Abstract

A hybrid cascaded configuration consisting of a fiber Sagnac interferometer (FSI) and a Fabry-Perot interferometer (FPI) was proposed and experimentally demonstrated to enhance the temperature intensity by the Vernier-effect. The FSI, which consists of a certain length of Panda fiber, is for temperature sensing, while the FPI acts as a filter due to its temperature insensitivity. The two interferometers have almost the same free spectral range, with the spectral envelope of the cascaded sensor shifting much more than the single FSI. Experimental results show that the temperature sensitivity is enhanced from −1.4 nm/°C (single FSI) to −29.0 (cascaded configuration). The enhancement factor is 20.7, which is basically consistent with theoretical analysis (19.9).

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cylinder-type fiber-optic Vernier probe based on cascaded Fabry–Perot interferometers with a controlled FSR ratio

Lingxin Kong, Yanxin Zhang, Weigang Zhang, Yunshan Zhang, Lin Yu, Tieyi Yan, and Pengcheng Geng
Appl. Opt. 57(18) 5043-5047 (2018)

Sensitivity amplification of fiber-optic in-line Mach–Zehnder Interferometer sensors with modified Vernier-effect

Hao Liao, Ping Lu, Xin Fu, Xinyue Jiang, Wenjun Ni, Deming Liu, and Jiangshan Zhang
Opt. Express 25(22) 26898-26909 (2017)

High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry–Perot cavities

Guigen Liu, Qiwen Sheng, Weilin Hou, and Ming Han
Opt. Lett. 41(21) 5134-5137 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Yang, Y. Zheng, L. H. Chen, C. C. Chan, X. Dong, P. P. Shum, and H. Su, “Miniature temperature sensor with germania-core optical fiber,” Opt. Express 23(14), 17687–17692 (2015).
    [PubMed]
  2. Y. Zhao, F. Xia, H. F. Hu, and C. Du, “A ring-core optical fiber sensor with asymmetric LPG for highly sensitive temperature measurement,” IEEE Transactions on Instrumentation and Measurement 66(12), 3378– 3386 (2017).
  3. Z. Xu, J. Lim, D. J. J. Hu, Q. Sun, R. Y. Wong, K. Li, M. Jiang, and P. P. Shum, “Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber,” Opt. Express 24(2), 1699–1707 (2016).
    [PubMed]
  4. Z. Wu, H. Zhang, P. P. Shum, X. Shao, T. Huang, Y. M. Seow, Y. G. Liu, H. Wei, and Z. Wang, “Supermode Bragg grating combined Mach-Zehnder interferometer for temperature-strain discrimination,” Opt. Express 23(26), 33001–33007 (2015).
    [PubMed]
  5. Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).
  6. T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, and P. Shun, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324(5), 53–57 (2014).
  7. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).
  8. J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).
  9. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [PubMed]
  10. T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
    [PubMed]
  11. C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
    [PubMed]
  12. T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
  13. Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
    [PubMed]
  14. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
    [PubMed]
  15. J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
  16. F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, “A miniature temperature high germanium doped PCF interferometer sensor,” Opt. Express 21(25), 30266–30274 (2013).
    [PubMed]
  17. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
    [PubMed]
  18. W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
    [PubMed]
  19. P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
  20. M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
    [PubMed]
  21. M. LaNotte and V. M. N. Passaro, “Ultrahigh sensitivity chemical photonic sensing by Mach-Zehnder interferometer enhanced Vernier-effect,” Sens. Actuators B Chem. 176, 994–1007 (2013).
  22. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [PubMed]
  23. L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
  24. B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).

2017 (3)

Y. Zhao, F. Xia, H. F. Hu, and C. Du, “A ring-core optical fiber sensor with asymmetric LPG for highly sensitive temperature measurement,” IEEE Transactions on Instrumentation and Measurement 66(12), 3378– 3386 (2017).

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).

2016 (1)

2015 (5)

Z. Wu, H. Zhang, P. P. Shum, X. Shao, T. Huang, Y. M. Seow, Y. G. Liu, H. Wei, and Z. Wang, “Supermode Bragg grating combined Mach-Zehnder interferometer for temperature-strain discrimination,” Opt. Express 23(26), 33001–33007 (2015).
[PubMed]

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
[PubMed]

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).

J. Yang, Y. Zheng, L. H. Chen, C. C. Chan, X. Dong, P. P. Shum, and H. Su, “Miniature temperature sensor with germania-core optical fiber,” Opt. Express 23(14), 17687–17692 (2015).
[PubMed]

2014 (2)

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, and P. Shun, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324(5), 53–57 (2014).

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).

2013 (3)

2011 (4)

2010 (3)

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[PubMed]

2005 (2)

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
[PubMed]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).

1996 (1)

Bai, Z.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

Bartelt, H.

Bhatia, V.

Bienstman, P.

Bogaerts, W.

Canning, J.

Cao, S.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

Chan, C. C.

Chan, J.

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).

Chen, K. P.

Chen, L. H.

Chen, R.

Chen, T.

Chiang, K. S.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).

Claes, T.

Cook, K.

De Leonardis, F.

B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).

Deng, M.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

Dong, X.

Du, C.

Y. Zhao, F. Xia, H. F. Hu, and C. Du, “A ring-core optical fiber sensor with asymmetric LPG for highly sensitive temperature measurement,” IEEE Transactions on Instrumentation and Measurement 66(12), 3378– 3386 (2017).

Duan, L.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

Favero, F. C.

Feng, X.

Fu, H. Y.

Fu, S.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

Gao, F.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

Guan, B. O.

Guo, J.

Guo, K.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

Hawkins, A. R.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).

He, S.

W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[PubMed]

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).

Hu, D. J. J.

Hu, H. F.

Y. Zhao, F. Xia, H. F. Hu, and C. Du, “A ring-core optical fiber sensor with asymmetric LPG for highly sensitive temperature measurement,” IEEE Transactions on Instrumentation and Measurement 66(12), 3378– 3386 (2017).

Huang, J.

Huang, T.

Z. Wu, H. Zhang, P. P. Shum, X. Shao, T. Huang, Y. M. Seow, Y. G. Liu, H. Wei, and Z. Wang, “Supermode Bragg grating combined Mach-Zehnder interferometer for temperature-strain discrimination,” Opt. Express 23(26), 33001–33007 (2015).
[PubMed]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, and P. Shun, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324(5), 53–57 (2014).

Ipson, B. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).

Jewart, C.

Jiang, L.

Jiang, M.

Jin, S.

Just, F.

Kai, G.

Kaur, A.

Ke, T.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).

Kobelke, J.

Lan, X.

LaNotte, M.

M. LaNotte and V. M. N. Passaro, “Ultrahigh sensitivity chemical photonic sensing by Mach-Zehnder interferometer enhanced Vernier-effect,” Sens. Actuators B Chem. 176, 994–1007 (2013).

Li, B.

Li, K.

Li, Z.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

Liao, C.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

Lim, J.

Liu, B.

Liu, D.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

Liu, Y.

Liu, Y. G.

Lowder, T. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).

Luo, B.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Luo, Y.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Ni, K.

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).

Ouyang, J.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

Pan, W.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Passaro, V. M. N.

B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).

M. LaNotte and V. M. N. Passaro, “Ultrahigh sensitivity chemical photonic sensing by Mach-Zehnder interferometer enhanced Vernier-effect,” Sens. Actuators B Chem. 176, 994–1007 (2013).

Qian, W.

Quan, M.

Qureshi, K. K.

Rao, Y.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).

Rothhardt, M.

Schultz, S. M.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).

Selfridge, R. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).

Seow, Y. M.

Shao, L.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Shao, X.

Z. Wu, H. Zhang, P. P. Shum, X. Shao, T. Huang, Y. M. Seow, Y. G. Liu, H. Wei, and Z. Wang, “Supermode Bragg grating combined Mach-Zehnder interferometer for temperature-strain discrimination,” Opt. Express 23(26), 33001–33007 (2015).
[PubMed]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, and P. Shun, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324(5), 53–57 (2014).

Shum, P.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).

Shum, P. P.

Shun, P.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, and P. Shun, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324(5), 53–57 (2014).

Smith, K. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).

Spittel, R.

Su, H.

Sun, Q.

Sun, Y.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, and P. Shun, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324(5), 53–57 (2014).

Tam, H. Y.

Tang, J.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

Tang, M.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

Tian, J.

Troia, B.

B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).

Vengsarkar, A. M.

Wang, M.

Wang, S.

Wang, Y.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

Wang, Z.

Wei, H.

Wong, R. Y.

Wu, C.

Wu, Z.

Z. Wu, H. Zhang, P. P. Shum, X. Shao, T. Huang, Y. M. Seow, Y. G. Liu, H. Wei, and Z. Wang, “Supermode Bragg grating combined Mach-Zehnder interferometer for temperature-strain discrimination,” Opt. Express 23(26), 33001–33007 (2015).
[PubMed]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, and P. Shun, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324(5), 53–57 (2014).

Xia, F.

Y. Zhao, F. Xia, H. F. Hu, and C. Du, “A ring-core optical fiber sensor with asymmetric LPG for highly sensitive temperature measurement,” IEEE Transactions on Instrumentation and Measurement 66(12), 3378– 3386 (2017).

Xia, T.-H.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).

Xiao, H.

Xu, Z.

Xue, W.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).

Yan, L.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Yang, J.

Yao, Y.

Yuan, L.

Yuan, S.

Zhang, A.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).

Zhang, B.

Zhang, H.

Zhang, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, and P. Shun, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324(5), 53–57 (2014).

Zhang, P.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

Zhang, S.

Zhang, W.

Zhang, Y.

Zhang, Z.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).

W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[PubMed]

Zhao, C. L.

Zhao, Y.

Y. Zhao, F. Xia, H. F. Hu, and C. Du, “A ring-core optical fiber sensor with asymmetric LPG for highly sensitive temperature measurement,” IEEE Transactions on Instrumentation and Measurement 66(12), 3378– 3386 (2017).

Zhao, Z.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

Zheng, Y.

J. Yang, Y. Zheng, L. H. Chen, C. C. Chan, X. Dong, P. P. Shum, and H. Su, “Miniature temperature sensor with germania-core optical fiber,” Opt. Express 23(14), 17687–17692 (2015).
[PubMed]

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).

Zhou, G.

Zhu, B.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

Zhu, J.

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).

Zhu, T.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).

Zou, X.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Appl. Opt. (1)

IEEE Photonics J. (1)

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier Effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).

IEEE Photonics Technol. Lett. (1)

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(9), 1926–1928 (2005).

IEEE Sens. J. (3)

J. Yang, X. Dong, Y. Zheng, K. Ni, J. Chan, and P. Shum, “Magnetic field sensing with reflectivity ratio measurement of fiber Bragg grating,” IEEE Sens. J. 15(3), 1372–1376 (2014).

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, K. Guo, M. Deng, S. Cao, and Y. Wang, “Hollow-core-fiber based interferometer for high-temperature measurements,” IEEE Sens. J. 9(2), 7101109 (2017).

J. Zhu, A. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).

IEEE Transactions on Instrumentation and Measurement (1)

Y. Zhao, F. Xia, H. F. Hu, and C. Du, “A ring-core optical fiber sensor with asymmetric LPG for highly sensitive temperature measurement,” IEEE Transactions on Instrumentation and Measurement 66(12), 3378– 3386 (2017).

Opt. Commun. (3)

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, and P. Shun, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324(5), 53–57 (2014).

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).

Opt. Express (5)

Opt. Lett. (7)

Sens. Actuators B Chem. (2)

M. LaNotte and V. M. N. Passaro, “Ultrahigh sensitivity chemical photonic sensing by Mach-Zehnder interferometer enhanced Vernier-effect,” Sens. Actuators B Chem. 176, 994–1007 (2013).

B. Troia, F. De Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators B Chem. 240, 76–89 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the temperature sensor based on hybrid cascaded configuration of a FSI and a FPI (OSA: Optical spectral analyzer).
Fig. 2
Fig. 2 Simulation results of the spectrum of (a) single FPI and FSI, and (b) cascaded FPI and FSI.
Fig. 3
Fig. 3 (a) spectral shift of single FSI. (b) spectral envelope shift of cascaded FSI and FPI.
Fig. 4
Fig. 4 Spectra of (a) single FPI and single FSI and (b) cascaded FPI and FSI.
Fig. 5
Fig. 5 Spectral shifts of (a) single FSI and (b) cascaded FSI and FPI at the temperature of 42.2 °C and 43.0 °C.
Fig. 6
Fig. 6 Wavelength shifts versus temperature for single FSI and hybrid cascaded configuration.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I FP = R 1 2 + ( 1α ) 2 ( 1 R 1 ) 2 R 2 2 +2( 1α )( 1 R 1 ) R 1 R 2 cos( 4πn L 1 λ )
FS R FPI = λ 2 /2nL.
I FSI =[ 1cosφ ]/2
λ m =BL/m.
FS R FSI = λ 2 /BL.
Δλ( T )=λ ΔB( T ) B .
FS R envelope = FS R FSI FS R FPI | FS R FPI FS R FSI | .
M= FS R FPI | FS R FPI FS R FSI | .
Δ λ envelope =λ ΔB( T ) B FS R FPI | FS R FPI FS R FSI | .

Metrics