Abstract

By integrating ultrafast laser pulse shaping into temporal focusing two-photon microscopy, a high-speed 3D imaging method is developed. This 3D imaging system requires neither laser beam steering nor sample mechanical scanning. The z scanning is achieved by shifting the temporal focal plane via applying different group velocity dispersions on the femtosecond laser spectrum in the temporal focusing two-photon microscope, and this group velocity dispersion control is done with the pulse shaping method by applying modulation functions on an acoustic optic modulator which diffracts the laser spectrum. The dependence of scanning depth on the applied electronic signals which can be tuned at kHz speed was characterized. Its high-speed 3D imaging capability was demonstrated by imaging fluorescence microspheres in a volume of 100 × 100 × 80 µm3.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact fiber-based multi-photon endoscope working at 1700 nm

Farhad Akhoundi, Yukun Qin, N. Peyghambarian, Jennifer K. Barton, and Khanh Kieu
Biomed. Opt. Express 9(5) 2326-2335 (2018)

Simultaneous spatial and temporal focusing for axial scanning

Michael E. Durst, Guanghao Zhu, and Chris Xu
Opt. Express 14(25) 12243-12254 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [Crossref] [PubMed]
  2. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    [Crossref] [PubMed]
  3. H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express 4(7), 995–1005 (2013).
    [Crossref] [PubMed]
  4. O. D. Therrien, B. Aubé, S. Pagès, P. D. Koninck, and D. Côté, “Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination,” Biomed. Opt. Express 2(3), 696–704 (2011).
    [Crossref] [PubMed]
  5. E. Block, M. Greco, D. Vitek, O. Masihzadeh, D. A. Ammar, M. Y. Kahook, N. Mandava, C. Durfee, and J. Squier, “Simultaneous spatial and temporal focusing for tissue ablation,” Biomed. Opt. Express 4(6), 831–841 (2013).
    [Crossref] [PubMed]
  6. E. Papagiakoumou, A. Begue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics 7(4), 274–278 (2013).
    [Crossref]
  7. C.-H. Lien, C.-Y. Lin, S.-J. Chen, and F.-C. Chien, “Dynamic particle tracking via temporal focusing multiphoton microscopy with astigmatism imaging,” Opt. Express 22(22), 27290–27299 (2014).
    [Crossref] [PubMed]
  8. R. Spesyvtsev, H. A. Rendall, and K. Dholakia, “Wide-field three-dimensional optical imaging using temporal focusing for holographically trapped microparticles,” Opt. Lett. 40(21), 4847–4850 (2015).
    [Crossref] [PubMed]
  9. Y. Ding and C. Li, “Dual-color multiple-particle tracking at 50-nm localization and over 100-µm range in 3D with temporal focusing two-photon microscopy,” Biomed. Opt. Express 7(10), 4187–4197 (2016).
    [Crossref] [PubMed]
  10. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
    [Crossref] [PubMed]
  11. R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol. 21(12), 682–691 (2011).
    [Crossref] [PubMed]
  12. Y. Yasuno, S. Makita, T. Yatagai, T. Wiesendanger, A. Ruprecht, and H. Tiziani, “Non-mechanically-axial-scanning confocal microscope using adaptive mirror switching,” Opt. Express 11(1), 54–60 (2003).
    [Crossref] [PubMed]
  13. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14(25), 12243–12254 (2006).
    [Crossref] [PubMed]
  14. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
    [Crossref] [PubMed]
  15. A. Straub, M. E. Durst, and C. Xu, “High speed multiphoton axial scanning through an optical fiber in a remotely scanned temporal focusing setup,” Biomed. Opt. Express 2(1), 80–88 (2010).
    [Crossref] [PubMed]
  16. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  17. C. Li, W. Wagner, M. Ciocca, and W. S. Warren, “Multiphoton femtosecond phase-coherent two-dimensional electronic spectroscopy,” J. Chem. Phys. 126(16), 164307 (2007).
    [Crossref] [PubMed]
  18. M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids 38(4), 461–465 (2005).
    [Crossref]
  19. M. Speidel, A. Jonás, and E.-L. Florin, “Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging,” Opt. Lett. 28(2), 69–71 (2003).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (1)

2013 (3)

2012 (1)

2011 (2)

2010 (1)

2008 (1)

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
[Crossref] [PubMed]

2007 (1)

C. Li, W. Wagner, M. Ciocca, and W. S. Warren, “Multiphoton femtosecond phase-coherent two-dimensional electronic spectroscopy,” J. Chem. Phys. 126(16), 164307 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (3)

2003 (2)

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Ammar, D. A.

Aubé, B.

Begue, A.

E. Papagiakoumou, A. Begue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics 7(4), 274–278 (2013).
[Crossref]

Block, E.

Bradley, J.

E. Papagiakoumou, A. Begue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics 7(4), 274–278 (2013).
[Crossref]

Buckley, M.

M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids 38(4), 461–465 (2005).
[Crossref]

Chang, C.-Y.

Chang, N.-S.

Chen, S.-J.

Cheng, L.-C.

Chien, F.-C.

Cho, K.-C.

Choi, H.

Ciocca, M.

C. Li, W. Wagner, M. Ciocca, and W. S. Warren, “Multiphoton femtosecond phase-coherent two-dimensional electronic spectroscopy,” J. Chem. Phys. 126(16), 164307 (2007).
[Crossref] [PubMed]

Côté, D.

Dholakia, K.

Ding, Y.

Dong, C. Y.

Durfee, C.

Durst, M.

Durst, M. E.

Emiliani, V.

E. Papagiakoumou, A. Begue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics 7(4), 274–278 (2013).
[Crossref]

Fantini, S.

Fischer, R. S.

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol. 21(12), 682–691 (2011).
[Crossref] [PubMed]

Florin, E.-L.

Greco, M.

Hallacoglu, B.

Jonás, A.

Kahook, M. Y.

Kanchanawong, P.

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol. 21(12), 682–691 (2011).
[Crossref] [PubMed]

Koninck, P. D.

Leshem, B.

E. Papagiakoumou, A. Begue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics 7(4), 274–278 (2013).
[Crossref]

Li, C.

Y. Ding and C. Li, “Dual-color multiple-particle tracking at 50-nm localization and over 100-µm range in 3D with temporal focusing two-photon microscopy,” Biomed. Opt. Express 7(10), 4187–4197 (2016).
[Crossref] [PubMed]

C. Li, W. Wagner, M. Ciocca, and W. S. Warren, “Multiphoton femtosecond phase-coherent two-dimensional electronic spectroscopy,” J. Chem. Phys. 126(16), 164307 (2007).
[Crossref] [PubMed]

Lien, C.-H.

Lin, C.-Y.

Makita, S.

Mandava, N.

Masihzadeh, O.

Oron, D.

E. Papagiakoumou, A. Begue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics 7(4), 274–278 (2013).
[Crossref]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
[Crossref] [PubMed]

Pagès, S.

Papagiakoumou, E.

E. Papagiakoumou, A. Begue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics 7(4), 274–278 (2013).
[Crossref]

Rendall, H. A.

Roberts, J. W.

M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids 38(4), 461–465 (2005).
[Crossref]

Ruprecht, A.

Schwartz, O.

E. Papagiakoumou, A. Begue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics 7(4), 274–278 (2013).
[Crossref]

Sheppard, C. J. R.

Shroff, H.

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol. 21(12), 682–691 (2011).
[Crossref] [PubMed]

Silberberg, Y.

So, P. T. C.

Speidel, M.

Spesyvtsev, R.

Squier, J.

Stell, B. M.

E. Papagiakoumou, A. Begue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics 7(4), 274–278 (2013).
[Crossref]

Straub, A.

Tal, E.

Therrien, O. D.

Tiziani, H.

van Howe, J.

Vitek, D.

Wagner, W.

C. Li, W. Wagner, M. Ciocca, and W. S. Warren, “Multiphoton femtosecond phase-coherent two-dimensional electronic spectroscopy,” J. Chem. Phys. 126(16), 164307 (2007).
[Crossref] [PubMed]

Warren, W. S.

C. Li, W. Wagner, M. Ciocca, and W. S. Warren, “Multiphoton femtosecond phase-coherent two-dimensional electronic spectroscopy,” J. Chem. Phys. 126(16), 164307 (2007).
[Crossref] [PubMed]

Waterman, C. M.

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol. 21(12), 682–691 (2011).
[Crossref] [PubMed]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Wiesendanger, T.

Wu, M.

M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids 38(4), 461–465 (2005).
[Crossref]

Wu, Y.

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol. 21(12), 682–691 (2011).
[Crossref] [PubMed]

Xu, C.

Yasuno, Y.

Yatagai, T.

Yen, W.-C.

Yew, E. Y. S.

Zhu, G.

Zipfel, W.

Biomed. Opt. Express (5)

Exp. Fluids (1)

M. Wu, J. W. Roberts, and M. Buckley, “Three-dimensional fluorescent particle tracking at micron-scale using a single camera,” Exp. Fluids 38(4), 461–465 (2005).
[Crossref]

J. Chem. Phys. (1)

C. Li, W. Wagner, M. Ciocca, and W. S. Warren, “Multiphoton femtosecond phase-coherent two-dimensional electronic spectroscopy,” J. Chem. Phys. 126(16), 164307 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

E. Papagiakoumou, A. Begue, B. Leshem, O. Schwartz, B. M. Stell, J. Bradley, D. Oron, and V. Emiliani, “Functional patterned multiphoton excitation deep inside scattering tissue,” Nat. Photonics 7(4), 274–278 (2013).
[Crossref]

Opt. Commun. (1)

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Trends Cell Biol. (1)

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol. 21(12), 682–691 (2011).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1       Temporal focusing two-photon microscopy of fluorescent microspheres

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup of the temporal focusing two-photon microscope with pulse shaping technique. HWP: half-wave plate, PBS: polarizing beam splitter, AOM: acousto-optic modulator, AFG: arbitrary function generator, DM: dichroic mirror, M: mirror, L: lens, BP: bandpass filter.
Fig. 2
Fig. 2 Schematic explanation of shifting the temporal focal plane in a temporal focusing two-photon microscope with GVD control. (a) constant RF frequency, (b) chirped RF frequency. AOM: acousto-optic modulator.
Fig. 3
Fig. 3 Temporal focal plane shift by varying GVD. (a) Series of fluorescent images of microspheres at different z positions (z = −10 to 80 µm) after the temporal focal plane is shifted at z = 0, 20, 30, and 40 µm planes with varying GVD. (b) Maximum intensity plots along axial dimension for images in (a). (c) Theoretical maximum two-photon (2P) excitation plane shift vs. GVD (blue curve), and experimental data (red dots). (d) Spatial overlap at the focus of objective lens.
Fig. 4
Fig. 4 (a) AFG voltage function (bottom) is synchronized with laser pulse sequence (top) for automatically shifting the temporal focal plane. (b) One frame taken out from Visualization 1 (c) Particle 3D position calculated based on acquired images.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

TPE( z )= + + I 2 ( x,z,t )dxdt= C { [ 1+ βΩ 2 zf Z M ] 2 + [ fz+β Ω 2 Z R Z R ] 2 } 1 2  
z= ( 1 Z M Z R )u ( u 2 + ( Z M Z R ) 2 ) Z M +f
E out ( ω )= E in ( ω ) e i( 2π f A +ϕ )t = E in ( ω ) e i( 2π( f A0 +Δ f A  t+ϕ)t ) = E in ( ω ) e i( 2π( f A0 +ϕ)t ) e i2πΔ f A   t 2 ,
Δ f A = 220 MHz180 MHz 10 5   s =4.0× 10 12   s 2
e i2πΔ f A   t 2    t to ω     e i2πΔ f A   (a+bω) 2  
Δ t travel = 0.035m 4200 m/s =8.3× 10 6  s
b= Δ t travel Δω = 8.3× 10 6  s 1.2× 10 14   s 1 =6.9× 10 20   s 2
e i2πΔ f A   (a+bω) 2 = e i2πΔ f A  ( a 2 +2abω) e i2πΔ f A b 2 ω 2
GVD=2×2πΔ f A b 2 =2.4× 10 5   fs 2
Ω=2πc ( 1 λ 1 1 λ 2 )=7.7× 10 13    s 1 
Z M = 2 f 2 k 0 s 2 =1.2× 10 4  m
Z R = 2 f 2 / k 0 s 2 + α 2 Ω 2 =5.4× 10 7  m

Metrics