Abstract

The distributed quantum computation plays an important role in large-scale quantum information processing. In the atom-cavity-fiber system, we put forward two efficient proposals to prepare the steady entanglement of two distant atoms with dissipation. The atomic spontaneous emission and the loss of fiber are exploited actively as powerful resources, while the effect of cavity decay is inhibited by quantum Zeno dynamics and quantum-jump-based feedback control. These proposals do not require precisely tailored Rabi frequencies or coupling strength between cavity and fiber. Furthermore, we discuss the feasibility of extending the present schemes into the systems consisting of two atoms at the opposite ends of the n cavities connected by (n − 1) fibers, and the corresponding numerical simulation reveals that a high fidelity remains achievable with current experimental parameters.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dissipative preparation of distributed steady entanglement: an approach of unilateral qubit driving

Zhao Jin, Shi-Lei Su, Ai-Dong Zhu, Hong-Fu Wang, and Shou Zhang
Opt. Express 25(1) 88-101 (2017)

Dissipative preparation of three-atom entanglement state via quantum feedback control

Wen-Mei Sun, Shi-Lei Su, Zhao Jin, Yan Liang, Ai-Dong Zhu, Hong-Fu Wang, and Shou Zhang
J. Opt. Soc. Am. B 32(9) 1873-1880 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, “Nonlocality and communication complexity,” Rev. Mod. Phys. 82, 665–698 (2010).
    [Crossref]
  2. L. K. Grover, “Quantum telecomputation,” https://arxiv.org/abs/quant-ph?9704012 (1997).
  3. R. Cleve and H. Buhrman, “Substituting quantum entanglement for communication,” Phys. Rev. A 56, 1201–1204 (1997).
    [Crossref]
  4. S. Tani, H. Kobayashi, and K. Matsumoto, Exact Quantum Algorithms for the Leader Election Problem (Springer, 2005).
  5. E. D’Hondt and P. Panangaden, “The computational power of the w and ghz states,” Quantum Info. Comput. 6, 173–183 (2006).
  6. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
    [Crossref]
  7. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [Crossref]
  8. E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
    [Crossref]
  9. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [Crossref] [PubMed]
  10. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
    [Crossref] [PubMed]
  11. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [Crossref] [PubMed]
  12. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [Crossref]
  13. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
    [Crossref]
  14. H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys. Rev. Lett. 87, 167902 (2001).
    [Crossref] [PubMed]
  15. R. T. Horn, S. A. Babichev, K.-P. Marzlin, A. I. Lvovsky, and B. C. Sanders, “Single-qubit optical quantum fingerprinting,” Phys. Rev. Lett. 95, 150502 (2005).
    [Crossref] [PubMed]
  16. M. Mohseni and D. A. Lidar, “Direct characterization of quantum dynamics,” Phys. Rev. Lett. 97, 170501 (2006).
    [Crossref] [PubMed]
  17. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  18. G. Gualdi, S. M. Giampaolo, and F. Illuminati, “Modular entanglement,” Phys. Rev. Lett. 106, 050501 (2011).
    [Crossref] [PubMed]
  19. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
    [Crossref]
  20. S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
    [Crossref]
  21. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref] [PubMed]
  22. D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
    [Crossref] [PubMed]
  23. X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
    [Crossref] [PubMed]
  24. G. Chimczak, “Efficient generation of distant atom entanglement via cavity decay,” Phys. Rev. A 71, 052305 (2005).
    [Crossref]
  25. L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
    [Crossref]
  26. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [Crossref] [PubMed]
  27. L.-M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
    [Crossref]
  28. E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
    [Crossref]
  29. C.-K. Chan and L. J. Sham, “Robust distant entanglement generation using coherent multiphoton scattering,” Phys. Rev. Lett. 110, 070501 (2013).
    [Crossref] [PubMed]
  30. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21, 23241–23249 (2013).
    [Crossref] [PubMed]
  31. G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
    [Crossref] [PubMed]
  32. S. J. Devitt, A. D. Greentree, A. M. Stephens, and R. V. Meter, “High-speed quantum networking by ship,” Sci. Rep. 6, 36163 (2016).
    [Crossref] [PubMed]
  33. D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
    [Crossref] [PubMed]
  34. P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
    [Crossref] [PubMed]
  35. S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
    [Crossref] [PubMed]
  36. S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of einstein-podolsky-rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
    [Crossref] [PubMed]
  37. G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
    [Crossref]
  38. M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
    [Crossref] [PubMed]
  39. L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
    [Crossref]
  40. J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
    [Crossref]
  41. L.-T. Shen, X.-Y. Chen, Z.-B. Yang, H.-Z. Wu, and S.-B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
    [Crossref]
  42. A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
    [Crossref] [PubMed]
  43. Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature(London) 504, 415–418 (2013).
    [Crossref]
  44. S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
    [Crossref] [PubMed]
  45. S.-L. Su, X.-Q. Shao, H.-F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
    [Crossref]
  46. M.-F. Chen, L.-T. Shen, R.-X. Chen, and Z.-B. Yang, “Driving to the steady ground-state superposition assisted by spontaneous emission,” Phys. Rev. A 92, 033403 (2015).
    [Crossref]
  47. Z. Jin, S.-L. Su, A.-D. Zhu, H.-F. Wang, and S. Zhang, “Dissipative preparation of distributed steady entanglement: an approach of unilateral qubit driving,” Opt. Express 25, 88–101 (2017).
    [Crossref] [PubMed]
  48. X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with rydberg atoms,” Phys. Rev. A 95, 022317 (2017).
    [Crossref]
  49. X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
    [Crossref]
  50. B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).
    [Crossref]
  51. R. J. Cook, “What are quantum jumps?” Phys. Scr. 1988, 49 (1988).
  52. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
    [Crossref] [PubMed]
  53. A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
    [Crossref] [PubMed]
  54. P. Facchi and S. Pascazio, “Quantum zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
    [Crossref] [PubMed]
  55. P. Facchi and S. Pascazio, “Quantum zeno dynamics: mathematical and physical aspects,” J. Phys. A 41, 493001 (2008).
    [Crossref]
  56. P. Facchi and M. Ligabò, “Quantum zeno effect and dynamics,” J. Math. Phys. 51, 022103 (2010).
    [Crossref]
  57. X.-Q. Shao, H.-F. Wang, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “One-step implementation of the 1 3 orbital state quantum cloning machine via quantum zeno dynamics,” Phys. Rev. A 80, 062323 (2009).
    [Crossref]
  58. X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast cnot gate via quantum zeno dynamics,” Journal of Physics B: Atomic, Molecular and Optical Physics 42, 165507 (2009).
    [Crossref]
  59. A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, “Confined quantum zeno dynamics of a watched atomic arrow,” Nat. Phys. 10, 715–719 (2014).
  60. Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
    [Crossref]
  61. Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
    [Crossref]
  62. L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B. Huard, “Quantum dynamics of an electromagnetic mode that cannot contain n photons,” Science 348, 776–779 (2015).
    [Crossref] [PubMed]
  63. G. Barontini, L. Hohmann, F. Haas, J. Estève, and J. Reichel, “Deterministic generation of multiparticle entanglement by quantum zeno dynamics,” Science 349, 1317–1321 (2015).
    [Crossref] [PubMed]
  64. Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
    [Crossref] [PubMed]
  65. D.-X. Li, X.-Q. Shao, J.-H. Wu, and X. X. Yi, “Engineering steady-state entanglement via dissipation and quantum zeno dynamics in an optical cavity,” Opt. Lett. 42, 3904–3907 (2017).
    [Crossref] [PubMed]
  66. J. K. Stockton, R. van Handel, and H. Mabuchi, “Deterministic dicke-state preparation with continuous measurement and control,” Phys. Rev. A 70, 022106 (2004).
    [Crossref]
  67. S. Mancini and J. Wang, “Towards feedback control of entanglement,” The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 32, 257–260 (2005).
  68. J. Wang, H. M. Wiseman, and G. J. Milburn, “Dynamical creation of entanglement by homodyne-mediated feedback,” Phys. Rev. A 71, 042309 (2005).
    [Crossref]
  69. S. Mancini and H. M. Wiseman, “Optimal control of entanglement via quantum feedback,” Phys. Rev. A 75, 012330 (2007).
    [Crossref]
  70. A. R. R. Carvalho and J. J. Hope, “Stabilizing entanglement by quantum-jump-based feedback,” Phys. Rev. A 76, 010301 (2007).
    [Crossref]
  71. A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling entanglement by direct quantum feedback,” Phys. Rev. A 78, 012334 (2008).
    [Crossref]
  72. R. N. Stevenson, J. J. Hope, and A. R. R. Carvalho, “Engineering steady states using jump-based feedback for multipartite entanglement generation,” Phys. Rev. A 84, 022332 (2011).
    [Crossref]
  73. R. N. Stevenson, A. R. Carvalho, and J. J. Hope, “Production of entanglement in raman three-level systems using feedback,” The European Physical Journal D 61, 523–529 (2011).
    [Crossref]
  74. X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).
    [Crossref]
  75. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  76. J. Modławska and A. Grudka, “Nonmaximally entangled states can be better for multiple linear optical teleportation,” Phys. Rev. Lett. 100, 110503 (2008).
    [Crossref]
  77. K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon knill-laflamme-milburn states,” Phys. Rev. A 81, 012321 (2010).
    [Crossref]
  78. J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
    [Crossref] [PubMed]
  79. J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
    [Crossref]
  80. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
    [Crossref]

2017 (4)

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with rydberg atoms,” Phys. Rev. A 95, 022317 (2017).
[Crossref]

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
[Crossref]

Z. Jin, S.-L. Su, A.-D. Zhu, H.-F. Wang, and S. Zhang, “Dissipative preparation of distributed steady entanglement: an approach of unilateral qubit driving,” Opt. Express 25, 88–101 (2017).
[Crossref] [PubMed]

D.-X. Li, X.-Q. Shao, J.-H. Wu, and X. X. Yi, “Engineering steady-state entanglement via dissipation and quantum zeno dynamics in an optical cavity,” Opt. Lett. 42, 3904–3907 (2017).
[Crossref] [PubMed]

2016 (3)

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).
[Crossref]

S. J. Devitt, A. D. Greentree, A. M. Stephens, and R. V. Meter, “High-speed quantum networking by ship,” Sci. Rep. 6, 36163 (2016).
[Crossref] [PubMed]

2015 (5)

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref] [PubMed]

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B. Huard, “Quantum dynamics of an electromagnetic mode that cannot contain n photons,” Science 348, 776–779 (2015).
[Crossref] [PubMed]

G. Barontini, L. Hohmann, F. Haas, J. Estève, and J. Reichel, “Deterministic generation of multiparticle entanglement by quantum zeno dynamics,” Science 349, 1317–1321 (2015).
[Crossref] [PubMed]

M.-F. Chen, L.-T. Shen, R.-X. Chen, and Z.-B. Yang, “Driving to the steady ground-state superposition assisted by spontaneous emission,” Phys. Rev. A 92, 033403 (2015).
[Crossref]

2014 (3)

S.-L. Su, X.-Q. Shao, H.-F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, “Confined quantum zeno dynamics of a watched atomic arrow,” Nat. Phys. 10, 715–719 (2014).

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

2013 (5)

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature(London) 504, 415–418 (2013).
[Crossref]

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

C.-K. Chan and L. J. Sham, “Robust distant entanglement generation using coherent multiphoton scattering,” Phys. Rev. Lett. 110, 070501 (2013).
[Crossref] [PubMed]

T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21, 23241–23249 (2013).
[Crossref] [PubMed]

2012 (1)

L.-T. Shen, X.-Y. Chen, Z.-B. Yang, H.-Z. Wu, and S.-B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

2011 (6)

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

R. N. Stevenson, J. J. Hope, and A. R. R. Carvalho, “Engineering steady states using jump-based feedback for multipartite entanglement generation,” Phys. Rev. A 84, 022332 (2011).
[Crossref]

R. N. Stevenson, A. R. Carvalho, and J. J. Hope, “Production of entanglement in raman three-level systems using feedback,” The European Physical Journal D 61, 523–529 (2011).
[Crossref]

G. Gualdi, S. M. Giampaolo, and F. Illuminati, “Modular entanglement,” Phys. Rev. Lett. 106, 050501 (2011).
[Crossref] [PubMed]

2010 (3)

H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, “Nonlocality and communication complexity,” Rev. Mod. Phys. 82, 665–698 (2010).
[Crossref]

P. Facchi and M. Ligabò, “Quantum zeno effect and dynamics,” J. Math. Phys. 51, 022103 (2010).
[Crossref]

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon knill-laflamme-milburn states,” Phys. Rev. A 81, 012321 (2010).
[Crossref]

2009 (6)

X.-Q. Shao, H.-F. Wang, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “One-step implementation of the 1 3 orbital state quantum cloning machine via quantum zeno dynamics,” Phys. Rev. A 80, 062323 (2009).
[Crossref]

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast cnot gate via quantum zeno dynamics,” Journal of Physics B: Atomic, Molecular and Optical Physics 42, 165507 (2009).
[Crossref]

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[Crossref]

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[Crossref] [PubMed]

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

2008 (3)

P. Facchi and S. Pascazio, “Quantum zeno dynamics: mathematical and physical aspects,” J. Phys. A 41, 493001 (2008).
[Crossref]

A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling entanglement by direct quantum feedback,” Phys. Rev. A 78, 012334 (2008).
[Crossref]

J. Modławska and A. Grudka, “Nonmaximally entangled states can be better for multiple linear optical teleportation,” Phys. Rev. Lett. 100, 110503 (2008).
[Crossref]

2007 (4)

S. Mancini and H. M. Wiseman, “Optimal control of entanglement via quantum feedback,” Phys. Rev. A 75, 012330 (2007).
[Crossref]

A. R. R. Carvalho and J. J. Hope, “Stabilizing entanglement by quantum-jump-based feedback,” Phys. Rev. A 76, 010301 (2007).
[Crossref]

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of einstein-podolsky-rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

2006 (4)

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

L.-M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[Crossref]

E. D’Hondt and P. Panangaden, “The computational power of the w and ghz states,” Quantum Info. Comput. 6, 173–183 (2006).

M. Mohseni and D. A. Lidar, “Direct characterization of quantum dynamics,” Phys. Rev. Lett. 97, 170501 (2006).
[Crossref] [PubMed]

2005 (6)

R. T. Horn, S. A. Babichev, K.-P. Marzlin, A. I. Lvovsky, and B. C. Sanders, “Single-qubit optical quantum fingerprinting,” Phys. Rev. Lett. 95, 150502 (2005).
[Crossref] [PubMed]

G. Chimczak, “Efficient generation of distant atom entanglement via cavity decay,” Phys. Rev. A 71, 052305 (2005).
[Crossref]

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

S. Mancini and J. Wang, “Towards feedback control of entanglement,” The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 32, 257–260 (2005).

J. Wang, H. M. Wiseman, and G. J. Milburn, “Dynamical creation of entanglement by homodyne-mediated feedback,” Phys. Rev. A 71, 042309 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

2004 (2)

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[Crossref]

J. K. Stockton, R. van Handel, and H. Mabuchi, “Deterministic dicke-state preparation with continuous measurement and control,” Phys. Rev. A 70, 022106 (2004).
[Crossref]

2003 (2)

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[Crossref] [PubMed]

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[Crossref] [PubMed]

2002 (2)

P. Facchi and S. Pascazio, “Quantum zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[Crossref] [PubMed]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

2001 (3)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys. Rev. Lett. 87, 167902 (2001).
[Crossref] [PubMed]

2000 (1)

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[Crossref] [PubMed]

1999 (2)

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[Crossref]

1998 (1)

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

1997 (3)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

R. Cleve and H. Buhrman, “Substituting quantum entanglement for communication,” Phys. Rev. A 56, 1201–1204 (1997).
[Crossref]

1996 (1)

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

1995 (1)

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref] [PubMed]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

1992 (1)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

1988 (1)

R. J. Cook, “What are quantum jumps?” Phys. Scr. 1988, 49 (1988).

1977 (1)

B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).
[Crossref]

1935 (2)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Asobe, M.

Babichev, S. A.

R. T. Horn, S. A. Babichev, K.-P. Marzlin, A. I. Lvovsky, and B. C. Sanders, “Single-qubit optical quantum fingerprinting,” Phys. Rev. Lett. 95, 150502 (2005).
[Crossref] [PubMed]

Bacco, D.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref] [PubMed]

Barontini, G.

G. Barontini, L. Hohmann, F. Haas, J. Estève, and J. Reichel, “Deterministic generation of multiparticle entanglement by quantum zeno dynamics,” Science 349, 1317–1321 (2015).
[Crossref] [PubMed]

Beige, A.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[Crossref] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

Bianco, G.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref] [PubMed]

Boschi, D.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[Crossref]

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Bowler, R.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature(London) 504, 415–418 (2013).
[Crossref]

Branca, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Braun, D.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[Crossref] [PubMed]

Bretheau, L.

L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B. Huard, “Quantum dynamics of an electromagnetic mode that cannot contain n photons,” Science 348, 776–779 (2015).
[Crossref] [PubMed]

Browne, D. E.

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[Crossref] [PubMed]

Brune, M.

A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, “Confined quantum zeno dynamics of a watched atomic arrow,” Nat. Phys. 10, 715–719 (2014).

Buhrman, H.

H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, “Nonlocality and communication complexity,” Rev. Mod. Phys. 82, 665–698 (2010).
[Crossref]

H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys. Rev. Lett. 87, 167902 (2001).
[Crossref] [PubMed]

R. Cleve and H. Buhrman, “Substituting quantum entanglement for communication,” Phys. Rev. A 56, 1201–1204 (1997).
[Crossref]

Busch, J.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

Campagne-Ibarcq, P.

L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B. Huard, “Quantum dynamics of an electromagnetic mode that cannot contain n photons,” Science 348, 776–779 (2015).
[Crossref] [PubMed]

Carr, A. W.

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

Carvalho, A. R.

R. N. Stevenson, A. R. Carvalho, and J. J. Hope, “Production of entanglement in raman three-level systems using feedback,” The European Physical Journal D 61, 523–529 (2011).
[Crossref]

Carvalho, A. R. R.

R. N. Stevenson, J. J. Hope, and A. R. R. Carvalho, “Engineering steady states using jump-based feedback for multipartite entanglement generation,” Phys. Rev. A 84, 022332 (2011).
[Crossref]

A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling entanglement by direct quantum feedback,” Phys. Rev. A 78, 012334 (2008).
[Crossref]

A. R. R. Carvalho and J. J. Hope, “Stabilizing entanglement by quantum-jump-based feedback,” Phys. Rev. A 76, 010301 (2007).
[Crossref]

Cernoch, A.

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon knill-laflamme-milburn states,” Phys. Rev. A 81, 012321 (2010).
[Crossref]

Chan, C.-K.

C.-K. Chan and L. J. Sham, “Robust distant entanglement generation using coherent multiphoton scattering,” Phys. Rev. Lett. 110, 070501 (2013).
[Crossref] [PubMed]

Chen, L.

X.-Q. Shao, H.-F. Wang, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “One-step implementation of the 1 3 orbital state quantum cloning machine via quantum zeno dynamics,” Phys. Rev. A 80, 062323 (2009).
[Crossref]

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast cnot gate via quantum zeno dynamics,” Journal of Physics B: Atomic, Molecular and Optical Physics 42, 165507 (2009).
[Crossref]

Chen, M.-F.

M.-F. Chen, L.-T. Shen, R.-X. Chen, and Z.-B. Yang, “Driving to the steady ground-state superposition assisted by spontaneous emission,” Phys. Rev. A 92, 033403 (2015).
[Crossref]

Chen, Q.-Q.

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

Chen, R.-X.

M.-F. Chen, L.-T. Shen, R.-X. Chen, and Z.-B. Yang, “Driving to the steady ground-state superposition assisted by spontaneous emission,” Phys. Rev. A 92, 033403 (2015).
[Crossref]

Chen, X. Y.

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

Chen, X.-Y.

L.-T. Shen, X.-Y. Chen, Z.-B. Yang, H.-Z. Wu, and S.-B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

Chen, Y.-H.

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

Childress, L.

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

Chimczak, G.

G. Chimczak, “Efficient generation of distant atom entanglement via cavity decay,” Phys. Rev. A 71, 052305 (2005).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Cleve, R.

H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, “Nonlocality and communication complexity,” Rev. Mod. Phys. 82, 665–698 (2010).
[Crossref]

H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys. Rev. Lett. 87, 167902 (2001).
[Crossref] [PubMed]

R. Cleve and H. Buhrman, “Substituting quantum entanglement for communication,” Phys. Rev. A 56, 1201–1204 (1997).
[Crossref]

Coakley, K.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Cook, R. J.

R. J. Cook, “What are quantum jumps?” Phys. Scr. 1988, 49 (1988).

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

D’Hondt, E.

E. D’Hondt and P. Panangaden, “The computational power of the w and ghz states,” Quantum Info. Comput. 6, 173–183 (2006).

Davidovich, L.

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of einstein-podolsky-rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

De, S.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

De Martini, F.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

de Wolf, R.

H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, “Nonlocality and communication complexity,” Rev. Mod. Phys. 82, 665–698 (2010).
[Crossref]

H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys. Rev. Lett. 87, 167902 (2001).
[Crossref] [PubMed]

Dequal, D.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref] [PubMed]

Devitt, S. J.

S. J. Devitt, A. D. Greentree, A. M. Stephens, and R. V. Meter, “High-speed quantum networking by ship,” Sci. Rep. 6, 36163 (2016).
[Crossref] [PubMed]

Devoret, M. H.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Donegan, M. M.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[Crossref]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

Dotsenko, I.

A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, “Confined quantum zeno dynamics of a watched atomic arrow,” Nat. Phys. 10, 715–719 (2014).

Duan, L.-M.

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[Crossref] [PubMed]

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

L.-M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Ekert, A. K.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Estève, J.

G. Barontini, L. Hohmann, F. Haas, J. Estève, and J. Reichel, “Deterministic generation of multiparticle entanglement by quantum zeno dynamics,” Science 349, 1317–1321 (2015).
[Crossref] [PubMed]

Facchi, P.

P. Facchi and M. Ligabò, “Quantum zeno effect and dynamics,” J. Math. Phys. 51, 022103 (2010).
[Crossref]

P. Facchi and S. Pascazio, “Quantum zeno dynamics: mathematical and physical aspects,” J. Phys. A 41, 493001 (2008).
[Crossref]

P. Facchi and S. Pascazio, “Quantum zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[Crossref] [PubMed]

Facon, A.

A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, “Confined quantum zeno dynamics of a watched atomic arrow,” Nat. Phys. 10, 715–719 (2014).

Feng, X. L.

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[Crossref] [PubMed]

Fitch, M. J.

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

Fiurášek, J.

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon knill-laflamme-milburn states,” Phys. Rev. A 81, 012321 (2010).
[Crossref]

Flurin, E.

L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B. Huard, “Quantum dynamics of an electromagnetic mode that cannot contain n photons,” Science 348, 776–779 (2015).
[Crossref] [PubMed]

Franson, J. D.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[Crossref]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

Frunzio, L.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Gaebler, J. P.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature(London) 504, 415–418 (2013).
[Crossref]

Gaiarin, S.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref] [PubMed]

Giampaolo, S. M.

G. Gualdi, S. M. Giampaolo, and F. Illuminati, “Modular entanglement,” Phys. Rev. Lett. 106, 050501 (2011).
[Crossref] [PubMed]

Girvin, S. M.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Glancy, S.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Gleyzes, S.

A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, “Confined quantum zeno dynamics of a watched atomic arrow,” Nat. Phys. 10, 715–719 (2014).

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Gong, S. Q.

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[Crossref] [PubMed]

Greentree, A. D.

S. J. Devitt, A. D. Greentree, A. M. Stephens, and R. V. Meter, “High-speed quantum networking by ship,” Sci. Rep. 6, 36163 (2016).
[Crossref] [PubMed]

Grosso, D.

A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, “Confined quantum zeno dynamics of a watched atomic arrow,” Nat. Phys. 10, 715–719 (2014).

Grover, L. K.

L. K. Grover, “Quantum telecomputation,” https://arxiv.org/abs/quant-ph?9704012 (1997).

Grudka, A.

J. Modławska and A. Grudka, “Nonmaximally entangled states can be better for multiple linear optical teleportation,” Phys. Rev. Lett. 100, 110503 (2008).
[Crossref]

Gualdi, G.

G. Gualdi, S. M. Giampaolo, and F. Illuminati, “Modular entanglement,” Phys. Rev. Lett. 106, 050501 (2011).
[Crossref] [PubMed]

Haas, F.

G. Barontini, L. Hohmann, F. Haas, J. Estève, and J. Reichel, “Deterministic generation of multiparticle entanglement by quantum zeno dynamics,” Science 349, 1317–1321 (2015).
[Crossref] [PubMed]

Hardy, L.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Haroche, S.

A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, “Confined quantum zeno dynamics of a watched atomic arrow,” Nat. Phys. 10, 715–719 (2014).

Hatridge, M.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Hayes, D.

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[Crossref] [PubMed]

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

Herzog, T.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref] [PubMed]

Hohmann, L.

G. Barontini, L. Hohmann, F. Haas, J. Estève, and J. Reichel, “Deterministic generation of multiparticle entanglement by quantum zeno dynamics,” Science 349, 1317–1321 (2015).
[Crossref] [PubMed]

Hope, J. J.

R. N. Stevenson, A. R. Carvalho, and J. J. Hope, “Production of entanglement in raman three-level systems using feedback,” The European Physical Journal D 61, 523–529 (2011).
[Crossref]

R. N. Stevenson, J. J. Hope, and A. R. R. Carvalho, “Engineering steady states using jump-based feedback for multipartite entanglement generation,” Phys. Rev. A 84, 022332 (2011).
[Crossref]

A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling entanglement by direct quantum feedback,” Phys. Rev. A 78, 012334 (2008).
[Crossref]

A. R. R. Carvalho and J. J. Hope, “Stabilizing entanglement by quantum-jump-based feedback,” Phys. Rev. A 76, 010301 (2007).
[Crossref]

Horn, R. T.

R. T. Horn, S. A. Babichev, K.-P. Marzlin, A. I. Lvovsky, and B. C. Sanders, “Single-qubit optical quantum fingerprinting,” Phys. Rev. Lett. 95, 150502 (2005).
[Crossref] [PubMed]

Huard, B.

L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B. Huard, “Quantum dynamics of an electromagnetic mode that cannot contain n photons,” Science 348, 776–779 (2015).
[Crossref] [PubMed]

Huelga, S. F.

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[Crossref] [PubMed]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Illuminati, F.

G. Gualdi, S. M. Giampaolo, and F. Illuminati, “Modular entanglement,” Phys. Rev. Lett. 106, 050501 (2011).
[Crossref] [PubMed]

Inagaki, T.

Ivanov, S. S.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

Jacobs, B. C.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[Crossref]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

Jin, Z.

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Kasevich, M. A.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref] [PubMed]

Kastoryano, M. J.

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

Keith, A.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Knight, P. L.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[Crossref] [PubMed]

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[Crossref]

Knill, E.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Kobayashi, H.

S. Tani, H. Kobayashi, and K. Matsumoto, Exact Quantum Algorithms for the Leader Election Problem (Springer, 2005).

Kohn, R. N.

L.-M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[Crossref]

Kwiat, P.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref] [PubMed]

Kwiat, P. G.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Leghtas, Z.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Leibfried, D.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature(London) 504, 415–418 (2013).
[Crossref]

Lemr, K.

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon knill-laflamme-milburn states,” Phys. Rev. A 81, 012321 (2010).
[Crossref]

Li, D.-X.

Li, X. D.

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[Crossref] [PubMed]

Lidar, D. A.

M. Mohseni and D. A. Lidar, “Direct characterization of quantum dynamics,” Phys. Rev. Lett. 97, 170501 (2006).
[Crossref] [PubMed]

Ligabò, M.

P. Facchi and M. Ligabò, “Quantum zeno effect and dynamics,” J. Math. Phys. 51, 022103 (2010).
[Crossref]

Lin, Y.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature(London) 504, 415–418 (2013).
[Crossref]

Liu, H. D.

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).
[Crossref]

Luceri, V.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref] [PubMed]

Lukin, M. D.

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Lvovsky, A. I.

R. T. Horn, S. A. Babichev, K.-P. Marzlin, A. I. Lvovsky, and B. C. Sanders, “Single-qubit optical quantum fingerprinting,” Phys. Rev. Lett. 95, 150502 (2005).
[Crossref] [PubMed]

Mabuchi, H.

J. K. Stockton, R. van Handel, and H. Mabuchi, “Deterministic dicke-state preparation with continuous measurement and control,” Phys. Rev. A 70, 022106 (2004).
[Crossref]

Macchiavello, C.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

Madsen, M. J.

L.-M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[Crossref]

Mallet, F.

L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B. Huard, “Quantum dynamics of an electromagnetic mode that cannot contain n photons,” Science 348, 776–779 (2015).
[Crossref] [PubMed]

Mancini, S.

S. Mancini and H. M. Wiseman, “Optimal control of entanglement via quantum feedback,” Phys. Rev. A 75, 012330 (2007).
[Crossref]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

S. Mancini and J. Wang, “Towards feedback control of entanglement,” The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 32, 257–260 (2005).

Marzlin, K.-P.

R. T. Horn, S. A. Babichev, K.-P. Marzlin, A. I. Lvovsky, and B. C. Sanders, “Single-qubit optical quantum fingerprinting,” Phys. Rev. Lett. 95, 150502 (2005).
[Crossref] [PubMed]

Massar, S.

H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, “Nonlocality and communication complexity,” Rev. Mod. Phys. 82, 665–698 (2010).
[Crossref]

Matsuda, N.

Matsukevich, D. N.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[Crossref] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

Matsumoto, K.

S. Tani, H. Kobayashi, and K. Matsumoto, Exact Quantum Algorithms for the Leader Election Problem (Springer, 2005).

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

Maunz, P.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[Crossref] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

L.-M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[Crossref]

Meter, R. V.

S. J. Devitt, A. D. Greentree, A. M. Stephens, and R. V. Meter, “High-speed quantum networking by ship,” Sci. Rep. 6, 36163 (2016).
[Crossref] [PubMed]

Milburn, G. J.

J. Wang, H. M. Wiseman, and G. J. Milburn, “Dynamical creation of entanglement by homodyne-mediated feedback,” Phys. Rev. A 71, 042309 (2005).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Mirrahimi, M.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Misra, B.

B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).
[Crossref]

Modlawska, J.

J. Modławska and A. Grudka, “Nonmaximally entangled states can be better for multiple linear optical teleportation,” Phys. Rev. Lett. 100, 110503 (2008).
[Crossref]

Moehring, D. L.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

L.-M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[Crossref]

Mohseni, M.

M. Mohseni and D. A. Lidar, “Direct characterization of quantum dynamics,” Phys. Rev. Lett. 97, 170501 (2006).
[Crossref] [PubMed]

Monroe, C.

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[Crossref]

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[Crossref] [PubMed]

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

L.-M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[Crossref]

Morigi, G.

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of einstein-podolsky-rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

Narla, A.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Olmschenk, S.

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[Crossref] [PubMed]

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Panangaden, P.

E. D’Hondt and P. Panangaden, “The computational power of the w and ghz states,” Quantum Info. Comput. 6, 173–183 (2006).

Pascazio, S.

P. Facchi and S. Pascazio, “Quantum zeno dynamics: mathematical and physical aspects,” J. Phys. A 41, 493001 (2008).
[Crossref]

P. Facchi and S. Pascazio, “Quantum zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[Crossref] [PubMed]

Pellizzari, T.

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Pielawa, S.

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of einstein-podolsky-rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

Pittman, T. B.

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

Plenio, M. B.

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[Crossref] [PubMed]

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[Crossref]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Popescu, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Raimond, J.-M.

A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, “Confined quantum zeno dynamics of a watched atomic arrow,” Nat. Phys. 10, 715–719 (2014).

Reichel, J.

G. Barontini, L. Hohmann, F. Haas, J. Estève, and J. Reichel, “Deterministic generation of multiparticle entanglement by quantum zeno dynamics,” Science 349, 1317–1321 (2015).
[Crossref] [PubMed]

Reid, A. J. S.

A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling entanglement by direct quantum feedback,” Phys. Rev. A 78, 012334 (2008).
[Crossref]

Reiter, F.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature(London) 504, 415–418 (2013).
[Crossref]

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Saffman, M.

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

Sanders, B. C.

R. T. Horn, S. A. Babichev, K.-P. Marzlin, A. I. Lvovsky, and B. C. Sanders, “Single-qubit optical quantum fingerprinting,” Phys. Rev. Lett. 95, 150502 (2005).
[Crossref] [PubMed]

Schrödinger, E.

E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Sham, L. J.

C.-K. Chan and L. J. Sham, “Robust distant entanglement generation using coherent multiphoton scattering,” Phys. Rev. Lett. 110, 070501 (2013).
[Crossref] [PubMed]

Shankar, S.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Shao, X. Q.

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with rydberg atoms,” Phys. Rev. A 95, 022317 (2017).
[Crossref]

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
[Crossref]

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).
[Crossref]

Shao, X.-Q.

D.-X. Li, X.-Q. Shao, J.-H. Wu, and X. X. Yi, “Engineering steady-state entanglement via dissipation and quantum zeno dynamics in an optical cavity,” Opt. Lett. 42, 3904–3907 (2017).
[Crossref] [PubMed]

S.-L. Su, X.-Q. Shao, H.-F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

X.-Q. Shao, H.-F. Wang, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “One-step implementation of the 1 3 orbital state quantum cloning machine via quantum zeno dynamics,” Phys. Rev. A 80, 062323 (2009).
[Crossref]

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast cnot gate via quantum zeno dynamics,” Journal of Physics B: Atomic, Molecular and Optical Physics 42, 165507 (2009).
[Crossref]

Shen, L. T.

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

Shen, L.-T.

M.-F. Chen, L.-T. Shen, R.-X. Chen, and Z.-B. Yang, “Driving to the steady ground-state superposition assisted by spontaneous emission,” Phys. Rev. A 92, 033403 (2015).
[Crossref]

L.-T. Shen, X.-Y. Chen, Z.-B. Yang, H.-Z. Wu, and S.-B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

Signoles, A.

A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, “Confined quantum zeno dynamics of a watched atomic arrow,” Nat. Phys. 10, 715–719 (2014).

Sliwa, K. M.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Song, J.

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

Sørensen, A. S.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature(London) 504, 415–418 (2013).
[Crossref]

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

Soubusta, J.

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon knill-laflamme-milburn states,” Phys. Rev. A 81, 012321 (2010).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Spiller, T. P.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

Stephens, A. M.

S. J. Devitt, A. D. Greentree, A. M. Stephens, and R. V. Meter, “High-speed quantum networking by ship,” Sci. Rep. 6, 36163 (2016).
[Crossref] [PubMed]

Stevenson, R. N.

R. N. Stevenson, J. J. Hope, and A. R. R. Carvalho, “Engineering steady states using jump-based feedback for multipartite entanglement generation,” Phys. Rev. A 84, 022332 (2011).
[Crossref]

R. N. Stevenson, A. R. Carvalho, and J. J. Hope, “Production of entanglement in raman three-level systems using feedback,” The European Physical Journal D 61, 523–529 (2011).
[Crossref]

Stockton, J. K.

J. K. Stockton, R. van Handel, and H. Mabuchi, “Deterministic dicke-state preparation with continuous measurement and control,” Phys. Rev. A 70, 022106 (2004).
[Crossref]

Su, S.-L.

Z. Jin, S.-L. Su, A.-D. Zhu, H.-F. Wang, and S. Zhang, “Dissipative preparation of distributed steady entanglement: an approach of unilateral qubit driving,” Opt. Express 25, 88–101 (2017).
[Crossref] [PubMed]

S.-L. Su, X.-Q. Shao, H.-F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

Sudarshan, E. C. G.

B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).
[Crossref]

Tadanaga, O.

Takesue, H.

Tan, T. R.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature(London) 504, 415–418 (2013).
[Crossref]

Tani, S.

S. Tani, H. Kobayashi, and K. Matsumoto, Exact Quantum Algorithms for the Leader Election Problem (Springer, 2005).

Taylor, J. M.

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

Torosov, B. T.

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

Tregenna, B.

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[Crossref] [PubMed]

Vacanti, G.

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Vallone, G.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref] [PubMed]

van Handel, R.

J. K. Stockton, R. van Handel, and H. Mabuchi, “Deterministic dicke-state preparation with continuous measurement and control,” Phys. Rev. A 70, 022106 (2004).
[Crossref]

Vedral, V.

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[Crossref]

Villoresi, P.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref] [PubMed]

Vitali, D.

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of einstein-podolsky-rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

Vool, U.

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

Waks, E.

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[Crossref]

Wan, Y.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Wang, H.-F.

Z. Jin, S.-L. Su, A.-D. Zhu, H.-F. Wang, and S. Zhang, “Dissipative preparation of distributed steady entanglement: an approach of unilateral qubit driving,” Opt. Express 25, 88–101 (2017).
[Crossref] [PubMed]

S.-L. Su, X.-Q. Shao, H.-F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

X.-Q. Shao, H.-F. Wang, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “One-step implementation of the 1 3 orbital state quantum cloning machine via quantum zeno dynamics,” Phys. Rev. A 80, 062323 (2009).
[Crossref]

Wang, J.

S. Mancini and J. Wang, “Towards feedback control of entanglement,” The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 32, 257–260 (2005).

J. Wang, H. M. Wiseman, and G. J. Milburn, “Dynamical creation of entanglement by homodyne-mediated feedback,” Phys. Rev. A 71, 042309 (2005).
[Crossref]

Wang, Z. H.

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).
[Crossref]

Watrous, J.

H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys. Rev. Lett. 87, 167902 (2001).
[Crossref] [PubMed]

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

Wineland, D. J.

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature(London) 504, 415–418 (2013).
[Crossref]

Wiseman, H. M.

S. Mancini and H. M. Wiseman, “Optimal control of entanglement via quantum feedback,” Phys. Rev. A 75, 012330 (2007).
[Crossref]

J. Wang, H. M. Wiseman, and G. J. Milburn, “Dynamical creation of entanglement by homodyne-mediated feedback,” Phys. Rev. A 71, 042309 (2005).
[Crossref]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

Wu, H. Z.

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

Wu, H.-Z.

L.-T. Shen, X.-Y. Chen, Z.-B. Yang, H.-Z. Wu, and S.-B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

Wu, J. H.

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
[Crossref]

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with rydberg atoms,” Phys. Rev. A 95, 022317 (2017).
[Crossref]

Wu, J.-H.

Xia, Y.

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

Xu, Z. Z.

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[Crossref] [PubMed]

Yang, Z. B.

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

Yang, Z.-B.

M.-F. Chen, L.-T. Shen, R.-X. Chen, and Z.-B. Yang, “Driving to the steady ground-state superposition assisted by spontaneous emission,” Phys. Rev. A 92, 033403 (2015).
[Crossref]

L.-T. Shen, X.-Y. Chen, Z.-B. Yang, H.-Z. Wu, and S.-B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

Yeon, K.-H.

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast cnot gate via quantum zeno dynamics,” Journal of Physics B: Atomic, Molecular and Optical Physics 42, 165507 (2009).
[Crossref]

X.-Q. Shao, H.-F. Wang, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “One-step implementation of the 1 3 orbital state quantum cloning machine via quantum zeno dynamics,” Phys. Rev. A 80, 062323 (2009).
[Crossref]

Yi, X. X.

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with rydberg atoms,” Phys. Rev. A 95, 022317 (2017).
[Crossref]

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
[Crossref]

D.-X. Li, X.-Q. Shao, J.-H. Wu, and X. X. Yi, “Engineering steady-state entanglement via dissipation and quantum zeno dynamics in an optical cavity,” Opt. Lett. 42, 3904–3907 (2017).
[Crossref] [PubMed]

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).
[Crossref]

Younge, K. C.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

Zeilinger, A.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref] [PubMed]

Zhang, S.

Z. Jin, S.-L. Su, A.-D. Zhu, H.-F. Wang, and S. Zhang, “Dissipative preparation of distributed steady entanglement: an approach of unilateral qubit driving,” Opt. Express 25, 88–101 (2017).
[Crossref] [PubMed]

S.-L. Su, X.-Q. Shao, H.-F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast cnot gate via quantum zeno dynamics,” Journal of Physics B: Atomic, Molecular and Optical Physics 42, 165507 (2009).
[Crossref]

X.-Q. Shao, H.-F. Wang, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “One-step implementation of the 1 3 orbital state quantum cloning machine via quantum zeno dynamics,” Phys. Rev. A 80, 062323 (2009).
[Crossref]

Zhang, Z. M.

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[Crossref] [PubMed]

Zhao, Y.-F.

X.-Q. Shao, H.-F. Wang, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “One-step implementation of the 1 3 orbital state quantum cloning machine via quantum zeno dynamics,” Phys. Rev. A 80, 062323 (2009).
[Crossref]

Zheng, S. B.

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

Zheng, S.-B.

L.-T. Shen, X.-Y. Chen, Z.-B. Yang, H.-Z. Wu, and S.-B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

Zhu, A.-D.

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

Europhys. Lett. (1)

L.-T. Shen, X.-Y. Chen, Z.-B. Yang, H.-Z. Wu, and S.-B. Zheng, “Distributed entanglement induced by dissipative bosonic media,” Europhys. Lett. 99, 20003 (2012).
[Crossref]

J. Math. Phys. (2)

B. Misra and E. C. G. Sudarshan, “The Zeno's paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).
[Crossref]

P. Facchi and M. Ligabò, “Quantum zeno effect and dynamics,” J. Math. Phys. 51, 022103 (2010).
[Crossref]

J. Phys. A (1)

P. Facchi and S. Pascazio, “Quantum zeno dynamics: mathematical and physical aspects,” J. Phys. A 41, 493001 (2008).
[Crossref]

Journal of Physics B: Atomic, Molecular and Optical Physics (1)

X.-Q. Shao, L. Chen, S. Zhang, and K.-H. Yeon, “Fast cnot gate via quantum zeno dynamics,” Journal of Physics B: Atomic, Molecular and Optical Physics 42, 165507 (2009).
[Crossref]

Math. Proc. Cambridge Philos. Soc. (1)

E. Schrödinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Nat. Phys. (1)

A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M. Brune, and S. Gleyzes, “Confined quantum zeno dynamics of a watched atomic arrow,” Nat. Phys. 10, 715–719 (2014).

Nature (5)

S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H. Devoret, “Autonomously stabilized entanglement between two superconducting quantum bits,” Nature 504, 419–422 (2013).
[Crossref] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

Nature(London) (1)

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Dissipative production of a maximally entangled steady state of two quantum bits,” Nature(London) 504, 415–418 (2013).
[Crossref]

New J. Phys. (1)

G. Vacanti and A. Beige, “Cooling atoms into entangled states,” New J. Phys. 11, 083008 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Phys. Rev. A (25)

L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011).
[Crossref]

J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011).
[Crossref]

L.-M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, and C. Monroe, “Probabilistic quantum gates between remote atoms through interference of optical frequency qubits,” Phys. Rev. A 73, 062324 (2006).
[Crossref]

E. Waks and C. Monroe, “Protocol for hybrid entanglement between a trapped atom and a quantum dot,” Phys. Rev. A 80, 062330 (2009).
[Crossref]

G. Chimczak, “Efficient generation of distant atom entanglement via cavity decay,” Phys. Rev. A 71, 052305 (2005).
[Crossref]

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005).
[Crossref]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999).
[Crossref]

R. Cleve and H. Buhrman, “Substituting quantum entanglement for communication,” Phys. Rev. A 56, 1201–1204 (1997).
[Crossref]

J. K. Stockton, R. van Handel, and H. Mabuchi, “Deterministic dicke-state preparation with continuous measurement and control,” Phys. Rev. A 70, 022106 (2004).
[Crossref]

X.-Q. Shao, H.-F. Wang, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “One-step implementation of the 1 3 orbital state quantum cloning machine via quantum zeno dynamics,” Phys. Rev. A 80, 062323 (2009).
[Crossref]

J. Wang, H. M. Wiseman, and G. J. Milburn, “Dynamical creation of entanglement by homodyne-mediated feedback,” Phys. Rev. A 71, 042309 (2005).
[Crossref]

S. Mancini and H. M. Wiseman, “Optimal control of entanglement via quantum feedback,” Phys. Rev. A 75, 012330 (2007).
[Crossref]

A. R. R. Carvalho and J. J. Hope, “Stabilizing entanglement by quantum-jump-based feedback,” Phys. Rev. A 76, 010301 (2007).
[Crossref]

A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling entanglement by direct quantum feedback,” Phys. Rev. A 78, 012334 (2008).
[Crossref]

R. N. Stevenson, J. J. Hope, and A. R. R. Carvalho, “Engineering steady states using jump-based feedback for multipartite entanglement generation,” Phys. Rev. A 84, 022332 (2011).
[Crossref]

X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, “Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control,” Phys. Rev. A 94, 032307 (2016).
[Crossref]

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon knill-laflamme-milburn states,” Phys. Rev. A 81, 012321 (2010).
[Crossref]

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[Crossref]

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipative stabilization of quantum-feedback-based multipartite entanglement with rydberg atoms,” Phys. Rev. A 95, 022317 (2017).
[Crossref]

X. Q. Shao, J. H. Wu, and X. X. Yi, “Dissipation-based entanglement via quantum zeno dynamics and rydberg antiblockade,” Phys. Rev. A 95, 062339 (2017).
[Crossref]

S.-L. Su, X.-Q. Shao, H.-F. Wang, and S. Zhang, “Scheme for entanglement generation in an atom-cavity system via dissipation,” Phys. Rev. A 90, 054302 (2014).
[Crossref]

M.-F. Chen, L.-T. Shen, R.-X. Chen, and Z.-B. Yang, “Driving to the steady ground-state superposition assisted by spontaneous emission,” Phys. Rev. A 92, 033403 (2015).
[Crossref]

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems,” Phys. Rev. A 89, 033856 (2014).
[Crossref]

Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, “Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states,” Phys. Rev. A 91, 012325 (2015).
[Crossref]

Phys. Rev. Lett. (25)

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref] [PubMed]

A. Beige, D. Braun, B. Tregenna, and P. L. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett. 85, 1762–1765 (2000).
[Crossref] [PubMed]

P. Facchi and S. Pascazio, “Quantum zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002).
[Crossref] [PubMed]

A. W. Carr and M. Saffman, “Preparation of entangled and antiferromagnetic states by dissipative rydberg pumping,” Phys. Rev. Lett. 111, 033607 (2013).
[Crossref] [PubMed]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[Crossref] [PubMed]

Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, Y. Wan, A. Keith, E. Knill, S. Glancy, K. Coakley, A. S. Sørensen, D. Leibfried, and D. J. Wineland, “Preparation of entangled states through hilbert space engineering,” Phys. Rev. Lett. 117, 140502 (2016).
[Crossref] [PubMed]

J. Modławska and A. Grudka, “Nonmaximally entangled states can be better for multiple linear optical teleportation,” Phys. Rev. Lett. 100, 110503 (2008).
[Crossref]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref] [PubMed]

G. Gualdi, S. M. Giampaolo, and F. Illuminati, “Modular entanglement,” Phys. Rev. Lett. 106, 050501 (2011).
[Crossref] [PubMed]

T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[Crossref]

D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys. Rev. Lett. 87, 167902 (2001).
[Crossref] [PubMed]

R. T. Horn, S. A. Babichev, K.-P. Marzlin, A. I. Lvovsky, and B. C. Sanders, “Single-qubit optical quantum fingerprinting,” Phys. Rev. Lett. 95, 150502 (2005).
[Crossref] [PubMed]

M. Mohseni and D. A. Lidar, “Direct characterization of quantum dynamics,” Phys. Rev. Lett. 97, 170501 (2006).
[Crossref] [PubMed]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[Crossref] [PubMed]

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[Crossref] [PubMed]

C.-K. Chan and L. J. Sham, “Robust distant entanglement generation using coherent multiphoton scattering,” Phys. Rev. Lett. 110, 070501 (2013).
[Crossref] [PubMed]

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref] [PubMed]

M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011).
[Crossref] [PubMed]

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of einstein-podolsky-rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).
[Crossref] [PubMed]

Phys. Scr. (1)

R. J. Cook, “What are quantum jumps?” Phys. Scr. 1988, 49 (1988).

Quantum Info. Comput. (1)

E. D’Hondt and P. Panangaden, “The computational power of the w and ghz states,” Quantum Info. Comput. 6, 173–183 (2006).

Rev. Mod. Phys. (1)

H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, “Nonlocality and communication complexity,” Rev. Mod. Phys. 82, 665–698 (2010).
[Crossref]

Sci. Rep. (1)

S. J. Devitt, A. D. Greentree, A. M. Stephens, and R. V. Meter, “High-speed quantum networking by ship,” Sci. Rep. 6, 36163 (2016).
[Crossref] [PubMed]

Science (3)

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323, 486–489 (2009).
[Crossref] [PubMed]

L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet, and B. Huard, “Quantum dynamics of an electromagnetic mode that cannot contain n photons,” Science 348, 776–779 (2015).
[Crossref] [PubMed]

G. Barontini, L. Hohmann, F. Haas, J. Estève, and J. Reichel, “Deterministic generation of multiparticle entanglement by quantum zeno dynamics,” Science 349, 1317–1321 (2015).
[Crossref] [PubMed]

The European Physical Journal D (1)

R. N. Stevenson, A. R. Carvalho, and J. J. Hope, “Production of entanglement in raman three-level systems using feedback,” The European Physical Journal D 61, 523–529 (2011).
[Crossref]

The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics (1)

S. Mancini and J. Wang, “Towards feedback control of entanglement,” The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 32, 257–260 (2005).

Other (3)

L. K. Grover, “Quantum telecomputation,” https://arxiv.org/abs/quant-ph?9704012 (1997).

S. Tani, H. Kobayashi, and K. Matsumoto, Exact Quantum Algorithms for the Leader Election Problem (Springer, 2005).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Diagrammatic illustration of the atom-cavity-fiber system and the atomic level for preparation of the Bell state | S = ( | 01 | 10 ) | 0 f / 2 . (b) The effective transitions of the reduced system.
Fig. 2
Fig. 2 (a) Diagrammatic illustration of the atom-cavity-fiber system and the atomic level for preparation of the bipartite KLM state | K 1 = ( | 00 + | 10 + | 11 ) | 0 f / 2 . (b) The effective transitions of the reduced system.
Fig. 3
Fig. 3 (a) The populations as functions of gt governed by full and effective master equations. The initial states are ρ0 = (a|00〉〈00| + b|11〉〈11| + c|10〉〈10| + d|01〉〈01|) ⊗ |0〉 f |0〉, where a = 0.12, b = 0.42, c = 0.35, and d = 0.11. We set γ = κf = 0.1g and J = g. The inset compares the populations of |S〉 between single excitation (solid line), two excitations (empty square) and three excitations (empty triangle). (b) The populations of state |S〉 with different coupling strengths between the fiber and the cavity J. The initial states are chosen as |00〉|0〉 f and set γ = κf = 0.1g. (c) Contour plot (dashed lines) of the populations of |S〉 in the steady states with perfect cavities and J = g. The other parameter are all set as Ω = 0.05g, Ω MW = 0.3Ω, δ = 0.05g and κ1 = κ2 = 0.
Fig. 4
Fig. 4 Contour plot (dashed lines) of the populations of |S〉 in the steady states with leaky cavities. We set (a) κf = 0 and (b) κf = κ. The other parameters are both Ω = 0.01g, Ω MW = 1.4Ω, δ = 0.017g, J = g, and κ1 = κ2 = κ.
Fig. 5
Fig. 5 (a) Contour plot (dashed lines) of the populations of |S〉 in the steady states based on the feedback master equation with the detection of the first cavity. (b) Contour plot (dashed lines) of the populations of |S〉 in the steady states based on the feedback master equation with the detection of the two cavities. The feedback parameters are both η = 0.5π. The other parameters: Ω = 0.01g, Ω MW = 1.4Ω, δ = 0.017g, J = g, and κ1 = κ2 = κf = κ.
Fig. 6
Fig. 6 Diagram of the quantum-jump-based feedback control. The decay of the first cavity, κ1 = κ, is detected by a photodetector D, triggering the feedback operation Ufb acting on the first atom.
Fig. 7
Fig. 7 The populations of |S〉 as functions of gt with different experimental parameters. The detuning parameters of microwave field are δ = 0.01g. The other relations are Ω = 0.01g, Ω MW = 0.55Ω, and J = g. The initial states are all |00〉|0〉 f .
Fig. 8
Fig. 8 (a) The populations as functions of gt governed by full and effective master equations. The initial states are ρ0 = (a|00〉〈00| + b|11〉〈11| + c|10〉〈10| + d|01〉〈0|) ⊗ |0〉 f 〈0|, where a = 0.12, b = 0.42, c = 0.35, and d = 0.11. We set γ = κf = 0.1g and J = g. (b) The populations of state |K1〉 with different coupling strengths between the fiber and the cavity J. The initial states are chosen as |00〉|0〉 f and set γ = κf = 0.1g. (c) Contour plot (dashed lines) of the populations of |K1〉 in the steady states with perfect cavities and J = g. The other parameter are all set as Ω = 0.05g, Ω MW = 0.1Ω and κ1 = κ2 = 0.
Fig. 9
Fig. 9 (a) Contour plot (dashed lines) of the populations of |K1〉 in the steady states without the feedback control. (b) Contour plot (dashed lines) of the populations of |K1〉 in the steady states based on the feedback master equation with the detection of the two cavities. The feedback parameter is η = 0.5π. The other parameters are all chosen as Ω = 0.01g, Ω MW = 0.3Ω, J = g, and κ1 = κ2 = κf = κ.
Fig. 10
Fig. 10 The populations of |K1〉 as functions of gt with different experimental parameters. The parameters are Ω = 0.01g, Ω MW = 0.55Ω, and J = g. The initial states are all |00〉|0〉 f .
Fig. 11
Fig. 11 The model of n cavities connected by (n − 1) fibers, n = 2, 3, 4…. The two atoms are trapped into the first and nth cavities, respectively, and atomic levels are same as the Fig. 1(a).
Fig. 12
Fig. 12 (a) The populations of |S〉 governed by full (dashed lines) and effective (empty circles) master equations as functions of gt. We consider n = 3, Ω = 0.05g, κ f 1 = κ f 2 = γ = 0.1 g , and κ1 = κ2 = κ3 = 0. The detuning parameters and Rabi frequencies of microwave fields are set as Ω MW = 0.3Ω and δ = 0.05g. (b) The populations of |S〉 governed by effective master equations as functions of gt with different n. We make use of Ω = g/5 cos [(n − 1)π/(2n)], J = g, κ f j = γ = 0.1 g , j = 1, 2, ⋯, n − 1, Ω MW = 0.3Ω, and δ = 0.05g.
Fig. 13
Fig. 13 (a) The populations of |K1〉 governed by full (dashed lines) and effective (empty circles) master equations as functions of gt. We consider n = 3, Ω = 0.05g, κ f 1 = κ f 2 = γ = 0.1 g , κ1 = κ2 = κ3 = 0 and Ω MW = 0.1Ω. (b) The populations of |K1〉 governed by effective master equations as functions of gt with different n. We make use of Ω = g/5 cos [(n − 1)π/(2n)], J = g, κ f j = γ = 0.1 g , j = 1, 2, ⋯, n − 1, and Ω MW = 0.1Ω. The initial states are all |00〉|0 f .

Equations (52)

Equations on this page are rendered with MathJax. Learn more.

H I = H C I + H Q I , H C I = i = 1 2 Ω M W | 1 i 0 | + H . c . + δ | 1 i 1 | δ a i α i + m N ( Δ m δ ) b m b m , H Q I = i = 1 2 a i | 2 i 1 | g + Ω i | 2 i 0 | + m N J a i b m + H . c . ,
H C I = i = 1 2 Ω M W | 1 i 0 | + H . c . + δ ( | 1 i 1 | a i α i b b ) ,
H Q I = i = 1 2 a i | 2 i 1 | g + Ω i | 2 i 0 | + J a i b + H . c ..
ρ ˙ = i [ H I , ρ ] + j L j ρ L j 1 2 ( L j L j ρ + ρ L j L j ) ,
L γ 1 ( 2 ) = γ 2 | 0 ( 1 ) 1 2 | , L γ 3 ( 4 ) = γ 2 | 0 ( 1 ) 2 2 | , L κ i = κ i a i , L κ f = κ f b ,
H Q I = Ω ( H c + K H ) ,
H Q I = 2 Ω G 2 + 2 | D T | + H . c . ,
| D = 1 G 2 + 2 ( | 21 | 0 f + | 12 | 0 f g J | 11 | 1 f ) ,
| T = 1 2 ( | 01 + | 10 ) | 0 f ,
H eff = Ω | D T | + 2 Ω M W | T ( 00 | + 11 | ) f 0 | + H . c . + δ ( 2 | 11 11 | | 0 f 0 | + | T T | + | S S | + | D D | ) ,
L eff 1 = γ 1 | 11 | 0 f D | , L eff 2 ( 3 ) = γ 2 ( 3 ) | S ( T ) D | ,
ρ ˙ = i [ H eff , ρ ] + k = 1 3 L eff k ρ L eff k 1 2 ( L eff k L eff k ρ + ρ L eff k L eff k ) .
H I = H C I + H Q I , H C I = Ω M W ( | 1 1 0 | | 1 2 0 | ) + H . c . + i = 1 , 2 δ | 1 i 1 | δ a i a i δ b b , H Q I = i = 1 2 a i | 2 i 1 | g + J b a i + Ω 1 | 2 1 0 | + H . c . ,
H eff = Ω 2 | 01 | 0 f D | + Ω M W ( | 00 | 11 ) ( 10 | 01 | ) 0 | f 0 | + H . c . + δ ( 2 | 11 11 | + | 01 01 | + | 10 10 | ) | 0 f 0 | + δ | D D | ,
L eff 1 ( 2 ) = γ 1 ( 2 ) | 10 ( 01 ) | 0 f D | , L eff 3 = γ 3 | 11 | 0 f D | ,
ρ ˙ = i [ H I , ρ ] + ( d + κ D [ U fb a 1 ] + κ D [ a 2 ] ) ρ ,
| K 2 = 1 15 ( | 00 3 | 01 2 | 10 + | 11 ) | 0 f ,
| K 3 = 1 5 ( θ + | 00 + | 01 | 10 θ | 11 ) | 0 f ,
| K 4 = 1 5 ( θ | 00 | 01 + | 10 θ + | 11 ) | 0 f ,
ρ ˙ = i [ H I , ρ ] + ( d + κ i = 1 2 D [ U fd k a i ] ) ρ .
H I n = H C I + H Q I , H C I = i = 1 , n Ω M W | 1 i 0 | + H . c . + δ | 1 i 1 | j = 1 n 1 δ b j b j k = 1 n δ a k a k , H Q I = j = 1 n 1 J b j ( a j + a j + 1 ) + i = 1 , n a i | 2 i 1 | g + Ω i | 2 i 0 | + H . c . ,
L γ 1 ( 2 ) = γ 2 | 0 ( 1 ) 1 2 | , L γ 3 ( 4 ) = γ 2 | 0 ( 1 ) n 2 | ,
L κ k = κ k a k , L κ f k = κ f j b j .
H eff n = Ω | D T | + 2 Ω M W | T ( 00 | + 11 | ) f 0 | + H . c . + δ ( 2 | 11 11 | | 0 f 0 | + | T T | + | S S | + | D D | ) ,
| D = 1 G n + 2 ( | 21 | 0 f + ( 1 ) n | 12 | 0 f + g J j = 1 n 1 ( 1 ) j | 11 | 1 j f ) ,
| T = 1 2 ( | 01 + | 10 ) | 0 f ,
| S = 1 2 ( | 01 | 10 ) | 0 f
L eff 1 = γ 1 | 11 | 0 f | D , L eff 2 ( 3 ) = γ 2 ( 3 ) | T ( S ) | D ,
| η n | min = 2 cos [ ( n 1 ) π / ( 2 n ) ] ,
H I n = H C I + H Q I H C I = Ω M W ( | 1 1 0 | | 1 n 0 | ) + H . c . + i = 1 , n δ | 1 i 1 | α = 1 n 1 δ b α b α δ β n a β a β , H Q I = α = 1 n 1 J b α ( a α + a α + 1 ) + i = 1 , n a i | 2 i 1 | g + Ω 1 | 2 1 0 | + H . c ..
H eff n = Ω 2 | 01 | 0 f D | + Ω M W ( | 00 | 11 ) ( 10 | 01 | ) 0 | f 0 | + H . c . + δ ( 2 | 11 11 | + | 01 01 | + | 10 10 | ) | 0 f 0 | + δ | D D | ,
L eff 1 = γ 1 | 11 | 0 f | D , L eff 2 ( 3 ) = γ 2 ( 3 ) | 01 ( 10 ) | 0 f | D ,
H Q I = Ω ( H c + K H ) , H c = i = 1 2 | 2 i 0 | + H . c . , H = i = 1 2 a i | 2 i 1 | + J g a i b + H . c . ,
H Q I = Ω ( n K η n P n + m P m H c n P n ) ,
H Q I = n Ω K η n P n + Ω P n H c P n .
H Q I = Ω P 0 H c P 0 = 2 Ω G 2 + 2 | D T | + H . c . ,
H = i = 2 2 g J a i | 2 i 1 | + a i b + H . c . , K = J Ω ,
L γ 1 ( 2 ) = γ 2 | 0 ( 1 ) 1 2 | , L γ 3 ( 4 ) = γ 2 | 0 ( 1 ) 2 2 | , L κ f = κ f b ,
L = α , β | α α | L | β β | , α , β { | D , | T , | S , | 11 | 0 f , | 00 | 0 f } .
L γ 1 = γ 4 G 2 + 8 ( | T + | S ) D | , L γ 2 = γ 2 G 2 + 4 | 11 | 0 f D | ,
L γ 3 = γ 4 G 2 + 8 ( | T + | S ) D | , L γ 4 = γ 2 G 2 + 4 | 11 | 0 f D | ,
L κ f = g J γ G 2 + 2 | 11 | 0 f D | .
ρ = 1 ρ + 2 ρ + 3 ρ + 4 ρ + 5 ρ ,
1 ρ = γ 4 G 2 + 8 ( | T + | S ) D | ρ | D ( T | + S | ) γ 4 G 2 + 8 ( | D D | ρ + ρ | D D | ) ,
3 ρ = γ 4 G 2 + 8 ( | T | S ) D | ρ | D ( T | S | ) γ 4 G 2 + 8 ( | D D | ρ + ρ | D D | ) ,
2 ( 4 ) ρ = γ 2 G 2 + 4 | 11 | 0 f D | ρ | D 11 | f 0 | γ 4 G 2 + 8 ( | D D | ρ + ρ | D D | ) ,
5 ρ = γ G 2 G 2 + 2 | 11 | 0 f D | ρ | D 11 | f 0 | γ G 2 2 G 2 + 4 ( | D D | ρ + ρ | D D | ) .
ρ = eff 1 ρ + eff 3 ρ + eff 3 ρ ,
eff 1 ρ = γ ( G 2 + 1 ) G 2 + 2 | 11 | 0 f D | ρ | D 11 | f 0 | γ ( G 2 + 1 ) 2 G 2 + 4 ( | D D | ρ + ρ | D D | ) ,
eff 2 ρ = γ 2 G 2 + 4 | S | D ρ | D S | γ 4 G 2 + 8 ( | D D | ρ + ρ | D D | ) ,
eff 3 ρ = γ 2 G 2 + 4 | T | D ρ | D T | γ 4 G 2 + 8 ( | D D | ρ + ρ | D D | ) .
L eff 1 = γ ( G 2 + 1 ) ( G 2 + 2 ) | 11 | 0 f D | , L eff 2 ( 3 ) = γ 2 G 2 + 4 | S ( T ) D | ,

Metrics