Abstract

Neuromorphic (brain-inspired) photonic systems process information encoded in the pulses of light, i.e., “spikes” that are analog in time but digital in amplitude. Applying these systems to process commonly used digital data requires a simple and effective interfacing solution to converting binary digits into spike sequence in the optical domain. Laser systems offer a variety of useful nonlinear functionalities, including excitable dynamics that can be found in the time-resolved “spiking” of neurons. We propose and demonstrate, both numerically and experimentally, an all-optical digital-to-spike (DTS) conversion scheme using a single graphene excitable laser (GEL) without clock signal synchronization. We first study the DTS conversion mechanism based on the simulation platform of an integrated GEL, which achieve a DTS conversion rate up to 10 Gbps. Our DTS conversion scheme can be operated under flexible input power conditions and exhibits a strong logic-level restoration capability. We then verify the feasibility of our approach via a proof-of-principle experiment where a fiber-based GEL obtains a DTS conversion rate of 40 Kbps, and a bit error rate (BER) of 10−9 with an input power of −24 dBm. This technology can be potentially applied in future neuromorphic photonic systems for information processing and computing.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Recent progress in semiconductor excitable lasers for photonic spike processing

Paul R. Prucnal, Bhavin J. Shastri, Thomas Ferreira de Lima, Mitchell A. Nahmias, and Alexander N. Tait
Adv. Opt. Photon. 8(2) 228-299 (2016)

Simultaneous excitatory and inhibitory dynamics in an excitable laser

Philip Y. Ma, Bhavin J. Shastri, Thomas Ferreira de Lima, Chaoran Huang, Alexander N. Tait, Mitchell A. Nahmias, Hsuan-Tung Peng, and Paul R. Prucnal
Opt. Lett. 43(15) 3802-3805 (2018)

Spike encoding and storage properties in mutually coupled vertical-cavity surface-emitting lasers subject to optical pulse injection

Yahui Zhang, Shuiying Xiang, Junkai Gong, Xinxing Guo, Aijun Wen, and Yue Hao
Appl. Opt. 57(7) 1731-1737 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Sarpeshkar, “Analog versus digital: extrapolating from electronics to neurobiology,” Neural Comput. 10, 1601–1638 (1998).
    [Crossref] [PubMed]
  2. A. Borst and F. E. Theunissen, “Information theory and neural coding,” Nat. Neurosci. 2, 947–957 (1999).
    [Crossref] [PubMed]
  3. A. Kumar, S. Rotter, and A. Aertsen, “Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding,” Nat Rev Neurosci. 11, 615–627 (2010).
    [Crossref] [PubMed]
  4. J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-scale neuromorphic hardware system for large-scale neural modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, (IEEE, 2010), pp. 1947–1950.
  5. S. Furber, F. Galluppi, S. Temple, and L. Plana, “The spinnaker project,” Proceedings of the IEEE 102, 652–665 (2014).
    [Crossref]
  6. B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
    [Crossref]
  7. P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
    [Crossref] [PubMed]
  8. M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Topics. Quantum Electron. 19, 1800212 (2013).
    [Crossref]
  9. L. Gelens, L. Mashal, S. Beri, W. Coomans, G. Van der Sande, J. Danckaert, and G. Verschaffelt, “Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization,” Phys. Rev. A 82, 063841 (2010).
    [Crossref]
  10. K. Alexander, T. Van Vaerenbergh, M. Fiers, P. Mechet, J. Dambre, and P. Bienstman, “Excitability in optically injected microdisk lasers with phase controlled excitatory and inhibitory response,” Opt. Express 21, 26182 (2013).
    [Crossref] [PubMed]
  11. B. Romeira, J. Javaloyes, C. N. Ironside, J. M. L. Figueiredo, S. Balle, and O. Piro, “Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors,” Opt. Express 21, 20931–20940 (2013).
    [Crossref] [PubMed]
  12. A. Aragoneses, S. Perrone, T. Sorrentino, M. C. Torrent, and C. Masoller, “Unveiling the complex organization of recurrent patterns in spiking dynamical systems,” Sci. Rep. 4, 4696 (2014).
    [Crossref]
  13. F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
    [Crossref] [PubMed]
  14. A. Hurtado and J. Javaloyes, “Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems,” Appl. Phys. Lett. 107, 241103 (2015).
    [Crossref]
  15. B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6, 19126 (2016).
    [PubMed]
  16. P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8, 228–299 (2016).
    [Crossref]
  17. P. R. Prucnal and B. J. Shastri, “Neuromorphic Photonics,” (CRC, Taylor & Francis Group, 2017).
  18. A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” M. Naruse, ed. (SpringerBerlin Heidelberg, 2014), Nano-Optics and Nanophotonics, pp. 183–222.
    [Crossref]
  19. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol. 117, 500–544 (1952).
    [Crossref] [PubMed]
  20. B. Liu, C. Yang, H. Li, Y. Chen, Q. Wu, and M. Barnell, “Security of neuromorphic systems: Challenges and solutions,” 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 1326–1329.
  21. B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J. Sel. Topics Signal Process. 9, 1185–1194 (2015).
    [Crossref]
  22. L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
    [Crossref]
  23. C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C. S. Park, “Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror,” J. Lightwave Technol. 23, 834–841 (2005).
    [Crossref]
  24. C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Topics. Quantum Electron. 12, 451–458 (2006).
    [Crossref]
  25. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15, 7587–7593 (2007).
    [Crossref]
  26. A. Tait, M. Nahmias, B. Shastri, and P. R. Prucnal, “Broadcast and weight: An integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32, 3427–3439 (2014).
    [Crossref]
  27. S. Ostojic, “Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons,” Nat. Neurosci. 17, 594–600 (2014).
    [Crossref] [PubMed]
  28. P. Y. Ma, B. J. Shastri, B. Wu, T. Ferreira de Lima, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Spike coded bit sequence generation using photonic excitable laser,” in Proc. IEEE Photon. Conf. (IPC), Waikoloa, Hawaii, USA, Oct.2016, paper MF4.4.
  29. B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “SIMPEL: Circuit model for photonic spike processing laser neurons,” Opt. Express 23, 8029–8044 (2015).
    [Crossref] [PubMed]
  30. D. G. H. Nugent, R. G. S. Plumb, M. A. Fisher, and D. A. O. Davies, “Self-pulsations in vertical-cavity surface emitting lasers,” Electron. Lett. 31, 43–44 (1995).
    [Crossref]
  31. S. A. Javro and S. M. Kang, “Transforming Tucker’s linearization laser rate equations to a form that has a single solution regime,” J. Lightwave Technol. 131899–1904 (1995).
    [Crossref]
  32. “Synopsys HSPICE,” http://www.synopsys.com/tools/Verification/AMSVerification/CircuitSimulation/HSPICE/ .
  33. M. A. Nahmias, A. N. Tait, B. J. Shastri, T. Ferreira de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23, 26800–26813 (2015).
    [Crossref] [PubMed]

2016 (2)

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6, 19126 (2016).
[PubMed]

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8, 228–299 (2016).
[Crossref]

2015 (4)

A. Hurtado and J. Javaloyes, “Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems,” Appl. Phys. Lett. 107, 241103 (2015).
[Crossref]

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J. Sel. Topics Signal Process. 9, 1185–1194 (2015).
[Crossref]

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “SIMPEL: Circuit model for photonic spike processing laser neurons,” Opt. Express 23, 8029–8044 (2015).
[Crossref] [PubMed]

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. Ferreira de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23, 26800–26813 (2015).
[Crossref] [PubMed]

2014 (7)

A. Tait, M. Nahmias, B. Shastri, and P. R. Prucnal, “Broadcast and weight: An integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32, 3427–3439 (2014).
[Crossref]

S. Ostojic, “Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons,” Nat. Neurosci. 17, 594–600 (2014).
[Crossref] [PubMed]

S. Furber, F. Galluppi, S. Temple, and L. Plana, “The spinnaker project,” Proceedings of the IEEE 102, 652–665 (2014).
[Crossref]

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

A. Aragoneses, S. Perrone, T. Sorrentino, M. C. Torrent, and C. Masoller, “Unveiling the complex organization of recurrent patterns in spiking dynamical systems,” Sci. Rep. 4, 4696 (2014).
[Crossref]

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

2013 (3)

2010 (2)

L. Gelens, L. Mashal, S. Beri, W. Coomans, G. Van der Sande, J. Danckaert, and G. Verschaffelt, “Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization,” Phys. Rev. A 82, 063841 (2010).
[Crossref]

A. Kumar, S. Rotter, and A. Aertsen, “Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding,” Nat Rev Neurosci. 11, 615–627 (2010).
[Crossref] [PubMed]

2007 (1)

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15, 7587–7593 (2007).
[Crossref]

2006 (1)

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Topics. Quantum Electron. 12, 451–458 (2006).
[Crossref]

2005 (1)

2003 (1)

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

1999 (1)

A. Borst and F. E. Theunissen, “Information theory and neural coding,” Nat. Neurosci. 2, 947–957 (1999).
[Crossref] [PubMed]

1998 (1)

R. Sarpeshkar, “Analog versus digital: extrapolating from electronics to neurobiology,” Neural Comput. 10, 1601–1638 (1998).
[Crossref] [PubMed]

1995 (2)

D. G. H. Nugent, R. G. S. Plumb, M. A. Fisher, and D. A. O. Davies, “Self-pulsations in vertical-cavity surface emitting lasers,” Electron. Lett. 31, 43–44 (1995).
[Crossref]

S. A. Javro and S. M. Kang, “Transforming Tucker’s linearization laser rate equations to a form that has a single solution regime,” J. Lightwave Technol. 131899–1904 (1995).
[Crossref]

1952 (1)

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol. 117, 500–544 (1952).
[Crossref] [PubMed]

Aertsen, A.

A. Kumar, S. Rotter, and A. Aertsen, “Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding,” Nat Rev Neurosci. 11, 615–627 (2010).
[Crossref] [PubMed]

Akopyan, F.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Alexander, K.

Alvarez-Icaza, R.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

Amir, A.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Appuswamy, R.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Aragoneses, A.

A. Aragoneses, S. Perrone, T. Sorrentino, M. C. Torrent, and C. Masoller, “Unveiling the complex organization of recurrent patterns in spiking dynamical systems,” Sci. Rep. 4, 4696 (2014).
[Crossref]

Arthur, J. V.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Baby, V.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

Balle, S.

Barbay, S.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Barnell, M.

B. Liu, C. Yang, H. Li, Y. Chen, Q. Wu, and M. Barnell, “Security of neuromorphic systems: Challenges and solutions,” 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 1326–1329.

Beaudoin, G.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Benjamin, B. V.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

Beri, S.

L. Gelens, L. Mashal, S. Beri, W. Coomans, G. Van der Sande, J. Danckaert, and G. Verschaffelt, “Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization,” Phys. Rev. A 82, 063841 (2010).
[Crossref]

Bienstman, P.

Boahen, K.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

Borst, A.

A. Borst and F. E. Theunissen, “Information theory and neural coding,” Nat. Neurosci. 2, 947–957 (1999).
[Crossref] [PubMed]

Braive, R.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Brezzo, B.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Briiderle, D.

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-scale neuromorphic hardware system for large-scale neural modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, (IEEE, 2010), pp. 1947–1950.

Bussat, J. M.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

Cassidy, A. S.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Chandrasekaran, A. R.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

Chen, Y.

B. Liu, C. Yang, H. Li, Y. Chen, Q. Wu, and M. Barnell, “Security of neuromorphic systems: Challenges and solutions,” 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 1326–1329.

Choudhary, S.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

Coomans, W.

L. Gelens, L. Mashal, S. Beri, W. Coomans, G. Van der Sande, J. Danckaert, and G. Verschaffelt, “Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization,” Phys. Rev. A 82, 063841 (2010).
[Crossref]

Dambre, J.

Danckaert, J.

L. Gelens, L. Mashal, S. Beri, W. Coomans, G. Van der Sande, J. Danckaert, and G. Verschaffelt, “Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization,” Phys. Rev. A 82, 063841 (2010).
[Crossref]

Davies, D. A. O.

D. G. H. Nugent, R. G. S. Plumb, M. A. Fisher, and D. A. O. Davies, “Self-pulsations in vertical-cavity surface emitting lasers,” Electron. Lett. 31, 43–44 (1995).
[Crossref]

Dong, J.

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15, 7587–7593 (2007).
[Crossref]

Esser, S. K.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Ferreira de Lima, T.

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8, 228–299 (2016).
[Crossref]

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. Ferreira de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23, 26800–26813 (2015).
[Crossref] [PubMed]

P. Y. Ma, B. J. Shastri, B. Wu, T. Ferreira de Lima, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Spike coded bit sequence generation using photonic excitable laser,” in Proc. IEEE Photon. Conf. (IPC), Waikoloa, Hawaii, USA, Oct.2016, paper MF4.4.

Fiers, M.

Figueiredo, J. M. L.

Fisher, M. A.

D. G. H. Nugent, R. G. S. Plumb, M. A. Fisher, and D. A. O. Davies, “Self-pulsations in vertical-cavity surface emitting lasers,” Electron. Lett. 31, 43–44 (1995).
[Crossref]

Flickner, M. D.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Fu, S.

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15, 7587–7593 (2007).
[Crossref]

Furber, S.

S. Furber, F. Galluppi, S. Temple, and L. Plana, “The spinnaker project,” Proceedings of the IEEE 102, 652–665 (2014).
[Crossref]

Galluppi, F.

S. Furber, F. Galluppi, S. Temple, and L. Plana, “The spinnaker project,” Proceedings of the IEEE 102, 652–665 (2014).
[Crossref]

Gao, P.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

Gelens, L.

L. Gelens, L. Mashal, S. Beri, W. Coomans, G. Van der Sande, J. Danckaert, and G. Verschaffelt, “Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization,” Phys. Rev. A 82, 063841 (2010).
[Crossref]

Glesk, I.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

Griibl, A.

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-scale neuromorphic hardware system for large-scale neural modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, (IEEE, 2010), pp. 1947–1950.

Guo, C.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Hock, M.

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-scale neuromorphic hardware system for large-scale neural modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, (IEEE, 2010), pp. 1947–1950.

Hodgkin, A. L.

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol. 117, 500–544 (1952).
[Crossref] [PubMed]

Huang, D.

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15, 7587–7593 (2007).
[Crossref]

Hurtado, A.

A. Hurtado and J. Javaloyes, “Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems,” Appl. Phys. Lett. 107, 241103 (2015).
[Crossref]

Huxley, A. F.

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol. 117, 500–544 (1952).
[Crossref] [PubMed]

Imam, N.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Ironside, C. N.

Jackson, B. L.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Javaloyes, J.

A. Hurtado and J. Javaloyes, “Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems,” Appl. Phys. Lett. 107, 241103 (2015).
[Crossref]

B. Romeira, J. Javaloyes, C. N. Ironside, J. M. L. Figueiredo, S. Balle, and O. Piro, “Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors,” Opt. Express 21, 20931–20940 (2013).
[Crossref] [PubMed]

Javro, S. A.

S. A. Javro and S. M. Kang, “Transforming Tucker’s linearization laser rate equations to a form that has a single solution regime,” J. Lightwave Technol. 131899–1904 (1995).
[Crossref]

Kang, S. M.

S. A. Javro and S. M. Kang, “Transforming Tucker’s linearization laser rate equations to a form that has a single solution regime,” J. Lightwave Technol. 131899–1904 (1995).
[Crossref]

Kim, Y. J.

Kumar, A.

A. Kumar, S. Rotter, and A. Aertsen, “Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding,” Nat Rev Neurosci. 11, 615–627 (2010).
[Crossref] [PubMed]

Kuszelewicz, R.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Kwok, C. H.

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Topics. Quantum Electron. 12, 451–458 (2006).
[Crossref]

Lee, C. G.

Lee, H. J.

Li, H.

B. Liu, C. Yang, H. Li, Y. Chen, Q. Wu, and M. Barnell, “Security of neuromorphic systems: Challenges and solutions,” 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 1326–1329.

Lin, C.

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Topics. Quantum Electron. 12, 451–458 (2006).
[Crossref]

Liu, B.

B. Liu, C. Yang, H. Li, Y. Chen, Q. Wu, and M. Barnell, “Security of neuromorphic systems: Challenges and solutions,” 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 1326–1329.

Ma, P. Y.

P. Y. Ma, B. J. Shastri, B. Wu, T. Ferreira de Lima, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Spike coded bit sequence generation using photonic excitable laser,” in Proc. IEEE Photon. Conf. (IPC), Waikoloa, Hawaii, USA, Oct.2016, paper MF4.4.

Manohar, R.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Mashal, L.

L. Gelens, L. Mashal, S. Beri, W. Coomans, G. Van der Sande, J. Danckaert, and G. Verschaffelt, “Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization,” Phys. Rev. A 82, 063841 (2010).
[Crossref]

Masoller, C.

A. Aragoneses, S. Perrone, T. Sorrentino, M. C. Torrent, and C. Masoller, “Unveiling the complex organization of recurrent patterns in spiking dynamical systems,” Sci. Rep. 4, 4696 (2014).
[Crossref]

McQuinn, E.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

Mechet, P.

Meier, K.

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-scale neuromorphic hardware system for large-scale neural modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, (IEEE, 2010), pp. 1947–1950.

Merolla, P. A.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Millner, S.

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-scale neuromorphic hardware system for large-scale neural modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, (IEEE, 2010), pp. 1947–1950.

Mittal, P.

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J. Sel. Topics Signal Process. 9, 1185–1194 (2015).
[Crossref]

Modha, D. S.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Nahmias, M.

Nahmias, M. A.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6, 19126 (2016).
[PubMed]

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8, 228–299 (2016).
[Crossref]

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. Ferreira de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23, 26800–26813 (2015).
[Crossref] [PubMed]

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “SIMPEL: Circuit model for photonic spike processing laser neurons,” Opt. Express 23, 8029–8044 (2015).
[Crossref] [PubMed]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Topics. Quantum Electron. 19, 1800212 (2013).
[Crossref]

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” M. Naruse, ed. (SpringerBerlin Heidelberg, 2014), Nano-Optics and Nanophotonics, pp. 183–222.
[Crossref]

P. Y. Ma, B. J. Shastri, B. Wu, T. Ferreira de Lima, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Spike coded bit sequence generation using photonic excitable laser,” in Proc. IEEE Photon. Conf. (IPC), Waikoloa, Hawaii, USA, Oct.2016, paper MF4.4.

Nakamura, Y.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Nugent, D. G. H.

D. G. H. Nugent, R. G. S. Plumb, M. A. Fisher, and D. A. O. Davies, “Self-pulsations in vertical-cavity surface emitting lasers,” Electron. Lett. 31, 43–44 (1995).
[Crossref]

Ostojic, S.

S. Ostojic, “Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons,” Nat. Neurosci. 17, 594–600 (2014).
[Crossref] [PubMed]

Park, C. S.

Perrone, S.

A. Aragoneses, S. Perrone, T. Sorrentino, M. C. Torrent, and C. Masoller, “Unveiling the complex organization of recurrent patterns in spiking dynamical systems,” Sci. Rep. 4, 4696 (2014).
[Crossref]

Piro, O.

Plana, L.

S. Furber, F. Galluppi, S. Temple, and L. Plana, “The spinnaker project,” Proceedings of the IEEE 102, 652–665 (2014).
[Crossref]

Plumb, R. G. S.

D. G. H. Nugent, R. G. S. Plumb, M. A. Fisher, and D. A. O. Davies, “Self-pulsations in vertical-cavity surface emitting lasers,” Electron. Lett. 31, 43–44 (1995).
[Crossref]

Prucnal, P. R.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6, 19126 (2016).
[PubMed]

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8, 228–299 (2016).
[Crossref]

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J. Sel. Topics Signal Process. 9, 1185–1194 (2015).
[Crossref]

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. Ferreira de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23, 26800–26813 (2015).
[Crossref] [PubMed]

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “SIMPEL: Circuit model for photonic spike processing laser neurons,” Opt. Express 23, 8029–8044 (2015).
[Crossref] [PubMed]

A. Tait, M. Nahmias, B. Shastri, and P. R. Prucnal, “Broadcast and weight: An integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32, 3427–3439 (2014).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Topics. Quantum Electron. 19, 1800212 (2013).
[Crossref]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

P. Y. Ma, B. J. Shastri, B. Wu, T. Ferreira de Lima, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Spike coded bit sequence generation using photonic excitable laser,” in Proc. IEEE Photon. Conf. (IPC), Waikoloa, Hawaii, USA, Oct.2016, paper MF4.4.

P. R. Prucnal and B. J. Shastri, “Neuromorphic Photonics,” (CRC, Taylor & Francis Group, 2017).

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” M. Naruse, ed. (SpringerBerlin Heidelberg, 2014), Nano-Optics and Nanophotonics, pp. 183–222.
[Crossref]

Risk, W. P.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Rodriguez, A. W.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6, 19126 (2016).
[PubMed]

Romeira, B.

Rotter, S.

A. Kumar, S. Rotter, and A. Aertsen, “Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding,” Nat Rev Neurosci. 11, 615–627 (2010).
[Crossref] [PubMed]

Sagnes, I.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Sarpeshkar, R.

R. Sarpeshkar, “Analog versus digital: extrapolating from electronics to neurobiology,” Neural Comput. 10, 1601–1638 (1998).
[Crossref] [PubMed]

Sawada, J.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Schemmel, J.

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-scale neuromorphic hardware system for large-scale neural modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, (IEEE, 2010), pp. 1947–1950.

Selmi, F.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Shastri, B.

Shastri, B. J.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6, 19126 (2016).
[PubMed]

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8, 228–299 (2016).
[Crossref]

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “SIMPEL: Circuit model for photonic spike processing laser neurons,” Opt. Express 23, 8029–8044 (2015).
[Crossref] [PubMed]

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J. Sel. Topics Signal Process. 9, 1185–1194 (2015).
[Crossref]

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. Ferreira de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23, 26800–26813 (2015).
[Crossref] [PubMed]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Topics. Quantum Electron. 19, 1800212 (2013).
[Crossref]

P. Y. Ma, B. J. Shastri, B. Wu, T. Ferreira de Lima, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Spike coded bit sequence generation using photonic excitable laser,” in Proc. IEEE Photon. Conf. (IPC), Waikoloa, Hawaii, USA, Oct.2016, paper MF4.4.

P. R. Prucnal and B. J. Shastri, “Neuromorphic Photonics,” (CRC, Taylor & Francis Group, 2017).

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” M. Naruse, ed. (SpringerBerlin Heidelberg, 2014), Nano-Optics and Nanophotonics, pp. 183–222.
[Crossref]

Shum, P.

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15, 7587–7593 (2007).
[Crossref]

Sorrentino, T.

A. Aragoneses, S. Perrone, T. Sorrentino, M. C. Torrent, and C. Masoller, “Unveiling the complex organization of recurrent patterns in spiking dynamical systems,” Sci. Rep. 4, 4696 (2014).
[Crossref]

Taba, B.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Tait, A.

Tait, A. N.

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8, 228–299 (2016).
[Crossref]

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6, 19126 (2016).
[PubMed]

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J. Sel. Topics Signal Process. 9, 1185–1194 (2015).
[Crossref]

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “SIMPEL: Circuit model for photonic spike processing laser neurons,” Opt. Express 23, 8029–8044 (2015).
[Crossref] [PubMed]

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. Ferreira de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23, 26800–26813 (2015).
[Crossref] [PubMed]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Topics. Quantum Electron. 19, 1800212 (2013).
[Crossref]

P. Y. Ma, B. J. Shastri, B. Wu, T. Ferreira de Lima, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Spike coded bit sequence generation using photonic excitable laser,” in Proc. IEEE Photon. Conf. (IPC), Waikoloa, Hawaii, USA, Oct.2016, paper MF4.4.

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” M. Naruse, ed. (SpringerBerlin Heidelberg, 2014), Nano-Optics and Nanophotonics, pp. 183–222.
[Crossref]

Temple, S.

S. Furber, F. Galluppi, S. Temple, and L. Plana, “The spinnaker project,” Proceedings of the IEEE 102, 652–665 (2014).
[Crossref]

Theunissen, F. E.

A. Borst and F. E. Theunissen, “Information theory and neural coding,” Nat. Neurosci. 2, 947–957 (1999).
[Crossref] [PubMed]

Tian, Y.

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” M. Naruse, ed. (SpringerBerlin Heidelberg, 2014), Nano-Optics and Nanophotonics, pp. 183–222.
[Crossref]

Torrent, M. C.

A. Aragoneses, S. Perrone, T. Sorrentino, M. C. Torrent, and C. Masoller, “Unveiling the complex organization of recurrent patterns in spiking dynamical systems,” Sci. Rep. 4, 4696 (2014).
[Crossref]

Van der Sande, G.

L. Gelens, L. Mashal, S. Beri, W. Coomans, G. Van der Sande, J. Danckaert, and G. Verschaffelt, “Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization,” Phys. Rev. A 82, 063841 (2010).
[Crossref]

Van Vaerenbergh, T.

Verschaffelt, G.

L. Gelens, L. Mashal, S. Beri, W. Coomans, G. Van der Sande, J. Danckaert, and G. Verschaffelt, “Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization,” Phys. Rev. A 82, 063841 (2010).
[Crossref]

Vo, I.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Wang, B. C.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

Wu, B.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6, 19126 (2016).
[PubMed]

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J. Sel. Topics Signal Process. 9, 1185–1194 (2015).
[Crossref]

B. J. Shastri, M. A. Nahmias, A. N. Tait, B. Wu, and P. R. Prucnal, “SIMPEL: Circuit model for photonic spike processing laser neurons,” Opt. Express 23, 8029–8044 (2015).
[Crossref] [PubMed]

P. Y. Ma, B. J. Shastri, B. Wu, T. Ferreira de Lima, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Spike coded bit sequence generation using photonic excitable laser,” in Proc. IEEE Photon. Conf. (IPC), Waikoloa, Hawaii, USA, Oct.2016, paper MF4.4.

Wu, Q.

B. Liu, C. Yang, H. Li, Y. Chen, Q. Wu, and M. Barnell, “Security of neuromorphic systems: Challenges and solutions,” 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 1326–1329.

Xu, J.

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15, 7587–7593 (2007).
[Crossref]

Xu, L.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

Yang, C.

B. Liu, C. Yang, H. Li, Y. Chen, Q. Wu, and M. Barnell, “Security of neuromorphic systems: Challenges and solutions,” 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 1326–1329.

Zhang, X.

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15, 7587–7593 (2007).
[Crossref]

Adv. Opt. Photonics (1)

P. R. Prucnal, B. J. Shastri, T. Ferreira de Lima, M. A. Nahmias, and A. N. Tait, “Recent progress in semiconductor excitable lasers for photonic spike processing,” Adv. Opt. Photonics 8, 228–299 (2016).
[Crossref]

Appl. Phys. Lett. (1)

A. Hurtado and J. Javaloyes, “Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems,” Appl. Phys. Lett. 107, 241103 (2015).
[Crossref]

Electron. Lett. (1)

D. G. H. Nugent, R. G. S. Plumb, M. A. Fisher, and D. A. O. Davies, “Self-pulsations in vertical-cavity surface emitting lasers,” Electron. Lett. 31, 43–44 (1995).
[Crossref]

IEEE J. Sel. Topics Signal Process. (1)

B. Wu, B. J. Shastri, P. Mittal, A. N. Tait, and P. R. Prucnal, “Optical signal processing and stealth transmission for privacy,” IEEE J. Sel. Topics Signal Process. 9, 1185–1194 (2015).
[Crossref]

IEEE J. Sel. Topics. Quantum Electron. (2)

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Topics. Quantum Electron. 12, 451–458 (2006).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Topics. Quantum Electron. 19, 1800212 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15, 308–310 (2003).
[Crossref]

J. Lightwave Technol. (3)

J. Physiol. (1)

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol. 117, 500–544 (1952).
[Crossref] [PubMed]

Nat Rev Neurosci. (1)

A. Kumar, S. Rotter, and A. Aertsen, “Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding,” Nat Rev Neurosci. 11, 615–627 (2010).
[Crossref] [PubMed]

Nat. Neurosci. (2)

A. Borst and F. E. Theunissen, “Information theory and neural coding,” Nat. Neurosci. 2, 947–957 (1999).
[Crossref] [PubMed]

S. Ostojic, “Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons,” Nat. Neurosci. 17, 594–600 (2014).
[Crossref] [PubMed]

Neural Comput. (1)

R. Sarpeshkar, “Analog versus digital: extrapolating from electronics to neurobiology,” Neural Comput. 10, 1601–1638 (1998).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rev. A (1)

L. Gelens, L. Mashal, S. Beri, W. Coomans, G. Van der Sande, J. Danckaert, and G. Verschaffelt, “Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization,” Phys. Rev. A 82, 063841 (2010).
[Crossref]

Phys. Rev. Lett. (1)

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Proceedings of the IEEE (2)

S. Furber, F. Galluppi, S. Temple, and L. Plana, “The spinnaker project,” Proceedings of the IEEE 102, 652–665 (2014).
[Crossref]

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings of the IEEE 102, 699–716 (2014).
[Crossref]

Sci. Rep. (2)

A. Aragoneses, S. Perrone, T. Sorrentino, M. C. Torrent, and C. Masoller, “Unveiling the complex organization of recurrent patterns in spiking dynamical systems,” Sci. Rep. 4, 4696 (2014).
[Crossref]

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 6, 19126 (2016).
[PubMed]

Science (1)

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345, 668–673 (2014).
[Crossref] [PubMed]

Other (6)

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-scale neuromorphic hardware system for large-scale neural modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, (IEEE, 2010), pp. 1947–1950.

B. Liu, C. Yang, H. Li, Y. Chen, Q. Wu, and M. Barnell, “Security of neuromorphic systems: Challenges and solutions,” 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 1326–1329.

P. R. Prucnal and B. J. Shastri, “Neuromorphic Photonics,” (CRC, Taylor & Francis Group, 2017).

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic neuromorphic signal processing and computing,” in “Nanophotonic Information Physics,” M. Naruse, ed. (SpringerBerlin Heidelberg, 2014), Nano-Optics and Nanophotonics, pp. 183–222.
[Crossref]

P. Y. Ma, B. J. Shastri, B. Wu, T. Ferreira de Lima, A. N. Tait, M. A. Nahmias, and P. R. Prucnal, “Spike coded bit sequence generation using photonic excitable laser,” in Proc. IEEE Photon. Conf. (IPC), Waikoloa, Hawaii, USA, Oct.2016, paper MF4.4.

“Synopsys HSPICE,” http://www.synopsys.com/tools/Verification/AMSVerification/CircuitSimulation/HSPICE/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Simulation setup of the DTS conversion using the integrated GEL.
Fig. 2
Fig. 2 Left: numerical simulation of the 10 Gbps DTS conversion using the integrated GEL. Right: eye diagram of the spike sequence.
Fig. 3
Fig. 3 (a) Illustration of the spike output versus OOK input power variations. The OOK input power are 27.5 mW (left), to 13.75 mW (middle), and to 2.75 mW (right), respectively. (b) The DTS conversion when the OOK input power is 30.25 mW. (c) The spike output energy versus the OOK input power at various biasing conditions. (d) The DTS conversion rate versus the OOK input power at various biasing conditions.
Fig. 4
Fig. 4 Numerical simulation of the DTS conversion using the integrated GEL when the OOK input has an (a) SNR = 30 dB, (b) SNR = 25 dB, (c) SNR = 20 dB, (d) SNR = 15 dB, (e) SNR = 10 dB, (f) SNR = 5 dB. (g) Left: timing jitter of the spike output with respect to the OOK input SNR. Right: corresponding eye diagrams (I–VI).
Fig. 5
Fig. 5 Experimental setup of the DTS conversion using the fiber-based GEL.
Fig. 6
Fig. 6 Left: experimental demonstration of the DTS conversion using the fiber-based GEL. Right: eye diagram of the spike sequence.
Fig. 7
Fig. 7 BER measurement of the DTS conversion using the fiber-based GEL.

Tables (3)

Tables Icon

Table 1 Parameter list for integrated graphene excitable laser adapted from [29]

Tables Icon

Table 2 Parameter list for the OOK input and corresponding spike output.

Tables Icon

Table 3 Parameter list for the OOK input and corresponding spike output. (* mean values of the parameters)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d n χ d t = η i , χ i χ q V χ n χ τ χ Γ χ g ( n χ ) N p h V χ
d N p h d t = N p h τ p h + V a β B r n a 2 + Γ a g ( n a ) N p h + Γ s g ( n s ) N p h
P o u t = N p h η c h c λ τ p h = v o u t 2
n χ = n e q ,   χ exp ( q v χ n k T )

Metrics