Abstract

We demonstrate a novel scheme to determine the absolute time delay of an unknown signal in an all-optical pulse compression system based on stimulated Brillouin scattering (SBS). Optical pulse train with high repetition rate is utilized as the probe lightwave and unknown broadband microwave signal is modulated on the pump lightwave. The pump and probe lightwaves interact along an optical fiber via SBS. The finite optical fiber length and high pulse repetition rate of probe signal make SBS insufficient since the first several probe pulses meet a part of the entire pump signal. The absolute time delay of the unknown microwave signal is determined through the amplitude variations of the pulse compression results, which are intrinsically carried by the probe pulses suffering insufficient SBS gain. The measurement of the absolute time delay is theoretically analyzed and is experimentally demonstrated. The maximum experimental error is about 7 ns for a linearly frequency-modulated pulse with 1 GHz sweep range at the center frequency of 10 GHz.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering

Xin Long, Weiwen Zou, and Jianping Chen
Opt. Express 24(5) 5162-5171 (2016)

Generation of linear frequency-modulated signals with improved time-bandwidth product based on an optical frequency comb

Xiaochan Wang, Jianxin Ma, Qi Zhang, and Xiangjun Xin
Appl. Opt. 58(12) 3222-3228 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. E. Cook, “Pulse compression-key to more efficient radar transmission,” in Proceedings of the Institute of Radio Engineers (IEEE, 1960), pp. 310–316.
    [Crossref]
  2. S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
    [Crossref]
  3. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  4. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  5. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  6. H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
    [Crossref] [PubMed]
  7. W. Zou, S. Yang, X. Long, and J. Chen, “Optical pulse compression reflectometry: proposal and proof-of-concept experiment,” Opt. Express 23(1), 512–522 (2015).
    [Crossref] [PubMed]
  8. J. Zhang and J. Yao, “Time-stretched sampling of a fast microwave waveform based on the repetitive use of a linearly chirped fiber Bragg grating in a dispersive loop,” Optica 1(2), 64–69 (2014).
    [Crossref]
  9. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. L. Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
    [Crossref]
  10. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  11. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
    [Crossref] [PubMed]
  12. G. Yang, W. Zou, L. Yu, K. Wu, and J. Chen, “Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter,” Opt. Express 24(21), 24061–24074 (2016).
    [Crossref] [PubMed]
  13. X. Long, W. Zou, and J. Chen, “All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering,” Opt. Express 24(5), 5162–5171 (2016).
    [Crossref] [PubMed]
  14. Y. Ji, W. Zou, X. Long, and J. Chen, “Signal-to-noise ratio enhancement of stimulated Brillouin scattering based pulse compression of an ultrabroad microwave signal by use of a dispersion compensation fiber,” Opt. Lett. 42(15), 2980–2983 (2017).
    [Crossref] [PubMed]
  15. H. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3(1), 30–34 (2016).
    [Crossref]
  16. X. Long, W. Zou, and J. Chen, “Broadband instantaneous frequency measurement based on stimulated Brillouin scattering,” Opt. Express 25(3), 2206–2214 (2017).
    [Crossref]
  17. W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
    [Crossref]
  18. D. P. Zhou, W. Li, L. Chen, and X. Bao, “Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber,” Sensors (Basel) 13(2), 1836–1845 (2013).
    [Crossref] [PubMed]
  19. Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
    [Crossref]
  20. N. Levanon and E. Mozeson, Radar Signals (John Wiley & Sons, 2004).
  21. R. W. Boyd, Nonlinear Optics (Academic, 2003).

2017 (3)

2016 (4)

2015 (3)

2014 (2)

J. Zhang and J. Yao, “Time-stretched sampling of a fast microwave waveform based on the repetitive use of a linearly chirped fiber Bragg grating in a dispersive loop,” Optica 1(2), 64–69 (2014).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

2013 (1)

D. P. Zhou, W. Li, L. Chen, and X. Bao, “Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber,” Sensors (Basel) 13(2), 1836–1845 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (1)

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

2009 (1)

2007 (2)

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Bao, X.

D. P. Zhou, W. Li, L. Chen, and X. Bao, “Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber,” Sensors (Basel) 13(2), 1836–1845 (2013).
[Crossref] [PubMed]

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Byun, H.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chen, J.

Y. Ji, W. Zou, X. Long, and J. Chen, “Signal-to-noise ratio enhancement of stimulated Brillouin scattering based pulse compression of an ultrabroad microwave signal by use of a dispersion compensation fiber,” Opt. Lett. 42(15), 2980–2983 (2017).
[Crossref] [PubMed]

X. Long, W. Zou, and J. Chen, “Broadband instantaneous frequency measurement based on stimulated Brillouin scattering,” Opt. Express 25(3), 2206–2214 (2017).
[Crossref]

G. Yang, W. Zou, L. Yu, K. Wu, and J. Chen, “Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter,” Opt. Express 24(21), 24061–24074 (2016).
[Crossref] [PubMed]

X. Long, W. Zou, and J. Chen, “All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering,” Opt. Express 24(5), 5162–5171 (2016).
[Crossref] [PubMed]

H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
[Crossref] [PubMed]

W. Zou, S. Yang, X. Long, and J. Chen, “Optical pulse compression reflectometry: proposal and proof-of-concept experiment,” Opt. Express 23(1), 512–522 (2015).
[Crossref] [PubMed]

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G. R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012).
[Crossref] [PubMed]

Chen, L.

D. P. Zhou, W. Li, L. Chen, and X. Bao, “Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber,” Sensors (Basel) 13(2), 1836–1845 (2013).
[Crossref] [PubMed]

Choi, D.

Choi, D.-Y.

Cook, C. E.

C. E. Cook, “Pulse compression-key to more efficient radar transmission,” in Proceedings of the Institute of Radio Engineers (IEEE, 1960), pp. 310–316.
[Crossref]

Dahlem, M. S.

Davies, B. L.

DiLello, N. A.

Eggleton, B. J.

Fukuda, H.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Geis, M. W.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Grein, M. E.

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

He, Z.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

Holzwarth, C. W.

Hotate, K.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

Hoyt, J. L.

Ippen, E. P.

Ji, Y.

Jiang, H.

Kärtner, F. X.

Khilo, A.

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Li, W.

D. P. Zhou, W. Li, L. Chen, and X. Bao, “Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber,” Sensors (Basel) 13(2), 1836–1845 (2013).
[Crossref] [PubMed]

Long, X.

Lyszczarz, T. M.

Madden, S. J.

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Marpaung, D.

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Morrison, B.

Motamedi, A.

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Nejadmalayeri, A. H.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Orcutt, J. S.

Pagani, M.

Pan, S.

Pant, R.

Peng, M. Y.

Perrott, M.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Popovic, M. A.

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Ram, R. J.

Sander, M. Y.

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Smith, H. I.

Song, K. Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Sorace-Agaskar, C. M.

Spector, S. J.

Sun, J.

Valley, G. C.

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Vu, K.

Wang, J. P.

Wu, K.

Yan, L.

Yang, G.

Yang, S.

Yao, J.

Yoon, J. U.

Yu, L.

Zhang, H.

Zhang, J.

Zhou, D. P.

D. P. Zhou, W. Li, L. Chen, and X. Bao, “Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber,” Sensors (Basel) 13(2), 1836–1845 (2013).
[Crossref] [PubMed]

Zhou, G. R.

Zou, W.

X. Long, W. Zou, and J. Chen, “Broadband instantaneous frequency measurement based on stimulated Brillouin scattering,” Opt. Express 25(3), 2206–2214 (2017).
[Crossref]

Y. Ji, W. Zou, X. Long, and J. Chen, “Signal-to-noise ratio enhancement of stimulated Brillouin scattering based pulse compression of an ultrabroad microwave signal by use of a dispersion compensation fiber,” Opt. Lett. 42(15), 2980–2983 (2017).
[Crossref] [PubMed]

X. Long, W. Zou, and J. Chen, “All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering,” Opt. Express 24(5), 5162–5171 (2016).
[Crossref] [PubMed]

G. Yang, W. Zou, L. Yu, K. Wu, and J. Chen, “Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter,” Opt. Express 24(21), 24061–24074 (2016).
[Crossref] [PubMed]

H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
[Crossref] [PubMed]

W. Zou, S. Yang, X. Long, and J. Chen, “Optical pulse compression reflectometry: proposal and proof-of-concept experiment,” Opt. Express 23(1), 512–522 (2015).
[Crossref] [PubMed]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photonics Technol. Lett. 22(8), 526–528 (2010).
[Crossref]

J. Lightwave Technol. (2)

Light Sci. Appl. (1)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Optica (3)

Sensors (Basel) (1)

D. P. Zhou, W. Li, L. Chen, and X. Bao, “Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber,” Sensors (Basel) 13(2), 1836–1845 (2013).
[Crossref] [PubMed]

Other (3)

C. E. Cook, “Pulse compression-key to more efficient radar transmission,” in Proceedings of the Institute of Radio Engineers (IEEE, 1960), pp. 310–316.
[Crossref]

N. Levanon and E. Mozeson, Radar Signals (John Wiley & Sons, 2004).

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Insufficient SBS interaction between the pump lightwave and probe pulse train. (b) The first several pulses meet different portions of the modulated pump lightwave. The pulse compressed results are different from each other.
Fig. 2
Fig. 2 Illustration of the pump-probe overlap in the fiber. The black squares represent the portions of the interacted pump lightwaves. (a) The fiber length is long enough (T > D) and several SBS sufficient interactions occur. (b) The fiber length is relatively short (T < D) and all SBS interactions are insufficient.
Fig. 3
Fig. 3 Simulation results of SBS based pulse compression for different portions of two microwave waveforms. (a) LFM pulse and (b) frequency Costas coded pulse.
Fig. 4
Fig. 4 Experimental setup of an SBS-based all-optical pulse compression system to measure the absolute time delay of a broadband microwave signal. PC: polarization controller. EOM: electro-optic modulator. SSBM: single sideband modulator. EDFA: erbium-doped fiber amplifier. DCF: dispersion compensation fiber. PD: photo-detector. OSC: oscilloscope.
Fig. 5
Fig. 5 Measured result of the absolute time delay for an LFM pulse. (a) The received probe pulse train after SBS interaction. The marked 16 pulses are the first 16 to interact with the LFM pulse and experience insufficient SBS interaction. (b) The distribution of the Brillouin gain for these 16 pulses. The gain is normalized to the maximum value.
Fig. 6
Fig. 6 Measured relation of the index of pulses versus the resolution of the nth pulse (n-τn) and the corresponding fitting results with Δt’ = 3.340 μs, 3.590 μs, and 3.890 μs, respectively. The estimation of the time delays are 3.338 μs, 3.589 μs, and 3.883 μs, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P k+l = ( k+l ) T p +TΔt D
l=0,1,..., D T p 1
Δt=( k+l ) T p +T P k+l D
Δ t =( 27+l ) T p D τ 27+l B
l=2,3,...,15

Metrics