Abstract

We demonstrate the effects of typical bulk defects in fused silica on the bulk damage threshold under nanosecond UV pulse in this study. A new test method is proposed to accurately evaluate laser induced bulk damage performance. The bulk bubble, hydroxyl, metal impurity, and weak absorption of the 355 nm laser are respectively characterized. The effects of bulk defects on bulk damage performance are analyzed statistically based on the correlation principle. For synthetic fused silica, metal impurities and hydroxyl have a weak correlation coefficient with the bulk damage threshold, while there is strong correlation between weak UV absorption and the bulk damage threshold. The influence of bulk damage threshold on surface damage performance is also discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Subsurface defects of fused silica optics and laser induced damage at 351 nm

Liu Hongjie, Huang Jin, Wang Fengrui, Zhou Xinda, Ye Xin, Zhou Xiaoyan, Sun Laixi, Jiang Xiaodong, Sui Zhan, and Zheng Wanguo
Opt. Express 21(10) 12204-12217 (2013)

Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: evidence of different damage mechanisms between 266-nm and longer wavelengths

Nobu Kuzuu, Kunio Yoshida, Hidetsugu Yoshida, Tomozumi Kamimura, and Naoyoshi Kamisugi
Appl. Opt. 38(12) 2510-2515 (1999)

Reaction ion etching process for improving laser damage resistance of fused silica optical surface

Laixi Sun, Hongjie Liu, Jin Huang, Xin Ye, Handing Xia, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 24(1) 199-211 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).
  2. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
    [Crossref] [PubMed]
  3. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
    [Crossref] [PubMed]
  4. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
    [Crossref] [PubMed]
  5. J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
    [Crossref] [PubMed]
  6. S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
    [Crossref] [PubMed]
  7. L. Hongjie, H. Jin, W. Fengrui, Z. Xinda, Y. Xin, Z. Xiaoyan, S. Laixi, J. Xiaodong, S. Zhan, and Z. Wanguo, “Subsurface defects of fused silica optics and laser induced damage at 351 nm,” Opt. Express 21(10), 12204–12217 (2013).
    [Crossref] [PubMed]
  8. N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
    [Crossref] [PubMed]
  9. C. W. Carr, J. D. Bude, and P. Demange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 1487 (2010).
    [Crossref]
  10. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
    [Crossref]
  11. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  12. R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. Peterson, “CO2-laser polishing for reductoin of 351-nm surface damage initiation in fused silica,” in Boulder Damage (2001), pp. 34–39.
  13. N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, and M. D. Feit, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
    [Crossref]
  14. X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
    [Crossref]
  15. A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).
  16. L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
    [Crossref] [PubMed]
  17. L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” in Boulder Damage (2002), pp. 321–331.
  18. G. Hu, Y. Zhao, X. Liu, D. Li, Q. Xiao, K. Yi, and J. Shao, “Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica,” Opt. Lett. 38(15), 2632–2635 (2013).
    [Crossref] [PubMed]
  19. S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
    [Crossref]
  20. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 1039 (2009).
    [Crossref]
  21. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [Crossref] [PubMed]
  22. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
    [Crossref]
  23. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
    [Crossref] [PubMed]
  24. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  25. X. C. Shang, X. K. Cao, R. Z. Zhang, and M. A. Ping, “Influence of laser wavelength and pulse duration threshold on laser-induced optical damage,” High Power Laser Particle Beams 20(7), 1071–1075 (2008).
  26. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
    [Crossref]
  27. H. Bercegol, L. Lamaignere, B. Le Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE 4932, 276–285 (2003).
    [Crossref]
  28. P. E. Miller, T. I. Suratwala, J. D. Bude, N. Shen, W. A. Steele, T. A. Laurence, M. D. Feit, and L. L. Wong, “Methods for globally treating silica optics to reduce optical damage,” (US, 2012).
  29. L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
    [Crossref]
  30. R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10642–10649 (2010).
    [Crossref] [PubMed]
  31. C. Gouldieff, F. Wagner, and J. Y. Natoli, “Nanosecond UV laser-induced fatigue effects in the bulk of synthetic fused silica: a multi-parameter study,” Opt. Express 23(3), 2962–2972 (2015).
    [Crossref] [PubMed]
  32. N. Kuzuu, K. Yoshida, H. Yoshida, T. Kamimura, and N. Kamisugi, “Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: evidence of different damage mechanisms between 266-nm and longer wavelengths,” Appl. Opt. 38(12), 2510–2515 (1999).
    [Crossref] [PubMed]
  33. Z. Wu, Z. Fan, and E. Matthias, “Measurement of absorption losses in thin films by photothermal displacement technique,” in Proc. 3rd Int. Symp. on Trends and New Applications in Thin Films, Le Vide, Les Couches Minces, Supplement No. 259 (1991), pp. 61–65.
  34. J. Chen, J. Dong, and Z. Wu, “Development of a “turn-key” system for weak absorption measurement and analysis,” in SPIE/SIOM Pacific Rim Laser Damage: Optical Materials for High-Power Lasers (2013), pp. 87861M.
  35. T. D. Gautheir, “Detecting Trends Using Spearman”s Rank Correlation Coefficient,” Environ. Forensics 2(4), 359–362 (2001).
    [Crossref]

2016 (1)

2015 (1)

2014 (4)

2013 (3)

2012 (1)

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, and M. D. Feit, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[Crossref]

2011 (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

2010 (4)

2009 (4)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 1039 (2009).
[Crossref]

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

2008 (2)

A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812–4832 (2008).
[Crossref] [PubMed]

X. C. Shang, X. K. Cao, R. Z. Zhang, and M. A. Ping, “Influence of laser wavelength and pulse duration threshold on laser-induced optical damage,” High Power Laser Particle Beams 20(7), 1071–1075 (2008).

2006 (1)

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[Crossref]

2005 (1)

2003 (1)

H. Bercegol, L. Lamaignere, B. Le Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE 4932, 276–285 (2003).
[Crossref]

2001 (2)

T. D. Gautheir, “Detecting Trends Using Spearman”s Rank Correlation Coefficient,” Environ. Forensics 2(4), 359–362 (2001).
[Crossref]

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).

1999 (1)

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

1989 (1)

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Ambard, C.

Bajpai, R. P.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).

Baxamusa, S.

Bercegol, H.

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

H. Bercegol, L. Lamaignere, B. Le Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE 4932, 276–285 (2003).
[Crossref]

Birolleau, J. C.

Braunlich, P.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Bude, J.

Bude, J. D.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, and M. D. Feit, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

C. W. Carr, J. D. Bude, and P. Demange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 1487 (2010).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 1039 (2009).
[Crossref]

Cao, X. K.

X. C. Shang, X. K. Cao, R. Z. Zhang, and M. A. Ping, “Influence of laser wavelength and pulse duration threshold on laser-induced optical damage,” High Power Laser Particle Beams 20(7), 1071–1075 (2008).

Carr, C. W.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

C. W. Carr, J. D. Bude, and P. Demange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 1487 (2010).
[Crossref]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
[Crossref] [PubMed]

Carr, W.

Casper, R. T.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Cormont, P.

Cross, D.

Cross, D. A.

Darbois, N.

Demange, P.

C. W. Carr, J. D. Bude, and P. Demange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 1487 (2010).
[Crossref]

Demos, S. G.

Destribats, J.

Dimri, A. K.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).

Do, B. T.

Donohue, E. E.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[Crossref]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Feit, M. D.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, and M. D. Feit, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10642–10649 (2010).
[Crossref] [PubMed]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 1039 (2009).
[Crossref]

Feng, B.

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

Fengrui, W.

Fu, S.

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
[Crossref]

Gautheir, T. D.

T. D. Gautheir, “Detecting Trends Using Spearman”s Rank Correlation Coefficient,” Environ. Forensics 2(4), 359–362 (2001).
[Crossref]

Gouldieff, C.

Hackel, R. P.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[Crossref]

Han, W.

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

He, S.

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Hollingsworth, W. G.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[Crossref]

Hongjie, L.

Hu, G.

Huang, J.

Huang, W.

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

Jiang, X.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
[Crossref]

Jin, H.

Jing, F.

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

Jones, S. C.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Kamimura, T.

Kamisugi, N.

Kelly, P.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Kuzuu, N.

Laixi, S.

Lamaignere, L.

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

H. Bercegol, L. Lamaignere, B. Le Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE 4932, 276–285 (2003).
[Crossref]

Laurence, T.

Laurence, T. A.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, and M. D. Feit, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 1039 (2009).
[Crossref]

Le Garrec, B.

H. Bercegol, L. Lamaignere, B. Le Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE 4932, 276–285 (2003).
[Crossref]

Li, D.

Li, F.

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

Li, Q.

Liao, W.

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

Liu, H.

Liu, X.

G. Hu, Y. Zhao, X. Liu, D. Li, Q. Xiao, K. Yi, and J. Shao, “Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica,” Opt. Lett. 38(15), 2632–2635 (2013).
[Crossref] [PubMed]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Liu, Y.

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
[Crossref]

Loiseau, M.

H. Bercegol, L. Lamaignere, B. Le Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE 4932, 276–285 (2003).
[Crossref]

Luitot, C.

Lv, H.

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

Menapace, J.

Menapace, J. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Miao, X.

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

Miller, P.

Miller, P. E.

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, and M. D. Feit, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 1039 (2009).
[Crossref]

Monticelli, M.

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Natoli, J. Y.

Neauport, J.

Negres, R. A.

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
[Crossref] [PubMed]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[Crossref]

Paul, A. K.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Pilon, F.

Ping, M. A.

X. C. Shang, X. K. Cao, R. Z. Zhang, and M. A. Ping, “Influence of laser wavelength and pulse duration threshold on laser-induced optical damage,” High Power Laser Particle Beams 20(7), 1071–1075 (2008).

Rao, H.

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
[Crossref]

Rondeau, O.

Rubenchik, A. M.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Shang, X. C.

X. C. Shang, X. K. Cao, R. Z. Zhang, and M. A. Ping, “Influence of laser wavelength and pulse duration threshold on laser-induced optical damage,” High Power Laser Particle Beams 20(7), 1071–1075 (2008).

Shao, J.

Shen, N.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, and M. D. Feit, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 1039 (2009).
[Crossref]

Shen, X. A.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Smith, A. V.

Spaeth, M. L.

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[Crossref]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Steele, R.

Steele, W.

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 1039 (2009).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sun, L.

Suratwala, T.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 1039 (2009).
[Crossref]

Suratwala, T. I.

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, and M. D. Feit, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Volto, P.

H. Bercegol, L. Lamaignere, B. Le Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE 4932, 276–285 (2003).
[Crossref]

Wagner, F.

Wang, F.

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

Wang, H.

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

Wanguo, Z.

Wei, X.

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

Wong, L.

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Wu, W.

Xia, H.

Xiang, X.

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

Xiang, Y.

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

Xiao, Q.

Xiaodong, J.

Xiaoyan, Z.

Xin, Y.

Xinda, Z.

Yan, Z.

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

Yang, L.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

Ye, X.

Yi, K.

Yoshida, H.

Yoshida, K.

Yuan, X.

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

Zhan, S.

Zhang, R. Z.

X. C. Shang, X. K. Cao, R. Z. Zhang, and M. A. Ping, “Influence of laser wavelength and pulse duration threshold on laser-induced optical damage,” High Power Laser Particle Beams 20(7), 1071–1075 (2008).

Zhang, X.

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

Zhao, Y.

Zheng, W.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

Zu, X.

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 1039 (2009).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Chin. Phys. Lett. (1)

W. Huang, W. Han, F. Wang, Y. Xiang, F. Li, B. Feng, F. Jing, X. Wei, W. Zheng, and X. Zhang, “Laser –induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 339–342 (2009).

Environ. Forensics (1)

T. D. Gautheir, “Detecting Trends Using Spearman”s Rank Correlation Coefficient,” Environ. Forensics 2(4), 359–362 (2001).
[Crossref]

High Power Laser Particle Beams (1)

X. C. Shang, X. K. Cao, R. Z. Zhang, and M. A. Ping, “Influence of laser wavelength and pulse duration threshold on laser-induced optical damage,” High Power Laser Particle Beams 20(7), 1071–1075 (2008).

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

J. Indian Inst. Sci. (1)

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).

Opt. Eng. (3)

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28(10), 1039–1068 (1989).
[Crossref]

N. Shen, P. E. Miller, J. D. Bude, T. A. Laurence, T. I. Suratwala, and M. D. Feit, “Thermal annealing of laser damage precursors on fused silica surfaces,” Opt. Eng. 51(12), 121817 (2012).
[Crossref]

L. Yang, X. Xiang, X. Yuan, W. Zheng, S. He, H. Lv, Z. Yan, H. Wang, W. Liao, X. Miao, and X. Zu, “Bulk damage and stress behavior of fused silica irradiated by nanosecond laser,” Opt. Eng. 53(4), 047103 (2014).
[Crossref]

Opt. Express (10)

R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express 18(10), 10642–10649 (2010).
[Crossref] [PubMed]

C. Gouldieff, F. Wagner, and J. Y. Natoli, “Nanosecond UV laser-induced fatigue effects in the bulk of synthetic fused silica: a multi-parameter study,” Opt. Express 23(3), 2962–2972 (2015).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18(19), 19966–19976 (2010).
[Crossref] [PubMed]

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

L. Hongjie, H. Jin, W. Fengrui, Z. Xinda, Y. Xin, Z. Xiaoyan, S. Laixi, J. Xiaodong, S. Zhan, and Z. Wanguo, “Subsurface defects of fused silica optics and laser induced damage at 351 nm,” Opt. Express 21(10), 12204–12217 (2013).
[Crossref] [PubMed]

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

C. W. Carr, J. D. Bude, and P. Demange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 1487 (2010).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Proc. SPIE (4)

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage on the input surface of SiO2 at 351 nm,” Proc. SPIE 6403, 64030L (2006).
[Crossref]

H. Bercegol, L. Lamaignere, B. Le Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE 4932, 276–285 (2003).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
[Crossref]

Other (5)

R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. Peterson, “CO2-laser polishing for reductoin of 351-nm surface damage initiation in fused silica,” in Boulder Damage (2001), pp. 34–39.

L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” in Boulder Damage (2002), pp. 321–331.

P. E. Miller, T. I. Suratwala, J. D. Bude, N. Shen, W. A. Steele, T. A. Laurence, M. D. Feit, and L. L. Wong, “Methods for globally treating silica optics to reduce optical damage,” (US, 2012).

Z. Wu, Z. Fan, and E. Matthias, “Measurement of absorption losses in thin films by photothermal displacement technique,” in Proc. 3rd Int. Symp. on Trends and New Applications in Thin Films, Le Vide, Les Couches Minces, Supplement No. 259 (1991), pp. 61–65.

J. Chen, J. Dong, and Z. Wu, “Development of a “turn-key” system for weak absorption measurement and analysis,” in SPIE/SIOM Pacific Rim Laser Damage: Optical Materials for High-Power Lasers (2013), pp. 87861M.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Bulk damage tests of fused silica samples by focusing high laser energy outside of the materials.
Fig. 2
Fig. 2 Growth of bulk damage with increasing incident laser energy. (a) Incident laser energy is less than bulk damage threshold. (b) Incident laser energy is just over the bulk damage threshold. (c) Incident laser energy exceeds bulk damage threshold obviously.
Fig. 3
Fig. 3 Distribution of light intensity at rear surface of fused silica optics. The modulation (ratio of peak to average of light intensity) is 3.6, blurred diffraction spot was induced by laser transmission window.
Fig. 4
Fig. 4 Comparison of 0% probability damage thresholds of different samples
Fig. 5
Fig. 5 Typical bulk damage morphologies. (a) Fused quartz, induced by 45 J/cm2. (b) Synthetic fused silica, induced by 93 J/cm2.
Fig. 6
Fig. 6 Morphologies of bubbles scattered inside fused quartz samples observed by laser scattering lighting. (a) Bubble scattering with high distribution density. (b) Typical bubble morphology.
Fig. 7
Fig. 7 Effect of bubbles on incident laser field intensity of fused silica. (a) Theoretical simulation. (b) Experimental bubble damage induced by 32 J/cm2, 355nm pulse laser.
Fig. 8
Fig. 8 Comparison of the hydroxyl content. (a) Hydroxyl absorption peaks of the samples near the wavelength of 2.2 μm. (b) Computational hydroxyl content.
Fig. 9
Fig. 9 Bulk mean absorption of samples at 355 nm pumping laser radiation
Fig. 10
Fig. 10 Histogram form of correlation between the three defect parameters and bulk damage threshold at 355 nm.
Fig. 11
Fig. 11 Comparison of surface and bulk damage thresholds for the seven samples.

Tables (3)

Tables Icon

Table 1 Description of samples

Tables Icon

Table 2 Relative metal impurity concentrations of seven fused silica samples (intensity counts)

Tables Icon

Table 3 Correlations among characterization parameters of three defects and bulk damage threshold at 355 nm pulse laser

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r(s)= 16 i=1 n d i 2 n 3 n

Metrics