Abstract

Tilted fiber Bragg gratings (TFBG) can be used as refractive index sensors, as their cladding modes, amplitude, and wavelength changes with the outer refractive index. However, as cladding modes have bandwidths that are narrower than the resolution of most infrared spectrometers, they can be detected only with an optical spectrum or vector analyzers. In this work, we demonstrate that through ad hoc implementation, the Karhunen-Loeve transform (KLT) algorithm can be used to demodulate a TFBG even using a coarse interrogator (156 pm), whereas cladding modes cannot be discriminated in the TFBG spectrum. We observe that the KLT output results are a reliable indicator to detect refractive index changes up to 1.85 ⋅ 10−3 refractive index units (RIU), down to a resolution of ~10−5 RIU. The KLT can be used to demodulate TFBG sensors and biosensors operating in small refractive index change conditions.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement

Christophe Caucheteur, Yanina Shevchenko, Li-Yang Shao, Marc Wuilpart, and Jacques Albert
Opt. Express 19(2) 1656-1664 (2011)

Magnetic field sensor using tilted fiber grating interacting with magnetic fluid

Jie Zheng, Xinyong Dong, Peng Zu, Li-Yang Shao, Chi Chiu Chan, Ying Cui, and Perry Ping Shum
Opt. Express 21(15) 17863-17868 (2013)

Tilted fiber Bragg grating sensor interrogation system using a high-resolution silicon-on-insulator arrayed waveguide grating

Pavel Cheben, Edith Post, Siegfried Janz, Jacques Albert, Albane Laronche, Jens H. Schmid, Dan-Xia Xu, Boris Lamontagne, Jean Lapointe, André Delâge, and Adam Densmore
Opt. Lett. 33(22) 2647-2649 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15, 233–236 (2009).
  2. N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006).
  3. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606–1612 (1998).
  4. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
  5. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
    [PubMed]
  6. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [PubMed]
  7. W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24, 1872–1874 (2012).
  8. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125, 688–703 (2007).
  9. Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
    [PubMed]
  10. Y. M. Wang, X. F. Pang, Y. Y. Zhang, and H. Z. Wang, “Characterization of covalent immobilization on the surface of optical fibers by scanning electron microscopy and energy dispersive X-ray spectrometry,” Surf. Interface Anal. 41, 775–778 (2009).
  11. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
    [PubMed]
  12. T. A. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
  13. T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
    [PubMed]
  14. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7, 83–108 (2013).
  15. C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
    [PubMed]
  16. C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
    [PubMed]
  17. C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted Fiber Bragg Grating Refractometer Using Polarization-Dependent Loss Measurement,” IEEE Photonics Technol. Lett. 20, 2153–2155 (2008).
  18. A. Aldaba, A. Gonzalez-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).
  19. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [PubMed]
  20. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
  21. A. Gonzalez-Vila, D. Kinet, P. Megret, and C. Caucheteur, “Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs,” Opt. Laser Technol. 96, 141–146 (2017).
  22. T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
    [PubMed]
  23. C. Caucheteur, V. Malachovska, C. Ribaut, and R. Wattiez, “Cell sensing with near-infrared plasmonic optical fiber sensors,” Opt. Laser Technol. 78, 116–121 (2016).
  24. C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
    [PubMed]
  25. C. Caucheteur and P. Megret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17, 2703–2705 (2005).
  26. D. Tosi, “KLT-Based Algorithm for Sub-Picometer Accurate FBG Tracking With Coarse Wavelength Sampling,” IEEE Photonics Technol. Lett. 27, 2134–2137 (2015).
  27. D. Tosi, “Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis,” Sensors (Basel) 15(11), 27470–27492 (2015).
    [PubMed]
  28. J. Hervas, D. Tosi, H. Garcia-Miquel, D. Barrera, C. R. Fernandez-Pousa, and S. Sales, “KLT-Based Interrogation Technique for FBG Multiplexed Sensor Tracking,” J. Lightwave Technol. 35, 3387–3392 (2017).
  29. C. Maccone, Telecommunications, KLT and Relativity (International Press Institute, 1994).
  30. C. Maccone, “The KLT (Karhunen-Loeve Transform) to extend SETI searches to broad-band and extremely feeble signals,” Acta Astronaut. 67, 1427–1439 (2010).
  31. I. M. Johnstone, “On the distribution of the largest eigenvalue in principal components analysis,” Ann. Stat. 29, 295–327 (2001).
  32. R. M. Gray, “On the asymptotic Eigenvalue distribution of Toeplitz matrices,” Trans. Inform. Theory IT-18, 725–730 (1972).
  33. R. M. Gray, “Toeplitz and circulant matrices: a review,” Found. Trends Commun. Inf. Theory 2(3), 155–239 (2006).
  34. C. Maccone, “Advantages of Karhunen-Loeve transform over fast Fourier transform for planetary radar and space debris detection,” Acta Astronaut. 60, 775–779 (2007).
  35. E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
    [PubMed]
  36. M. Delgado-Pinar, Q. Shi, L. Poveda-Wong, E. Delgado-Pinar, B. J. Xu, J. L. Zhao, J. L. Cruz, and M. V. Andres, “Oligonucleotide-Hybridization Fiber-Optic Biosensor Using a Narrow Bandwidth Long Period Grating,” IEEE Sens. J. 17, 5503–5509 (2017).
  37. R. Tabassum and B. D. Gupta, “SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations,” Opt. Commun. 367, 23–34 (2016).
  38. S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).
  39. R. Raghunandhan, L. H. Chen, H. Y. Long, L. L. Leam, P. L. So, X. Ning, and C. C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B Chem. 233, 31–38 (2016).
  40. GE-Healthcare, “Selection guide for Biacore consumables,” (2017).
  41. W. H. Chung, H. Y. Tam, P. K. A. Wai, and A. Khandelwal, “Time- and wavelength-division multiplexing of FBG sensors using a semiconductor optical amplifier in ring cavity configuration,” IEEE Photonics Technol. Lett. 17, 2709–2711 (2005).
  42. B. Jiang, K. Zhou, C. Wang, Y. Zhao, J. Zhao, and L. Zhang, “Temperature-calibrated high-precision refractometer using a tilted fiber Bragg grating,” Opt. Express 25(21), 25910–25918 (2017).
    [PubMed]
  43. Y.-C. Lu, L. Yang, W.-P. Huang, and S.-S. Jian, “Improved full-vector finite-difference complex mode solver for optical waveguides in circular symmetry,” J. Lightwave Technol. 26, 1868–1876 (2008).

2018 (1)

A. Aldaba, A. Gonzalez-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).

2017 (5)

A. Gonzalez-Vila, D. Kinet, P. Megret, and C. Caucheteur, “Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs,” Opt. Laser Technol. 96, 141–146 (2017).

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[PubMed]

M. Delgado-Pinar, Q. Shi, L. Poveda-Wong, E. Delgado-Pinar, B. J. Xu, J. L. Zhao, J. L. Cruz, and M. V. Andres, “Oligonucleotide-Hybridization Fiber-Optic Biosensor Using a Narrow Bandwidth Long Period Grating,” IEEE Sens. J. 17, 5503–5509 (2017).

J. Hervas, D. Tosi, H. Garcia-Miquel, D. Barrera, C. R. Fernandez-Pousa, and S. Sales, “KLT-Based Interrogation Technique for FBG Multiplexed Sensor Tracking,” J. Lightwave Technol. 35, 3387–3392 (2017).

B. Jiang, K. Zhou, C. Wang, Y. Zhao, J. Zhao, and L. Zhang, “Temperature-calibrated high-precision refractometer using a tilted fiber Bragg grating,” Opt. Express 25(21), 25910–25918 (2017).
[PubMed]

2016 (7)

R. Tabassum and B. D. Gupta, “SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations,” Opt. Commun. 367, 23–34 (2016).

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).

R. Raghunandhan, L. H. Chen, H. Y. Long, L. L. Leam, P. L. So, X. Ning, and C. C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B Chem. 233, 31–38 (2016).

T. A. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[PubMed]

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

C. Caucheteur, V. Malachovska, C. Ribaut, and R. Wattiez, “Cell sensing with near-infrared plasmonic optical fiber sensors,” Opt. Laser Technol. 78, 116–121 (2016).

2015 (5)

D. Tosi, “KLT-Based Algorithm for Sub-Picometer Accurate FBG Tracking With Coarse Wavelength Sampling,” IEEE Photonics Technol. Lett. 27, 2134–2137 (2015).

D. Tosi, “Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis,” Sensors (Basel) 15(11), 27470–27492 (2015).
[PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[PubMed]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[PubMed]

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
[PubMed]

2013 (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7, 83–108 (2013).

2012 (2)

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24, 1872–1874 (2012).

2011 (2)

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[PubMed]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
[PubMed]

2010 (1)

C. Maccone, “The KLT (Karhunen-Loeve Transform) to extend SETI searches to broad-band and extremely feeble signals,” Acta Astronaut. 67, 1427–1439 (2010).

2009 (3)

Y. M. Wang, X. F. Pang, Y. Y. Zhang, and H. Z. Wang, “Characterization of covalent immobilization on the surface of optical fibers by scanning electron microscopy and energy dispersive X-ray spectrometry,” Surf. Interface Anal. 41, 775–778 (2009).

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15, 233–236 (2009).

T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
[PubMed]

2008 (2)

Y.-C. Lu, L. Yang, W.-P. Huang, and S.-S. Jian, “Improved full-vector finite-difference complex mode solver for optical waveguides in circular symmetry,” J. Lightwave Technol. 26, 1868–1876 (2008).

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted Fiber Bragg Grating Refractometer Using Polarization-Dependent Loss Measurement,” IEEE Photonics Technol. Lett. 20, 2153–2155 (2008).

2007 (4)

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125, 688–703 (2007).

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
[PubMed]

C. Maccone, “Advantages of Karhunen-Loeve transform over fast Fourier transform for planetary radar and space debris detection,” Acta Astronaut. 60, 775–779 (2007).

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).

2006 (2)

R. M. Gray, “Toeplitz and circulant matrices: a review,” Found. Trends Commun. Inf. Theory 2(3), 155–239 (2006).

N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006).

2005 (2)

C. Caucheteur and P. Megret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17, 2703–2705 (2005).

W. H. Chung, H. Y. Tam, P. K. A. Wai, and A. Khandelwal, “Time- and wavelength-division multiplexing of FBG sensors using a semiconductor optical amplifier in ring cavity configuration,” IEEE Photonics Technol. Lett. 17, 2709–2711 (2005).

2001 (1)

I. M. Johnstone, “On the distribution of the largest eigenvalue in principal components analysis,” Ann. Stat. 29, 295–327 (2001).

1998 (1)

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).

1972 (1)

R. M. Gray, “On the asymptotic Eigenvalue distribution of Toeplitz matrices,” Trans. Inform. Theory IT-18, 725–730 (1972).

Albert, J.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

T. A. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[PubMed]

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
[PubMed]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7, 83–108 (2013).

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[PubMed]

T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
[PubMed]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted Fiber Bragg Grating Refractometer Using Polarization-Dependent Loss Measurement,” IEEE Photonics Technol. Lett. 20, 2153–2155 (2008).

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
[PubMed]

Aldaba, A.

A. Aldaba, A. Gonzalez-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).

Andres, M. V.

M. Delgado-Pinar, Q. Shi, L. Poveda-Wong, E. Delgado-Pinar, B. J. Xu, J. L. Zhao, J. L. Cruz, and M. V. Andres, “Oligonucleotide-Hybridization Fiber-Optic Biosensor Using a Narrow Bandwidth Long Period Grating,” IEEE Sens. J. 17, 5503–5509 (2017).

Barrera, D.

Bette, S.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted Fiber Bragg Grating Refractometer Using Polarization-Dependent Loss Measurement,” IEEE Photonics Technol. Lett. 20, 2153–2155 (2008).

Blair, D. A. D.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[PubMed]

Bucholtz, F.

Caucheteur, C.

A. Aldaba, A. Gonzalez-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).

A. Gonzalez-Vila, D. Kinet, P. Megret, and C. Caucheteur, “Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs,” Opt. Laser Technol. 96, 141–146 (2017).

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[PubMed]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[PubMed]

C. Caucheteur, V. Malachovska, C. Ribaut, and R. Wattiez, “Cell sensing with near-infrared plasmonic optical fiber sensors,” Opt. Laser Technol. 78, 116–121 (2016).

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[PubMed]

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
[PubMed]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7, 83–108 (2013).

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted Fiber Bragg Grating Refractometer Using Polarization-Dependent Loss Measurement,” IEEE Photonics Technol. Lett. 20, 2153–2155 (2008).

C. Caucheteur and P. Megret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17, 2703–2705 (2005).

Chan, C. C.

R. Raghunandhan, L. H. Chen, H. Y. Long, L. L. Leam, P. L. So, X. Ning, and C. C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B Chem. 233, 31–38 (2016).

Chauhan, S. K.

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).

Chen, C.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted Fiber Bragg Grating Refractometer Using Polarization-Dependent Loss Measurement,” IEEE Photonics Technol. Lett. 20, 2153–2155 (2008).

Chen, L. H.

R. Raghunandhan, L. H. Chen, H. Y. Long, L. L. Leam, P. L. So, X. Ning, and C. C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B Chem. 233, 31–38 (2016).

Chen, N.

N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006).

Chevineau, S.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[PubMed]

Chow, K. K.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24, 1872–1874 (2012).

Chung, W. H.

W. H. Chung, H. Y. Tam, P. K. A. Wai, and A. Khandelwal, “Time- and wavelength-division multiplexing of FBG sensors using a semiconductor optical amplifier in ring cavity configuration,” IEEE Photonics Technol. Lett. 17, 2709–2711 (2005).

Consales, M.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Crescitelli, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Cruz, J. L.

M. Delgado-Pinar, Q. Shi, L. Poveda-Wong, E. Delgado-Pinar, B. J. Xu, J. L. Zhao, J. L. Cruz, and M. V. Andres, “Oligonucleotide-Hybridization Fiber-Optic Biosensor Using a Narrow Bandwidth Long Period Grating,” IEEE Sens. J. 17, 5503–5509 (2017).

Cui, Y. P.

N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006).

Cusano, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Cutolo, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Debliquy, M.

A. Aldaba, A. Gonzalez-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).

Delgado-Pinar, E.

M. Delgado-Pinar, Q. Shi, L. Poveda-Wong, E. Delgado-Pinar, B. J. Xu, J. L. Zhao, J. L. Cruz, and M. V. Andres, “Oligonucleotide-Hybridization Fiber-Optic Biosensor Using a Narrow Bandwidth Long Period Grating,” IEEE Sens. J. 17, 5503–5509 (2017).

Delgado-Pinar, M.

M. Delgado-Pinar, Q. Shi, L. Poveda-Wong, E. Delgado-Pinar, B. J. Xu, J. L. Zhao, J. L. Cruz, and M. V. Andres, “Oligonucleotide-Hybridization Fiber-Optic Biosensor Using a Narrow Bandwidth Long Period Grating,” IEEE Sens. J. 17, 5503–5509 (2017).

DeRosa, M. C.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[PubMed]

Dubois, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[PubMed]

Ebendorff-Heidepriem, H.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[PubMed]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).

Esposito, E.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Farrell, G.

Fernandez-Pousa, C. R.

Francis, T. J.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[PubMed]

François, A.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[PubMed]

Garcia-Miquel, H.

Gonzalez-Vila, A.

A. Aldaba, A. Gonzalez-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).

A. Gonzalez-Vila, D. Kinet, P. Megret, and C. Caucheteur, “Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs,” Opt. Laser Technol. 96, 141–146 (2017).

Gray, R. M.

R. M. Gray, “Toeplitz and circulant matrices: a review,” Found. Trends Commun. Inf. Theory 2(3), 155–239 (2006).

R. M. Gray, “On the asymptotic Eigenvalue distribution of Toeplitz matrices,” Trans. Inform. Theory IT-18, 725–730 (1972).

Guan, B. O.

T. A. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

Guo, T.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[PubMed]

T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
[PubMed]

Guo, T. A.

T. A. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).

Gupta, B. D.

R. Tabassum and B. D. Gupta, “SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations,” Opt. Commun. 367, 23–34 (2016).

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).

Hervas, J.

Hoffmann, P.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[PubMed]

Huang, W.-P.

Huang, Y.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

Jha, R.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).

Ji, W. B.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24, 1872–1874 (2012).

Jian, S.-S.

Jiang, B.

Johnstone, I. M.

I. M. Johnstone, “On the distribution of the largest eigenvalue in principal components analysis,” Ann. Stat. 29, 295–327 (2001).

Kersey, A. D.

Khandelwal, A.

W. H. Chung, H. Y. Tam, P. K. A. Wai, and A. Khandelwal, “Time- and wavelength-division multiplexing of FBG sensors using a semiconductor optical amplifier in ring cavity configuration,” IEEE Photonics Technol. Lett. 17, 2709–2711 (2005).

Kinet, D.

A. Gonzalez-Vila, D. Kinet, P. Megret, and C. Caucheteur, “Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs,” Opt. Laser Technol. 96, 141–146 (2017).

Klantsataya, E.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[PubMed]

Krug, P. A.

Lahem, D.

A. Aldaba, A. Gonzalez-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).

Lambert, P.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[PubMed]

Larrieu, J. C.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[PubMed]

Leam, L. L.

R. Raghunandhan, L. H. Chen, H. Y. Long, L. L. Leam, P. L. So, X. Ning, and C. C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B Chem. 233, 31–38 (2016).

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125, 688–703 (2007).

Liang, X.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

Lim, A.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24, 1872–1874 (2012).

Liu, B.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15, 233–236 (2009).

Liu, F.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

T. A. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).

Liu, H. H.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24, 1872–1874 (2012).

Long, H. Y.

R. Raghunandhan, L. H. Chen, H. Y. Long, L. L. Leam, P. L. So, X. Ning, and C. C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B Chem. 233, 31–38 (2016).

Lopez-Amo, M.

A. Aldaba, A. Gonzalez-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).

Loyez, M.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[PubMed]

Lu, Y.-C.

Maccone, C.

C. Maccone, “The KLT (Karhunen-Loeve Transform) to extend SETI searches to broad-band and extremely feeble signals,” Acta Astronaut. 67, 1427–1439 (2010).

C. Maccone, “Advantages of Karhunen-Loeve transform over fast Fourier transform for planetary radar and space debris detection,” Acta Astronaut. 60, 775–779 (2007).

Malachovska, V.

C. Caucheteur, V. Malachovska, C. Ribaut, and R. Wattiez, “Cell sensing with near-infrared plasmonic optical fiber sensors,” Opt. Laser Technol. 78, 116–121 (2016).

Malachovská, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[PubMed]

Mao, W.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

Megret, P.

A. Gonzalez-Vila, D. Kinet, P. Megret, and C. Caucheteur, “Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs,” Opt. Laser Technol. 96, 141–146 (2017).

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted Fiber Bragg Grating Refractometer Using Polarization-Dependent Loss Measurement,” IEEE Photonics Technol. Lett. 20, 2153–2155 (2008).

C. Caucheteur and P. Megret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17, 2703–2705 (2005).

Mégret, P.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[PubMed]

Miao, Y. P.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15, 233–236 (2009).

Monro, T. M.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[PubMed]

Mukherji, S.

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125, 688–703 (2007).

Ning, X.

R. Raghunandhan, L. H. Chen, H. Y. Long, L. L. Leam, P. L. So, X. Ning, and C. C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B Chem. 233, 31–38 (2016).

Pang, X. F.

Y. M. Wang, X. F. Pang, Y. Y. Zhang, and H. Z. Wang, “Characterization of covalent immobilization on the surface of optical fibers by scanning electron microscopy and energy dispersive X-ray spectrometry,” Surf. Interface Anal. 41, 775–778 (2009).

Patrick, H. J.

Poveda-Wong, L.

M. Delgado-Pinar, Q. Shi, L. Poveda-Wong, E. Delgado-Pinar, B. J. Xu, J. L. Zhao, J. L. Cruz, and M. V. Andres, “Oligonucleotide-Hybridization Fiber-Optic Biosensor Using a Narrow Bandwidth Long Period Grating,” IEEE Sens. J. 17, 5503–5509 (2017).

Punjabi, N.

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).

Qiu, X.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

Raghunandhan, R.

R. Raghunandhan, L. H. Chen, H. Y. Long, L. L. Leam, P. L. So, X. Ning, and C. C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B Chem. 233, 31–38 (2016).

Remmelink, M.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[PubMed]

Ribaut, C.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[PubMed]

C. Caucheteur, V. Malachovska, C. Ribaut, and R. Wattiez, “Cell sensing with near-infrared plasmonic optical fiber sensors,” Opt. Laser Technol. 78, 116–121 (2016).

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[PubMed]

Ricciardi, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Sales, S.

Semenova, Y.

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125, 688–703 (2007).

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7, 83–108 (2013).

Sharma, A. K.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).

Sharma, D. K.

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).

Shevchenko, Y.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[PubMed]

Shevchenko, Y. Y.

Shi, Q.

M. Delgado-Pinar, Q. Shi, L. Poveda-Wong, E. Delgado-Pinar, B. J. Xu, J. L. Zhao, J. L. Cruz, and M. V. Andres, “Oligonucleotide-Hybridization Fiber-Optic Biosensor Using a Narrow Bandwidth Long Period Grating,” IEEE Sens. J. 17, 5503–5509 (2017).

So, P. L.

R. Raghunandhan, L. H. Chen, H. Y. Long, L. L. Leam, P. L. So, X. Ning, and C. C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B Chem. 233, 31–38 (2016).

Tabassum, R.

R. Tabassum and B. D. Gupta, “SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations,” Opt. Commun. 367, 23–34 (2016).

Tam, H. Y.

T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
[PubMed]

W. H. Chung, H. Y. Tam, P. K. A. Wai, and A. Khandelwal, “Time- and wavelength-division multiplexing of FBG sensors using a semiconductor optical amplifier in ring cavity configuration,” IEEE Photonics Technol. Lett. 17, 2709–2711 (2005).

Tjin, S. C.

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24, 1872–1874 (2012).

Tosi, D.

J. Hervas, D. Tosi, H. Garcia-Miquel, D. Barrera, C. R. Fernandez-Pousa, and S. Sales, “KLT-Based Interrogation Technique for FBG Multiplexed Sensor Tracking,” J. Lightwave Technol. 35, 3387–3392 (2017).

D. Tosi, “KLT-Based Algorithm for Sub-Picometer Accurate FBG Tracking With Coarse Wavelength Sampling,” IEEE Photonics Technol. Lett. 27, 2134–2137 (2015).

D. Tosi, “Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis,” Sensors (Basel) 15(11), 27470–27492 (2015).
[PubMed]

Voisin, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[PubMed]

C. Caucheteur, V. Voisin, and J. Albert, “Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” Opt. Express 23(3), 2918–2932 (2015).
[PubMed]

Wai, P. K. A.

W. H. Chung, H. Y. Tam, P. K. A. Wai, and A. Khandelwal, “Time- and wavelength-division multiplexing of FBG sensors using a semiconductor optical amplifier in ring cavity configuration,” IEEE Photonics Technol. Lett. 17, 2709–2711 (2005).

Walsh, R.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[PubMed]

Wang, C.

Wang, H. Z.

Y. M. Wang, X. F. Pang, Y. Y. Zhang, and H. Z. Wang, “Characterization of covalent immobilization on the surface of optical fibers by scanning electron microscopy and energy dispersive X-ray spectrometry,” Surf. Interface Anal. 41, 775–778 (2009).

Wang, P.

Wang, Y. M.

Y. M. Wang, X. F. Pang, Y. Y. Zhang, and H. Z. Wang, “Characterization of covalent immobilization on the surface of optical fibers by scanning electron microscopy and energy dispersive X-ray spectrometry,” Surf. Interface Anal. 41, 775–778 (2009).

Wattiez, R.

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[PubMed]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[PubMed]

C. Caucheteur, V. Malachovska, C. Ribaut, and R. Wattiez, “Cell sensing with near-infrared plasmonic optical fiber sensors,” Opt. Laser Technol. 78, 116–121 (2016).

Wu, Q.

Wuilpart, M.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted Fiber Bragg Grating Refractometer Using Polarization-Dependent Loss Measurement,” IEEE Photonics Technol. Lett. 20, 2153–2155 (2008).

Xie, C.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

Xu, B. J.

M. Delgado-Pinar, Q. Shi, L. Poveda-Wong, E. Delgado-Pinar, B. J. Xu, J. L. Zhao, J. L. Cruz, and M. V. Andres, “Oligonucleotide-Hybridization Fiber-Optic Biosensor Using a Narrow Bandwidth Long Period Grating,” IEEE Sens. J. 17, 5503–5509 (2017).

Xu, P.

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

Yang, L.

Yun, B. F.

N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006).

Zhang, L.

Zhang, Y. Y.

Y. M. Wang, X. F. Pang, Y. Y. Zhang, and H. Z. Wang, “Characterization of covalent immobilization on the surface of optical fibers by scanning electron microscopy and energy dispersive X-ray spectrometry,” Surf. Interface Anal. 41, 775–778 (2009).

Zhao, J.

Zhao, J. L.

M. Delgado-Pinar, Q. Shi, L. Poveda-Wong, E. Delgado-Pinar, B. J. Xu, J. L. Zhao, J. L. Cruz, and M. V. Andres, “Oligonucleotide-Hybridization Fiber-Optic Biosensor Using a Narrow Bandwidth Long Period Grating,” IEEE Sens. J. 17, 5503–5509 (2017).

Zhao, Q. D.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15, 233–236 (2009).

Zhao, Y.

Zhou, K.

ACS Nano (1)

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[PubMed]

Acta Astronaut. (2)

C. Maccone, “The KLT (Karhunen-Loeve Transform) to extend SETI searches to broad-band and extremely feeble signals,” Acta Astronaut. 67, 1427–1439 (2010).

C. Maccone, “Advantages of Karhunen-Loeve transform over fast Fourier transform for planetary radar and space debris detection,” Acta Astronaut. 60, 775–779 (2007).

Anal. Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[PubMed]

Anal. Chem. (1)

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In Situ Biosensing with a Surface Plasmon Resonance Fiber Grating Aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[PubMed]

Ann. Stat. (1)

I. M. Johnstone, “On the distribution of the largest eigenvalue in principal components analysis,” Ann. Stat. 29, 295–327 (2001).

Appl. Phys. Lett. (1)

N. Chen, B. F. Yun, and Y. P. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88, 133902 (2006).

Biosens. Bioelectron. (3)

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[PubMed]

T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B. O. Guan, and J. Albert, “Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings,” Biosens. Bioelectron. 78, 221–228 (2016).
[PubMed]

C. Ribaut, M. Loyez, J. C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[PubMed]

Found. Trends Commun. Inf. Theory (1)

R. M. Gray, “Toeplitz and circulant matrices: a review,” Found. Trends Commun. Inf. Theory 2(3), 155–239 (2006).

IEEE Photonics Technol. Lett. (5)

W. H. Chung, H. Y. Tam, P. K. A. Wai, and A. Khandelwal, “Time- and wavelength-division multiplexing of FBG sensors using a semiconductor optical amplifier in ring cavity configuration,” IEEE Photonics Technol. Lett. 17, 2709–2711 (2005).

C. Caucheteur and P. Megret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photonics Technol. Lett. 17, 2703–2705 (2005).

D. Tosi, “KLT-Based Algorithm for Sub-Picometer Accurate FBG Tracking With Coarse Wavelength Sampling,” IEEE Photonics Technol. Lett. 27, 2134–2137 (2015).

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, “Tilted Fiber Bragg Grating Refractometer Using Polarization-Dependent Loss Measurement,” IEEE Photonics Technol. Lett. 20, 2153–2155 (2008).

W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh Sensitivity Refractive Index Sensor Based on Optical Microfiber,” IEEE Photonics Technol. Lett. 24, 1872–1874 (2012).

IEEE Sens. J. (2)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: A comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).

M. Delgado-Pinar, Q. Shi, L. Poveda-Wong, E. Delgado-Pinar, B. J. Xu, J. L. Zhao, J. L. Cruz, and M. V. Andres, “Oligonucleotide-Hybridization Fiber-Optic Biosensor Using a Narrow Bandwidth Long Period Grating,” IEEE Sens. J. 17, 5503–5509 (2017).

J. Lightwave Technol. (4)

Laser Photonics Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7, 83–108 (2013).

Opt. Commun. (1)

R. Tabassum and B. D. Gupta, “SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations,” Opt. Commun. 367, 23–34 (2016).

Opt. Express (4)

Opt. Fiber Technol. (1)

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15, 233–236 (2009).

Opt. Laser Technol. (3)

T. A. Guo, F. Liu, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).

C. Caucheteur, V. Malachovska, C. Ribaut, and R. Wattiez, “Cell sensing with near-infrared plasmonic optical fiber sensors,” Opt. Laser Technol. 78, 116–121 (2016).

A. Gonzalez-Vila, D. Kinet, P. Megret, and C. Caucheteur, “Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs,” Opt. Laser Technol. 96, 141–146 (2017).

Opt. Lett. (1)

Sens. Actuators B Chem. (4)

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125, 688–703 (2007).

A. Aldaba, A. Gonzalez-Vila, M. Debliquy, M. Lopez-Amo, C. Caucheteur, and D. Lahem, “Polyaniline-coated tilted fiber Bragg gratings for pH sensing,” Sens. Actuators B Chem. 254, 1087–1093 (2018).

S. K. Chauhan, N. Punjabi, D. K. Sharma, and S. Mukherji, “A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices,” Sens. Actuators B Chem. 222, 1240–1250 (2016).

R. Raghunandhan, L. H. Chen, H. Y. Long, L. L. Leam, P. L. So, X. Ning, and C. C. Chan, “Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection,” Sens. Actuators B Chem. 233, 31–38 (2016).

Sensors (Basel) (2)

D. Tosi, “Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis,” Sensors (Basel) 15(11), 27470–27492 (2015).
[PubMed]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[PubMed]

Surf. Interface Anal. (1)

Y. M. Wang, X. F. Pang, Y. Y. Zhang, and H. Z. Wang, “Characterization of covalent immobilization on the surface of optical fibers by scanning electron microscopy and energy dispersive X-ray spectrometry,” Surf. Interface Anal. 41, 775–778 (2009).

Trans. Inform. Theory (1)

R. M. Gray, “On the asymptotic Eigenvalue distribution of Toeplitz matrices,” Trans. Inform. Theory IT-18, 725–730 (1972).

Other (2)

C. Maccone, Telecommunications, KLT and Relativity (International Press Institute, 1994).

GE-Healthcare, “Selection guide for Biacore consumables,” (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Interrogation and demodulation of the TFBG. (a) Schematic of the white-light low-cost interrogation setup, inclusive of superluminescent LED (SLED) and its control board, 3-dB coupler, spectrometer (SM), and TFBG sensor. (b) Photograph of the interrogation prototype, assembled in a case, size 37 × 24 × 19 cm; top and side panels have been removed to visualize inner components. (c) Spectrum of a TFBG sensor used in experiments, as visualized on an optical spectrum analyzer with 10 pm resolution bandwidth. (d) Spectrum of the same TFBG sensor visualized on the coarse spectrometer. (e) Schematic of the TFBG demodulation; the adjusted KLT is divided into its building blocks.
Fig. 2
Fig. 2 Application of the KLT to demodulate TFBG sensors. (a) Spectra of the TFBG exposed to different outer refractive indexes, due to different concentrations of sucrose in water: 0% (n ≅ 1.333), 1.56% (n ≅ 1.336), 3.12% (n ≅ 1.338), and 6.25% (n ≅ 1.344). (b) Eigenvalue string ξk, which reports the value of all eigenvalues k = 1, 2, …, N = 52, for each value of refractive index. (c) The inset shows the only portion of the 48th, or (N-4)th eigenvalue.
Fig. 3
Fig. 3 Refractive index measurement using the KLT decoding: the chart reports ξN-4 as a function of time, increasing the concentration of sucrose from 0% to 1% in steps of 0.1%.
Fig. 4
Fig. 4 Estimation of the resolution capacity of the KLT. The chart reports the value of ξN-4 as a function of time, varying the sucrose concentrations from 0.01% to 0.10% in steps of 0.01%.
Fig. 5
Fig. 5 Calibration (left) and accuracy (right) of KLT output ξN-4 as a function of small refractive index variation Δn.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G k = n=1 N R n e j 2π N ( k1 )( n1 )
M=[ G 1 G 2 G 3 G N G 2 G 1 G 2 G N1 G 3 G 2 G 1 G 2 G N G N1 G 2 G 1 ]
M=VD V 1

Metrics