Phys. Rev. A 91(2), 023801 (2015).
[Crossref]

Feng, L.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Forbes, A.

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
[Crossref]

Galvez, E. J.

Gerardot, B. D.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Graf, T.

Guo, C. S.

He, C. H.

Jia, W.

J. Yu, C. Zhou, L. Zhu, Y. Lu, J. Wu, and W. Jia, “Generalized non-separable two-dimensional Dammann encoding method,” Opt. Commun. 382, 539–546 (2017).
[Crossref]

Ke, Y.

Khadka, S.

Kozawa, Y.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Lin, L. H.

T. H. Lu and L. H. Lin, “Observation of a superposition of orthogonally polarized geometric beams with a c-cut Nd:YVO4 crystal,” Appl. Phys. B 106(4), 863–866 (2012).
[Crossref]

Ling, X.

X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Hybrid-order Poincaré sphere,” Phys. Rev. A 91(2), 023801 (2015).
[Crossref]

Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Litchinitser, N. M.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Liu, C. K.

Liu, Y.

Liu, Z.

Longhi, S.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Lu, T. H.

T. H. Lu and C. H. He, “Generating orthogonally circular polarized states embedded in nonplanar geometric beams,” Opt. Express 23(16), 20876–20883 (2015).
[Crossref] [PubMed]

T. H. Lu and L. H. Lin, “Observation of a superposition of orthogonally polarized geometric beams with a c-cut Nd:YVO4 crystal,” Appl. Phys. B 106(4), 863–866 (2012).
[Crossref]

Lu, Y.

J. Yu, C. Zhou, L. Zhu, Y. Lu, J. Wu, and W. Jia, “Generalized non-separable two-dimensional Dammann encoding method,” Opt. Commun. 382, 539–546 (2017).
[Crossref]

Luo, H.

Z. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, and S. Wen, “Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere,” Photon. Res. 5(1), 15 (2017).
[Crossref]

Z. Liu, Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, and S. Wen, “Geometric phase Doppler effect: when structured light meets rotating structured materials,” Opt. Express 25(10), 11564–11573 (2017).
[Crossref] [PubMed]

X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Hybrid-order Poincaré sphere,” Phys. Rev. A 91(2), 023801 (2015).
[Crossref]

Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

McLaren, M.

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
[Crossref]

Miao, P.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Milione, G.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

Ni, W. J.

Nolan, D. A.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

Nomoto, S.

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Pohit, M.

G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1-3), 25–31 (2000).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Rui, G.

Sato, S.

Schubert, W. H.

Shu, W.

Singh, K.

G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1-3), 25–31 (2000).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Sun, C. C.

Sun, J.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Sztul, H. I.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

Unnikrishnan, G.

G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1-3), 25–31 (2000).
[Crossref]

Vogel, M. M.

Voss, A.

Walasik, W.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Wang, H. T.

Wang, J.

Wang, S.

Wang, W.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Wang, X. L.

Wen, D.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Wen, S.

Z. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, and S. Wen, “Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere,” Photon. Res. 5(1), 15 (2017).
[Crossref]

Z. Liu, Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, and S. Wen, “Geometric phase Doppler effect: when structured light meets rotating structured materials,” Opt. Express 25(10), 11564–11573 (2017).
[Crossref] [PubMed]

X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Hybrid-order Poincaré sphere,” Phys. Rev. A 91(2), 023801 (2015).
[Crossref]

Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wu, J.

J. Yu, C. Zhou, L. Zhu, Y. Lu, J. Wu, and W. Jia, “Generalized non-separable two-dimensional Dammann encoding method,” Opt. Commun. 382, 539–546 (2017).
[Crossref]

Yi, X.

X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Hybrid-order Poincaré sphere,” Phys. Rev. A 91(2), 023801 (2015).
[Crossref]

Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Yonezawa, K.

Yu, J.

J. Yu, C. Zhou, L. Zhu, Y. Lu, J. Wu, and W. Jia, “Generalized non-separable two-dimensional Dammann encoding method,” Opt. Commun. 382, 539–546 (2017).
[Crossref]

Yue, F.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Yue, S. J.

Zhan, Q.

Zhang, C.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Zhang, S.

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Zhang, Z.

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Zhou, C.

J. Yu, C. Zhou, L. Zhu, Y. Lu, J. Wu, and W. Jia, “Generalized non-separable two-dimensional Dammann encoding method,” Opt. Commun. 382, 539–546 (2017).
[Crossref]

Zhou, J.

Zhou, S.

Zhou, X.

X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Hybrid-order Poincaré sphere,” Phys. Rev. A 91(2), 023801 (2015).
[Crossref]

Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Zhu, L.

J. Yu, C. Zhou, L. Zhu, Y. Lu, J. Wu, and W. Jia, “Generalized non-separable two-dimensional Dammann encoding method,” Opt. Commun. 382, 539–546 (2017).
[Crossref]

Adv. Mater. (1)

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29(15), 1603838 (2017).
[Crossref] [PubMed]

Adv. Opt. Photonics (2)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics 8(2), 200–227 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

T. H. Lu and L. H. Lin, “Observation of a superposition of orthogonally polarized geometric beams with a c-cut Nd:YVO4 crystal,” Appl. Phys. B 106(4), 863–866 (2012).
[Crossref]

Appl. Phys. Lett. (1)

Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface,” Appl. Phys. Lett. 104(19), 191110 (2014).
[Crossref]

Opt. Commun. (3)

G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1-3), 25–31 (2000).
[Crossref]

C.-J. Cheng and M.-L. Chen, “Polarization encoding for optical encryption using twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 237(1-3), 45–52 (2004).
[Crossref]

J. Yu, C. Zhou, L. Zhu, Y. Lu, J. Wu, and W. Jia, “Generalized non-separable two-dimensional Dammann encoding method,” Opt. Commun. 382, 539–546 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Photon. Res. (3)

Phys. Rev. A (2)

X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Hybrid-order Poincaré sphere,” Phys. Rev. A 91(2), 023801 (2015).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Science (1)

P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, “Orbital angular momentum microlaser,” Science 353(6298), 464–467 (2016).
[Crossref] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup for generating and analyzing a partial Poincaré sphere beam and the distribution of the fast-axis orientation of the vortex plates. P: polarizer, QWP: quarter wave plate.
Fig. 2
Fig. 2 Intensity distribution of the experimental results of vector beams generated from the vortex plate ( q=1/2) by the incident of Gaussian beams with different polarizations. The input Gaussian beam is: (a) right circularly polarized beam, (b) left circularly polarized beam, and (c) linearly polarized beam. The two to five columns show the polarization-resolved patterns for the vector beams passing through a quarter-wave plate and a polarizer. The arrow direction indicates the orientation of the polarizer.
Fig. 3
Fig. 3 The intensity distribution of the experimental results of vector beams generated from the vortex plate ( q=1) by the incident of Gaussian beams with different polarizations. The input Gaussian beam is: (a) right circularly polarized beam, (b) left circularly polarized beam, and (c) linearly polarized beam. The two to five columns show the polarization-resolved patterns for the vector beams passing through a quarter-wave plate and a polarizer. The arrow direction indicates the orientation of the polarizer.
Fig. 4
Fig. 4 The intensity distribution of the theoretical results corresponding to the experimental results shown in Fig. 2.
Fig. 5
Fig. 5 The intensity distribution of the theoretical results corresponding to the experimental results shown in Fig. 3.
Fig. 6
Fig. 6 (a) Schematic diagram of the Poincaré sphere. The red arrows depict the linear polarization states on the equator of the Poincaré sphere. (b) The top left shows the vector beam generated from the vortex plate ( q=1/2) with the input right circularly polarized Gaussian beam. The bottom left shows the polarization distribution. The polarization resolved patterns depict the vector beam passing through an orientated polarizer. The polarization states can be mapped onto the equator of the Poincaré sphere. (c) The top left shows the vector beam generated from the vortex plate ( q=1) with the input right circularly polarized Gaussian beam. The bottom left shows the polarization distribution. The polarization-resolved patterns depict the vector beam passing through an orientated polarizer. The polarization states can be mapped onto the equator two rounds of the Poincaré sphere.
Fig. 7
Fig. 7 (a) Schematic diagram of the Poincaré sphere. The green figures depict the polarization states on the red curve of the Poincaré sphere. (b) The top left shows the vector beam generated from the vortex plate ( q=1/2) with the input linearly polarized Gaussian beam. The bottom left shows the polarization distribution. The polarization-resolved patterns depict the vector beam passing through an orientated polarizer. The polarization states can be mapped onto the red curve of the Poincaré sphere shown in (a). (c) The top left shows the vector beam generated from the vortex plate ( q=1) with the input linearly polarized Gaussian beam. The bottom left shows the polarization distribution. The polarization-resolved patterns depict the vector beam passing through an orientated polarizer. The polarization states can be mapped onto the red curve two rounds of the Poincaré sphere shown in (a).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T( x,y,θ,φ )=( cosθ sinθ sinθ cosθ )( t x 0 0 t y e iφ )( cosθ sinθ sinθ cosθ )
| E out =T( x,y,θ,π )| E in = e i2qϕ | RL| E in + e i2qϕ |LR| E in
| E out =T( x,y,θ,π/2 )| E in =α | E in +β ( e i2qϕ |RL| E in + e i2qϕ |LR| E in )
| E out =α LG 0,0 |R+β LG 0,2q |L,
  | E out =α LG 0,0 |L+β LG 0,2q |R,
| E out =(α LG 0,0 +β LG 0,2q )|R+(α LG 0,0 +β LG 0,2q )|L,

Metrics