Abstract

We present the operation of a 1.5-Gb/s real-time Y-00 quantum stream cipher as an overlay in a modern coherent wavelength-division multiplexed (WDM) transmission system. We investigate transmission performance in two different wavelength allocation scenarios. The first scenario places the Y-00 cipher signal in a vacant 50-GHz channel slot between two 50-GHz spaced real-time processed 32-Gbaud PDM-16-QAM (256-Gbit/s) channels. The second scenario puts the Y-00 cipher signal in the small gap between two adjacent 50-GHz spaced WDM channels, hence implementing a secure channel overlay in a fully loaded WDM system. In both scenarios, the Y-00 cipher signal and the 256-Gbit/s signals are transmitted over 320 km.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
QAM quantum stream cipher using digital coherent optical transmission

Masataka Nakazawa, Masato Yoshida, Toshihiko Hirooka, and Keisuke Kasai
Opt. Express 22(4) 4098-4107 (2014)

Physical-layer security analysis of a quantum-noise randomized cipher based on the wire-tap channel model

Haisong Jiao, Tao Pu, Jilin Zheng, Peng Xiang, and Tao Fang
Opt. Express 25(10) 10947-10960 (2017)

Enhancing the Security of Free-Space Optical Communications With Secret Sharing and Key Agreement

Ning Wang, Xuegui Song, Julian Cheng, and Victor C. M. Leung
J. Opt. Commun. Netw. 6(12) 1072-1081 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Medard, D. Marquis, R. A. Barry, and S. G. Finn, “Security issues in all-optical networks,” IEEE Netw. 11(3), 42–48 (1997).
    [Crossref]
  2. K. Shaneman and S. Gray, “Optical network security: technical analysis of fiber tapping mechanisms and methods for detection and prevention,” in Proceedings of Military Communications Conference (IEEE, 2004), pp.711–716.
    [Crossref]
  3. K. Guan, J. Cho, and P. J. Winzer, “Physical layer security in fiber-optic MIMO-SDM systems: An overview,” Opt. Commun. 408, 31–41 (2018).
    [Crossref]
  4. M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
    [Crossref]
  5. T. H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Lightwave Technol. 22(2), 665–670 (2005).
  6. H. P. Yuen, “KCQ: A new approach to quantum cryptography I. General principles and key generation,” https://arXiv:quant-ph/0311061v6 .
  7. H. P. Yuen, P. Kumar, and G. A. Barbosa, “Ultra-secure, ultra-efficient cryptographic system,” US Patent 7,333,611 B1.
  8. G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
    [Crossref] [PubMed]
  9. O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
    [Crossref]
  10. K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
    [Crossref]
  11. E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
    [Crossref]
  12. G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: the marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
    [Crossref]
  13. K. Ohhata, O. Hirota, M. Honda, S. Akutsu, Y. Doi, K. Harasawa, and K. Yamashita, “10-Gb/s optical transceiver using the Yuen 2000 encryption protocol,” J. Lightwave Technol. 28(18), 2714–2723 (2010).
    [Crossref]
  14. K. Harasawa, O. Hirota, K. Yamashita, M. Honda, K. Ohhata, S. Akutsu, T. Hosoi, and Y. Doi, “Quantum encryption communication over a 192-km 2.5-Gbit/s line with optical transceivers employing Yuen-2000 protocol based on intensity modulation,” J. Lightwave Technol. 29(3), 316–323 (2011).
    [Crossref]
  15. F. Futami, “Experimental demonstrations of Y-00 cipher for high capacity and secure optical fiber communications,” Quantum Inform. Process. 13(10), 2277–2291 (2014).
    [Crossref]
  16. M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, “QAM quantum stream cipher using digital coherent optical transmission,” Opt. Express 22(4), 4098–4107 (2014).
    [Crossref] [PubMed]
  17. F. Futami and O. Hirota, “100 Gbit/s (10 × 10 Gbit/s) Y-00 cipher transmission over 120 km for secure optical fiber communication between data centers,” in Proceedings of2014OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (OECC/ACOFT), paper MO1A2.
  18. F. Futami and O. Hirota, “Masking of 4096-level intensity modulation signals by noises for secure communication employing Y-00 cipher protocol,” in Proceedings of 37th European Conference on Optical Communication (ECOC), Tu.6.C.4 (2011).
    [Crossref]
  19. K. Kato, “A unified analysis of optical signal modulation formats for quantum enigma cipher,” Proc. SPIE 10409, 104090K (2017).
  20. K. Kato and O. Hirota, “Randomization techniques for the intensity modulation-based quantum stream cipher and progress of experiment,” Proc. SPIE 8163, 81630A (2011).
    [Crossref]
  21. K. Kato, “Quantum enigma cipher as a generalization of the quantum stream cipher,” Proc. SPIE 9980, 998005 (2016).
    [Crossref]
  22. F. Futami, K. Kato, and O. Hirota, “A novel transceiver of the Y-00 quantum stream cipher with the randomization technique for optical communication with higher security performance,” Proc. SPIE 9980, 99800O (2016).
    [Crossref]
  23. R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
    [Crossref]
  24. O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
    [Crossref]
  25. S. Donnet, A. Thangaraj, M. Bloch, J. Cussey, J. M. Merolla, and L. Larger, “Security of Y-00 under heterodyne measurement and fast correlation attack,” Phys. Lett. A 356(6), 406–410 (2006).
    [Crossref]
  26. T. Shimizu, O. Hirota, and Y. Nagasako, “Running key mapping in a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 77(3), 034305 (2008).
    [Crossref]
  27. C. W. Helstrom, Quantum detection and estimation theory (Academic, 1976).
  28. J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-Atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250-Gb/s 16-QAM,” in Proceedings of Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th5B.3.
    [Crossref]

2018 (1)

K. Guan, J. Cho, and P. J. Winzer, “Physical layer security in fiber-optic MIMO-SDM systems: An overview,” Opt. Commun. 408, 31–41 (2018).
[Crossref]

2017 (1)

K. Kato, “A unified analysis of optical signal modulation formats for quantum enigma cipher,” Proc. SPIE 10409, 104090K (2017).

2016 (2)

K. Kato, “Quantum enigma cipher as a generalization of the quantum stream cipher,” Proc. SPIE 9980, 998005 (2016).
[Crossref]

F. Futami, K. Kato, and O. Hirota, “A novel transceiver of the Y-00 quantum stream cipher with the randomization technique for optical communication with higher security performance,” Proc. SPIE 9980, 99800O (2016).
[Crossref]

2014 (2)

F. Futami, “Experimental demonstrations of Y-00 cipher for high capacity and secure optical fiber communications,” Quantum Inform. Process. 13(10), 2277–2291 (2014).
[Crossref]

M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, “QAM quantum stream cipher using digital coherent optical transmission,” Opt. Express 22(4), 4098–4107 (2014).
[Crossref] [PubMed]

2011 (3)

K. Harasawa, O. Hirota, K. Yamashita, M. Honda, K. Ohhata, S. Akutsu, T. Hosoi, and Y. Doi, “Quantum encryption communication over a 192-km 2.5-Gbit/s line with optical transceivers employing Yuen-2000 protocol based on intensity modulation,” J. Lightwave Technol. 29(3), 316–323 (2011).
[Crossref]

K. Kato and O. Hirota, “Randomization techniques for the intensity modulation-based quantum stream cipher and progress of experiment,” Proc. SPIE 8163, 81630A (2011).
[Crossref]

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

2010 (1)

2009 (1)

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: the marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

2008 (1)

T. Shimizu, O. Hirota, and Y. Nagasako, “Running key mapping in a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 77(3), 034305 (2008).
[Crossref]

2007 (1)

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

2006 (2)

S. Donnet, A. Thangaraj, M. Bloch, J. Cussey, J. M. Merolla, and L. Larger, “Security of Y-00 under heterodyne measurement and fast correlation attack,” Phys. Lett. A 356(6), 406–410 (2006).
[Crossref]

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

2005 (4)

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

T. H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Lightwave Technol. 22(2), 665–670 (2005).

2003 (1)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

1997 (1)

M. Medard, D. Marquis, R. A. Barry, and S. G. Finn, “Security issues in all-optical networks,” IEEE Netw. 11(3), 42–48 (1997).
[Crossref]

Akutsu, S.

Barbosa, G. A.

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Barry, R. A.

M. Medard, D. Marquis, R. A. Barry, and S. G. Finn, “Security issues in all-optical networks,” IEEE Netw. 11(3), 42–48 (1997).
[Crossref]

Bloch, M.

S. Donnet, A. Thangaraj, M. Bloch, J. Cussey, J. M. Merolla, and L. Larger, “Security of Y-00 under heterodyne measurement and fast correlation attack,” Phys. Lett. A 356(6), 406–410 (2006).
[Crossref]

Cho, J.

K. Guan, J. Cho, and P. J. Winzer, “Physical layer security in fiber-optic MIMO-SDM systems: An overview,” Opt. Commun. 408, 31–41 (2018).
[Crossref]

Corndorf, E.

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Cussey, J.

S. Donnet, A. Thangaraj, M. Bloch, J. Cussey, J. M. Merolla, and L. Larger, “Security of Y-00 under heterodyne measurement and fast correlation attack,” Phys. Lett. A 356(6), 406–410 (2006).
[Crossref]

Deng, Y.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Doi, Y.

Donnet, S.

S. Donnet, A. Thangaraj, M. Bloch, J. Cussey, J. M. Merolla, and L. Larger, “Security of Y-00 under heterodyne measurement and fast correlation attack,” Phys. Lett. A 356(6), 406–410 (2006).
[Crossref]

Eguchi, T.

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

Finn, S. G.

M. Medard, D. Marquis, R. A. Barry, and S. G. Finn, “Security issues in all-optical networks,” IEEE Netw. 11(3), 42–48 (1997).
[Crossref]

Fok, M. P.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Fuse, M.

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Futami, F.

F. Futami, K. Kato, and O. Hirota, “A novel transceiver of the Y-00 quantum stream cipher with the randomization technique for optical communication with higher security performance,” Proc. SPIE 9980, 99800O (2016).
[Crossref]

F. Futami, “Experimental demonstrations of Y-00 cipher for high capacity and secure optical fiber communications,” Quantum Inform. Process. 13(10), 2277–2291 (2014).
[Crossref]

F. Futami and O. Hirota, “Masking of 4096-level intensity modulation signals by noises for secure communication employing Y-00 cipher protocol,” in Proceedings of 37th European Conference on Optical Communication (ECOC), Tu.6.C.4 (2011).
[Crossref]

Gray, S.

K. Shaneman and S. Gray, “Optical network security: technical analysis of fiber tapping mechanisms and methods for detection and prevention,” in Proceedings of Military Communications Conference (IEEE, 2004), pp.711–716.
[Crossref]

Guan, K.

K. Guan, J. Cho, and P. J. Winzer, “Physical layer security in fiber-optic MIMO-SDM systems: An overview,” Opt. Commun. 408, 31–41 (2018).
[Crossref]

Harasawa, K.

Hirooka, T.

Hirota, O.

F. Futami, K. Kato, and O. Hirota, “A novel transceiver of the Y-00 quantum stream cipher with the randomization technique for optical communication with higher security performance,” Proc. SPIE 9980, 99800O (2016).
[Crossref]

K. Harasawa, O. Hirota, K. Yamashita, M. Honda, K. Ohhata, S. Akutsu, T. Hosoi, and Y. Doi, “Quantum encryption communication over a 192-km 2.5-Gbit/s line with optical transceivers employing Yuen-2000 protocol based on intensity modulation,” J. Lightwave Technol. 29(3), 316–323 (2011).
[Crossref]

K. Kato and O. Hirota, “Randomization techniques for the intensity modulation-based quantum stream cipher and progress of experiment,” Proc. SPIE 8163, 81630A (2011).
[Crossref]

K. Ohhata, O. Hirota, M. Honda, S. Akutsu, Y. Doi, K. Harasawa, and K. Yamashita, “10-Gb/s optical transceiver using the Yuen 2000 encryption protocol,” J. Lightwave Technol. 28(18), 2714–2723 (2010).
[Crossref]

T. Shimizu, O. Hirota, and Y. Nagasako, “Running key mapping in a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 77(3), 034305 (2008).
[Crossref]

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

F. Futami and O. Hirota, “Masking of 4096-level intensity modulation signals by noises for secure communication employing Y-00 cipher protocol,” in Proceedings of 37th European Conference on Optical Communication (ECOC), Tu.6.C.4 (2011).
[Crossref]

Honda, M.

Hosoi, T.

Kanter, G. S.

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: the marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

Kasai, K.

Kato, K.

K. Kato, “A unified analysis of optical signal modulation formats for quantum enigma cipher,” Proc. SPIE 10409, 104090K (2017).

K. Kato, “Quantum enigma cipher as a generalization of the quantum stream cipher,” Proc. SPIE 9980, 998005 (2016).
[Crossref]

F. Futami, K. Kato, and O. Hirota, “A novel transceiver of the Y-00 quantum stream cipher with the randomization technique for optical communication with higher security performance,” Proc. SPIE 9980, 99800O (2016).
[Crossref]

K. Kato and O. Hirota, “Randomization techniques for the intensity modulation-based quantum stream cipher and progress of experiment,” Proc. SPIE 8163, 81630A (2011).
[Crossref]

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

Kumar, P.

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Larger, L.

S. Donnet, A. Thangaraj, M. Bloch, J. Cussey, J. M. Merolla, and L. Larger, “Security of Y-00 under heterodyne measurement and fast correlation attack,” Phys. Lett. A 356(6), 406–410 (2006).
[Crossref]

Liang, C.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

Marquis, D.

M. Medard, D. Marquis, R. A. Barry, and S. G. Finn, “Security issues in all-optical networks,” IEEE Netw. 11(3), 42–48 (1997).
[Crossref]

Medard, M.

M. Medard, D. Marquis, R. A. Barry, and S. G. Finn, “Security issues in all-optical networks,” IEEE Netw. 11(3), 42–48 (1997).
[Crossref]

Merolla, J. M.

S. Donnet, A. Thangaraj, M. Bloch, J. Cussey, J. M. Merolla, and L. Larger, “Security of Y-00 under heterodyne measurement and fast correlation attack,” Phys. Lett. A 356(6), 406–410 (2006).
[Crossref]

Nagasako, Y.

T. Shimizu, O. Hirota, and Y. Nagasako, “Running key mapping in a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 77(3), 034305 (2008).
[Crossref]

Nair, R.

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

Nakazawa, M.

Ohhata, K.

Prucnal, P. R.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Reilly, D.

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: the marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

Shake, T. H.

T. H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Lightwave Technol. 22(2), 665–670 (2005).

Shaneman, K.

K. Shaneman and S. Gray, “Optical network security: technical analysis of fiber tapping mechanisms and methods for detection and prevention,” in Proceedings of Military Communications Conference (IEEE, 2004), pp.711–716.
[Crossref]

Shimizu, T.

T. Shimizu, O. Hirota, and Y. Nagasako, “Running key mapping in a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 77(3), 034305 (2008).
[Crossref]

Smith, N.

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: the marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

Sohma, M.

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Thangaraj, A.

S. Donnet, A. Thangaraj, M. Bloch, J. Cussey, J. M. Merolla, and L. Larger, “Security of Y-00 under heterodyne measurement and fast correlation attack,” Phys. Lett. A 356(6), 406–410 (2006).
[Crossref]

Wang, Z.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Winzer, P. J.

K. Guan, J. Cho, and P. J. Winzer, “Physical layer security in fiber-optic MIMO-SDM systems: An overview,” Opt. Commun. 408, 31–41 (2018).
[Crossref]

Yamashita, K.

Yoshida, M.

Yuen, H. P.

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

IEEE Commun. Mag. (1)

G. S. Kanter, D. Reilly, and N. Smith, “Practical physical-layer encryption: the marriage of optical noise with traditional cryptography,” IEEE Commun. Mag. 47(11), 74–81 (2009).
[Crossref]

IEEE Netw. (1)

M. Medard, D. Marquis, R. A. Barry, and S. G. Finn, “Security issues in all-optical networks,” IEEE Netw. 11(3), 42–48 (1997).
[Crossref]

IEEE Trans. Inf. Forensics Security (1)

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

J. Lightwave Technol. (3)

Opt. Commun. (1)

K. Guan, J. Cho, and P. J. Winzer, “Physical layer security in fiber-optic MIMO-SDM systems: An overview,” Opt. Commun. 408, 31–41 (2018).
[Crossref]

Opt. Express (1)

Phys. Lett. A (1)

S. Donnet, A. Thangaraj, M. Bloch, J. Cussey, J. M. Merolla, and L. Larger, “Security of Y-00 under heterodyne measurement and fast correlation attack,” Phys. Lett. A 356(6), 406–410 (2006).
[Crossref]

Phys. Rev. A (5)

T. Shimizu, O. Hirota, and Y. Nagasako, “Running key mapping in a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 77(3), 034305 (2008).
[Crossref]

R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, and P. Kumar, “Quantum-noise randomized ciphers,” Phys. Rev. A 74(5), 052309 (2006).
[Crossref]

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Phys. Rev. Lett. (1)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Proc. SPIE (5)

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

K. Kato, “A unified analysis of optical signal modulation formats for quantum enigma cipher,” Proc. SPIE 10409, 104090K (2017).

K. Kato and O. Hirota, “Randomization techniques for the intensity modulation-based quantum stream cipher and progress of experiment,” Proc. SPIE 8163, 81630A (2011).
[Crossref]

K. Kato, “Quantum enigma cipher as a generalization of the quantum stream cipher,” Proc. SPIE 9980, 998005 (2016).
[Crossref]

F. Futami, K. Kato, and O. Hirota, “A novel transceiver of the Y-00 quantum stream cipher with the randomization technique for optical communication with higher security performance,” Proc. SPIE 9980, 99800O (2016).
[Crossref]

Quantum Inform. Process. (1)

F. Futami, “Experimental demonstrations of Y-00 cipher for high capacity and secure optical fiber communications,” Quantum Inform. Process. 13(10), 2277–2291 (2014).
[Crossref]

Other (7)

F. Futami and O. Hirota, “100 Gbit/s (10 × 10 Gbit/s) Y-00 cipher transmission over 120 km for secure optical fiber communication between data centers,” in Proceedings of2014OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (OECC/ACOFT), paper MO1A2.

F. Futami and O. Hirota, “Masking of 4096-level intensity modulation signals by noises for secure communication employing Y-00 cipher protocol,” in Proceedings of 37th European Conference on Optical Communication (ECOC), Tu.6.C.4 (2011).
[Crossref]

K. Shaneman and S. Gray, “Optical network security: technical analysis of fiber tapping mechanisms and methods for detection and prevention,” in Proceedings of Military Communications Conference (IEEE, 2004), pp.711–716.
[Crossref]

H. P. Yuen, “KCQ: A new approach to quantum cryptography I. General principles and key generation,” https://arXiv:quant-ph/0311061v6 .

H. P. Yuen, P. Kumar, and G. A. Barbosa, “Ultra-secure, ultra-efficient cryptographic system,” US Patent 7,333,611 B1.

C. W. Helstrom, Quantum detection and estimation theory (Academic, 1976).

J. Cho, X. Chen, S. Chandrasekhar, G. Raybon, R. Dar, L. Schmalen, E. Burrows, A. Adamiecki, S. Corteselli, Y. Pan, D. Correa, B. McKay, S. Zsigmond, P. Winzer, and S. Grubb, “Trans-Atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250-Gb/s 16-QAM,” in Proceedings of Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th5B.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Basic principle of Y-00 quantum stream cipher. (a) Sets of modulation bases. (b) Basic transmitter and receiver setup. Schematics of (c) a waveform and (d) the power distribution at the center of eye diagram.
Fig. 2
Fig. 2 (a) Probability calculation for Eve to detect the wrong level; (b) Eve's probability of detecting the wrong level vs. number of levels 2M at an extinction ratio of 3 dB; (c) Eve's probability of detecting the wrong level vs. extinction ratio at 2M = 4096.
Fig. 3
Fig. 3 A setup of noise loading in a back-to-back configuration.
Fig. 4
Fig. 4 (a) Bit error ratio characteristic of Y-00 cipher signals. Open circles: 4096-intensity levels, filled circles: binary intensity modulation using the highest-power basis set; filled squares: binary intensity modulation using the lowest-power basis set. (b) Eye-diagrams measured by a photodiode with 12.4-GHz bandwidth. Top: 4096-intensity levels, middle: binary intensity modulation using the highest-power basis set; bottom: binary intensity modulation using the lowest-power basis set.
Fig. 5
Fig. 5 A setup of single channel Y-00 cipher signal transmission experiment over 320 km.
Fig. 6
Fig. 6 (a) Y-00 cipher optical signal measured at the transmitter by a photo-detector with 30-GHz bandwidth. The white line shows the zero level. (b) Bit error ratio characteristics of the Y-00 cipher signal. Filled circles: back-to-back transmission; open circles: transmission after 320 km.
Fig. 7
Fig. 7 Setup of the WDM transmission experiment using a Y-00 cipher signal and four channels of 256-Gbit/s polarization multiplexed 16-QAM over 320 km.
Fig. 8
Fig. 8 Optical spectra of two different channel allocation scenarios, measured with a resolution of 0.01 nm. (a) five 50-GHz channel slots allocated, with the Y-00 signal occupying the center channel and four 256-Gbit/s coherent signals occupying the remaining four channels. (b) four 50-GHz channel slots allocated and loaded with 256-Gbit/s coherent signals. The Y-00 cipher signal is inserted in the small gap between two 50-GHz spaced 256-Gbit/s channels.
Fig. 9
Fig. 9 (a) Q-factors of 256-Gbit/s channels for Y-00 cipher signal powers from −6 to 4.5 dBm; (b) Constellation of 256-Gbit/s 16-QAM signals when the Y-00 cipher power was + 4.5 dBm.
Fig. 10
Fig. 10 (a) Y-00 cipher signal measured at the receiver by a photo-detector with 30-GHz bandwidth when the Y-00 cipher power was + 4.5 dBm. The white line shows the zero level. (b) Bit error ratio characteristics of Y-00 cipher signal after 320-km transmission. Squares: WDM transmission, circles: single channel transmission for reference.
Fig. 11
Fig. 11 (a) Q-factors of 256-Gb/s channels against Y-00 cipher signal powers, PY-00. Constellation of 256-Gb/s signals at (b) λ#1 and (c) λ#2 when Y-00 cipher signal powers, PY-00 = 4.9 dBm.

Metrics