Abstract

We have studied the high resolution spectroscopy of Rydberg state 87Rb in a ladder-type electromagnetically induced transparency (EIT) configuration at room temperature. A highly excited Rydberg atom is nearly degenerate for its hyperfine states but this degeneracy will be broken by an applied magnetic field, resulting in a spectral splitting in a coupled basis. In our ladder-type EIT experiment, we observed the high resolution spectral splitting of Rydberg atoms in an external magnetic field with two different optical polarization combinations of σ+σ+ and σ+σ for probe and coupling laser beams. A strict theory has been set up to explain the observed spectral line position and intensity accurately considering the Zeeman effects of three EIT-concerned states all in the coupled basis. Specially for the Rydberg state, we can transform its wavefunction back into the decoupled basis for the spectral line assignment.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency

Jianming Zhao, Xingbo Zhu, Linjie Zhang, Zhigang Feng, Changyong Li, and Suotang Jia
Opt. Express 17(18) 15821-15826 (2009)

Coupling-intensity effects in ladder-type electromagnetically induced transparency of rubidium atoms

Han Seb Moon, Lim Lee, and Jung Bog Kim
J. Opt. Soc. Am. B 22(12) 2529-2533 (2005)

Interplay between optical pumping and Rydberg EIT in magnetic fields

Linjie Zhang, Shanxia Bao, Hao Zhang, Georg Raithel, Jianming Zhao, Liantuan Xiao, and Suotang Jia
Opt. Express 26(23) 29931-29944 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H. A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
    [Crossref]
  2. A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
    [Crossref] [PubMed]
  3. J. Mompart and R. Corbalán, “Lasing without inversion,” J. Opt. B 2, R7 (2000).
    [Crossref]
  4. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref] [PubMed]
  5. S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically-induced-transparency medium due to doppler averaging,” Phys. Rev. A 77, 063807 (2008).
    [Crossref]
  6. L. Karpa, G. Nikoghosyan, F. Vewinger, M. Fleischhauer, and M. Weitz, “Frequency matching in light-storage spectroscopy of atomic raman transitions,” Phys. Rev. Lett. 103, 093601 (2009).
    [Crossref] [PubMed]
  7. H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based rf electric field sensing,” J. Phys. B 48, 202001 (2015).
    [Crossref]
  8. C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband rydberg atom-based electric-field probe for si-traceable, self-calibrated measurements,” Ieee. T. Antenn. Propag. 62, 6169–6182 (2014).
    [Crossref]
  9. X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
    [Crossref]
  10. Vladan Pavlović and Ljiljana Stevanović, “Group velocity of light in a three level ladder-type spherical quantum dot with hydrogenic impurity,” Superlattice. Microst. 100, 500–507 (2016).
    [Crossref]
  11. Z. Wang, “Control of the optical multistability in a three-level ladder-type quantum well system,” Opt. Commun. 282, 4745–4748 (2009).
    [Crossref]
  12. A. Sargsyan, R. Mirzoyan, T. Vartanyan, and D. Sarkisyan, “Determination of the structure of hyperfine sublevels of rb in strong magnetic fields by means of the coherent population trapping technique,” J. Exp. Theor. Phys. 118, 359–364 (2014).
    [Crossref]
  13. X. Jiang, H. Zhang, and Y. Wang, “Electromagnetically induced transparency in a zeeman-sublevels λ-system of cold 87rb atoms in free space,” Chin. Phys. B 25, 034204 (2016).
    [Crossref]
  14. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
    [Crossref]
  15. D. Ya-Bin, G. Jiang-Rui, and D. You-Er, “Quantum coherent effects in multi-zeeman-sublevel atomic systems,” Chin. Phys. B 17, 3306–3312 (2008).
    [Crossref]
  16. A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “Splitting of the electromagnetically induced transparency resonance on 85rb atoms in strong magnetic fields up to the paschen-back regime,” JETP Lett. 96, 303–307 (2012).
    [Crossref]
  17. A. Sargsyan, D. Sarkisyan, and A. Papoyan, “Dark-line atomic resonances in a submicron-thin rb vapor layer,” Phys. Rev. A 73, 033803 (2006).
    [Crossref]
  18. P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65, 023814 (2002).
    [Crossref]
  19. Y. Dong, H. Wang, J. Gao, and J. Zhang, “Quantum coherence effects in quasidegenerate two-level atomic systems,” Phys. Rev. A 74, 063810 (2006).
    [Crossref]
  20. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, “Absolute absorption and dispersion of a rubidium vapour in the hyperfine paschen-back regime,” J. Phys. B 45, 215005 (2012).
    [Crossref]
  21. R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
    [Crossref]
  22. A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “A study of dark resonance splitting for the d1 line of 87rb in strong magnetic fields,” Opt. Spectrosc. 113, 456–462 (2012).
    [Crossref]
  23. A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast d1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B 105, 767–774 (2011).
    [Crossref]
  24. Z.-S. He, J.-H. Tsai, Y.-Y. Chang, C.-C. Liao, and C.-C. Tsai, “Ladder-type electromagnetically induced transparency with optical pumping effect,” Phys. Rev. A 87, 033402 (2013).
    [Crossref]
  25. M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87rb to ns and nd rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
    [Crossref]
  26. Z.-S. He, J.-H. Tsai, M.-T. Lee, Y.-Y. Chang, C.-C. Tsai, and T.-J. Whang, “Determination of the cesium 11s2s1/2 hyperfine magnetic coupling constant using electromagnetically induced transparency,” J. Phys. Soc. Jpn. 81, 124302 (2012).
    [Crossref]
  27. A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and C. Adams, “Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor,” Phys. Rev. A 82, 045806 (2010).
    [Crossref]
  28. H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
    [Crossref]
  29. B. Yang, J. Gao, T. Zhang, and J. Wang, “Electromagnetically induced transparency without a doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A 83, 013818 (2011).
    [Crossref]
  30. H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
    [Crossref]
  31. R. Sobolewski, J. Wang, J. Wang, H. Liu, B. Yang, J. He, and J. Fiurásek, “Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8s1/2 state by using of ladder-type eit,” Proc. SPIE 8773, 877311 (2013).
    [Crossref]
  32. H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89, 033822 (2014).
    [Crossref]
  33. D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
    [Crossref]
  34. D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40, 4289–4292 (2015).
    [Crossref] [PubMed]
  35. L. Ma, D. A. Anderson, and G. Raithel, “Paschen-back effects and rydberg-state diamagnetism in vapor-cell electromagnetically induced transparency,” Phys. Rev. A 95, 061804 (2017).
    [Crossref]
  36. A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, “Electromagnetically induced transparency and two-photon absorption in the ladder system in thin columns of atomic vapors,” Opt. Spectrosc. 109, 529–537 (2010).
    [Crossref]
  37. A. Tauschinsky, R. Newell, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Measurement of 87rb rydberg-state hyperfine splitting in a room-temperature vapor cell,” Phys. Rev. A 87, 042522 (2013).
    [Crossref]
  38. J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
    [Crossref]
  39. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
    [Crossref] [PubMed]
  40. J. Naber, R. Spreeuw, A. Tauschinsky, and B. van Linden van den Heuvell, “Electromagnetically induced transparency with rydberg atoms across the breit-rabi regime,” SciPost Phys. 2, 015 (2017).
    [Crossref]
  41. S. Bao, W. Yang, H. Zhang, L. Zhang, J. Zhao, and S. Jia, “Splitting of an electromagnetically induced transparency window of a cascade system with 133cs rydberg atoms in a static magnetic field,” J. Phys. Soc. Jpn. 84, 104301 (2015).
    [Crossref]
  42. S. Bao, H. Zhang, J. Zhou, L. Zhang, J. Zhao, L. Xiao, and S. Jia, “Polarization spectra of zeeman sublevels in rydberg electromagnetically induced transparency,” Phys. Rev. A 94, 043822 (2016).
    [Crossref]
  43. S. X. Bao, H. Zhang, J. Zhou, L. J. Zhang, J. M. Zhao, L. T. Xiao, and S. T. Jia, “Tunable frequency stabilization to zeeman sublevel transitions between an intermediate state and rydberg states,” Laser Phys. 27, 015701 (2017).
    [Crossref]
  44. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, “Hyperfine paschen-back regime in alkali metal atoms: consistency of two theoretical considerations and experiment,” J. Opt. Soc. Am. B 31, 1046 (2014).
    [Crossref]
  45. H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “Electromagnetically induced transparency of 87rb in a buffer gas cell with magnetic field,” J. Phys. B 50, 095401 (2017).
    [Crossref]
  46. M. U. Momeen, G. Rangarajan, and P. C. Deshmukh, “Variations of intensity in rb d2 line at weak/intermediate fields,” J. Phys. B 40, 3163–3172 (2007).
    [Crossref]
  47. A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, “Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant,” Laser Phys. Lett. 11, 055701 (2014).
    [Crossref]
  48. G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, “Study of “forbidden” atomic transitions on d2 line using rb nano-cell placed in external magnetic field,” Eur. Phys. J. D 66119 (2012).
    [Crossref]
  49. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
    [Crossref] [PubMed]
  50. J. Zhao, X. Zhu, L. Zhang, Z. Feng, C. Li, and S. Jia, “High sensitivity spectroscopy of cesium rydberg atoms using electromagnetically induced transparency,” Opt. Express 17, 15821–6 (2009).
    [Crossref] [PubMed]
  51. A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
    [Crossref]
  52. H. Cheng, S.-S. Zhang, P.-P. Xin, Y. Cheng, and H.-P. Liu, “Theoretical simulation of 87rb absorption spectrum in a thermal cell,” Chin. Phys. B 25, 114203 (2016).
    [Crossref]
  53. H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “High quality electromagnetically induced transparency spectroscopy of 87rb in a buffer gas cell with a magnetic field,” Chin. Phys. B 26, 74204–074204 (2017).
    [Crossref]
  54. A. Krishna, K. Pandey, A. Wasan, and V. Natarajan, “High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency,” Europhys. Lett. 72, 221–227 (2005).
    [Crossref]
  55. Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
    [Crossref] [PubMed]
  56. K. Kim, M. Kwon, H. D. Park, H. S. Moon, H. S. Rawat, K. An, and J. B. Kim, “Electromagnetically induced absorption spectra depending on intensities and detunings of the coupling field in cs vapour,” J. Phys. B 34, 4801 (2001).
    [Crossref]
  57. M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
    [Crossref]

2017 (5)

L. Ma, D. A. Anderson, and G. Raithel, “Paschen-back effects and rydberg-state diamagnetism in vapor-cell electromagnetically induced transparency,” Phys. Rev. A 95, 061804 (2017).
[Crossref]

J. Naber, R. Spreeuw, A. Tauschinsky, and B. van Linden van den Heuvell, “Electromagnetically induced transparency with rydberg atoms across the breit-rabi regime,” SciPost Phys. 2, 015 (2017).
[Crossref]

S. X. Bao, H. Zhang, J. Zhou, L. J. Zhang, J. M. Zhao, L. T. Xiao, and S. T. Jia, “Tunable frequency stabilization to zeeman sublevel transitions between an intermediate state and rydberg states,” Laser Phys. 27, 015701 (2017).
[Crossref]

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “Electromagnetically induced transparency of 87rb in a buffer gas cell with magnetic field,” J. Phys. B 50, 095401 (2017).
[Crossref]

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “High quality electromagnetically induced transparency spectroscopy of 87rb in a buffer gas cell with a magnetic field,” Chin. Phys. B 26, 74204–074204 (2017).
[Crossref]

2016 (4)

S. Bao, H. Zhang, J. Zhou, L. Zhang, J. Zhao, L. Xiao, and S. Jia, “Polarization spectra of zeeman sublevels in rydberg electromagnetically induced transparency,” Phys. Rev. A 94, 043822 (2016).
[Crossref]

H. Cheng, S.-S. Zhang, P.-P. Xin, Y. Cheng, and H.-P. Liu, “Theoretical simulation of 87rb absorption spectrum in a thermal cell,” Chin. Phys. B 25, 114203 (2016).
[Crossref]

Vladan Pavlović and Ljiljana Stevanović, “Group velocity of light in a three level ladder-type spherical quantum dot with hydrogenic impurity,” Superlattice. Microst. 100, 500–507 (2016).
[Crossref]

X. Jiang, H. Zhang, and Y. Wang, “Electromagnetically induced transparency in a zeeman-sublevels λ-system of cold 87rb atoms in free space,” Chin. Phys. B 25, 034204 (2016).
[Crossref]

2015 (5)

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based rf electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40, 4289–4292 (2015).
[Crossref] [PubMed]

S. Bao, W. Yang, H. Zhang, L. Zhang, J. Zhao, and S. Jia, “Splitting of an electromagnetically induced transparency window of a cascade system with 133cs rydberg atoms in a static magnetic field,” J. Phys. Soc. Jpn. 84, 104301 (2015).
[Crossref]

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

2014 (5)

A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, “Hyperfine paschen-back regime in alkali metal atoms: consistency of two theoretical considerations and experiment,” J. Opt. Soc. Am. B 31, 1046 (2014).
[Crossref]

A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, “Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant,” Laser Phys. Lett. 11, 055701 (2014).
[Crossref]

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89, 033822 (2014).
[Crossref]

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband rydberg atom-based electric-field probe for si-traceable, self-calibrated measurements,” Ieee. T. Antenn. Propag. 62, 6169–6182 (2014).
[Crossref]

A. Sargsyan, R. Mirzoyan, T. Vartanyan, and D. Sarkisyan, “Determination of the structure of hyperfine sublevels of rb in strong magnetic fields by means of the coherent population trapping technique,” J. Exp. Theor. Phys. 118, 359–364 (2014).
[Crossref]

2013 (3)

R. Sobolewski, J. Wang, J. Wang, H. Liu, B. Yang, J. He, and J. Fiurásek, “Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8s1/2 state by using of ladder-type eit,” Proc. SPIE 8773, 877311 (2013).
[Crossref]

Z.-S. He, J.-H. Tsai, Y.-Y. Chang, C.-C. Liao, and C.-C. Tsai, “Ladder-type electromagnetically induced transparency with optical pumping effect,” Phys. Rev. A 87, 033402 (2013).
[Crossref]

A. Tauschinsky, R. Newell, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Measurement of 87rb rydberg-state hyperfine splitting in a room-temperature vapor cell,” Phys. Rev. A 87, 042522 (2013).
[Crossref]

2012 (6)

G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, “Study of “forbidden” atomic transitions on d2 line using rb nano-cell placed in external magnetic field,” Eur. Phys. J. D 66119 (2012).
[Crossref]

Z.-S. He, J.-H. Tsai, M.-T. Lee, Y.-Y. Chang, C.-C. Tsai, and T.-J. Whang, “Determination of the cesium 11s2s1/2 hyperfine magnetic coupling constant using electromagnetically induced transparency,” J. Phys. Soc. Jpn. 81, 124302 (2012).
[Crossref]

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, “Absolute absorption and dispersion of a rubidium vapour in the hyperfine paschen-back regime,” J. Phys. B 45, 215005 (2012).
[Crossref]

A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “A study of dark resonance splitting for the d1 line of 87rb in strong magnetic fields,” Opt. Spectrosc. 113, 456–462 (2012).
[Crossref]

H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
[Crossref]

A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “Splitting of the electromagnetically induced transparency resonance on 85rb atoms in strong magnetic fields up to the paschen-back regime,” JETP Lett. 96, 303–307 (2012).
[Crossref]

2011 (4)

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
[Crossref]

B. Yang, J. Gao, T. Zhang, and J. Wang, “Electromagnetically induced transparency without a doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A 83, 013818 (2011).
[Crossref]

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast d1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B 105, 767–774 (2011).
[Crossref]

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87rb to ns and nd rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

2010 (3)

A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and C. Adams, “Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor,” Phys. Rev. A 82, 045806 (2010).
[Crossref]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, “Electromagnetically induced transparency and two-photon absorption in the ladder system in thin columns of atomic vapors,” Opt. Spectrosc. 109, 529–537 (2010).
[Crossref]

2009 (3)

J. Zhao, X. Zhu, L. Zhang, Z. Feng, C. Li, and S. Jia, “High sensitivity spectroscopy of cesium rydberg atoms using electromagnetically induced transparency,” Opt. Express 17, 15821–6 (2009).
[Crossref] [PubMed]

Z. Wang, “Control of the optical multistability in a three-level ladder-type quantum well system,” Opt. Commun. 282, 4745–4748 (2009).
[Crossref]

L. Karpa, G. Nikoghosyan, F. Vewinger, M. Fleischhauer, and M. Weitz, “Frequency matching in light-storage spectroscopy of atomic raman transitions,” Phys. Rev. Lett. 103, 093601 (2009).
[Crossref] [PubMed]

2008 (2)

S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically-induced-transparency medium due to doppler averaging,” Phys. Rev. A 77, 063807 (2008).
[Crossref]

D. Ya-Bin, G. Jiang-Rui, and D. You-Er, “Quantum coherent effects in multi-zeeman-sublevel atomic systems,” Chin. Phys. B 17, 3306–3312 (2008).
[Crossref]

2007 (3)

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

M. U. Momeen, G. Rangarajan, and P. C. Deshmukh, “Variations of intensity in rb d2 line at weak/intermediate fields,” J. Phys. B 40, 3163–3172 (2007).
[Crossref]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

2006 (2)

A. Sargsyan, D. Sarkisyan, and A. Papoyan, “Dark-line atomic resonances in a submicron-thin rb vapor layer,” Phys. Rev. A 73, 033803 (2006).
[Crossref]

Y. Dong, H. Wang, J. Gao, and J. Zhang, “Quantum coherence effects in quasidegenerate two-level atomic systems,” Phys. Rev. A 74, 063810 (2006).
[Crossref]

2005 (3)

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H. A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

A. Krishna, K. Pandey, A. Wasan, and V. Natarajan, “High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency,” Europhys. Lett. 72, 221–227 (2005).
[Crossref]

2002 (2)

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[Crossref]

P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65, 023814 (2002).
[Crossref]

2001 (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

K. Kim, M. Kwon, H. D. Park, H. S. Moon, H. S. Rawat, K. An, and J. B. Kim, “Electromagnetically induced absorption spectra depending on intensities and detunings of the coupling field in cs vapour,” J. Phys. B 34, 4801 (2001).
[Crossref]

2000 (1)

J. Mompart and R. Corbalán, “Lasing without inversion,” J. Opt. B 2, R7 (2000).
[Crossref]

1998 (2)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[Crossref]

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[Crossref]

1995 (2)

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[Crossref] [PubMed]

Adams, C.

A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and C. Adams, “Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor,” Phys. Rev. A 82, 045806 (2010).
[Crossref]

Adams, C. S.

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40, 4289–4292 (2015).
[Crossref] [PubMed]

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, “Absolute absorption and dispersion of a rubidium vapour in the hyperfine paschen-back regime,” J. Phys. B 45, 215005 (2012).
[Crossref]

A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, “Electromagnetically induced transparency and two-photon absorption in the ladder system in thin columns of atomic vapors,” Opt. Spectrosc. 109, 529–537 (2010).
[Crossref]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

Akulshin, A. M.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[Crossref]

An, K.

K. Kim, M. Kwon, H. D. Park, H. S. Moon, H. S. Rawat, K. An, and J. B. Kim, “Electromagnetically induced absorption spectra depending on intensities and detunings of the coupling field in cs vapour,” J. Phys. B 34, 4801 (2001).
[Crossref]

Anderson, D. A.

L. Ma, D. A. Anderson, and G. Raithel, “Paschen-back effects and rydberg-state diamagnetism in vapor-cell electromagnetically induced transparency,” Phys. Rev. A 95, 061804 (2017).
[Crossref]

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband rydberg atom-based electric-field probe for si-traceable, self-calibrated measurements,” Ieee. T. Antenn. Propag. 62, 6169–6182 (2014).
[Crossref]

Auzinsh, M.

Bachor, H. A.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H. A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Bai, J.-H.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Bao, S.

S. Bao, H. Zhang, J. Zhou, L. Zhang, J. Zhao, L. Xiao, and S. Jia, “Polarization spectra of zeeman sublevels in rydberg electromagnetically induced transparency,” Phys. Rev. A 94, 043822 (2016).
[Crossref]

S. Bao, W. Yang, H. Zhang, L. Zhang, J. Zhao, and S. Jia, “Splitting of an electromagnetically induced transparency window of a cascade system with 133cs rydberg atoms in a static magnetic field,” J. Phys. Soc. Jpn. 84, 104301 (2015).
[Crossref]

Bao, S. X.

S. X. Bao, H. Zhang, J. Zhou, L. J. Zhang, J. M. Zhao, L. T. Xiao, and S. T. Jia, “Tunable frequency stabilization to zeeman sublevel transitions between an intermediate state and rydberg states,” Laser Phys. 27, 015701 (2017).
[Crossref]

Barreiro, S.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[Crossref]

Bason, M. G.

A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, “Electromagnetically induced transparency and two-photon absorption in the ladder system in thin columns of atomic vapors,” Opt. Spectrosc. 109, 529–537 (2010).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Bimbard, E.

Bowen, W. P.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H. A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Brandt, S.

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[Crossref]

Cano, D.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87rb to ns and nd rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Chang, Y.-Y.

Z.-S. He, J.-H. Tsai, Y.-Y. Chang, C.-C. Liao, and C.-C. Tsai, “Ladder-type electromagnetically induced transparency with optical pumping effect,” Phys. Rev. A 87, 033402 (2013).
[Crossref]

Z.-S. He, J.-H. Tsai, M.-T. Lee, Y.-Y. Chang, C.-C. Tsai, and T.-J. Whang, “Determination of the cesium 11s2s1/2 hyperfine magnetic coupling constant using electromagnetically induced transparency,” J. Phys. Soc. Jpn. 81, 124302 (2012).
[Crossref]

Cheng, H.

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “Electromagnetically induced transparency of 87rb in a buffer gas cell with magnetic field,” J. Phys. B 50, 095401 (2017).
[Crossref]

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “High quality electromagnetically induced transparency spectroscopy of 87rb in a buffer gas cell with a magnetic field,” Chin. Phys. B 26, 74204–074204 (2017).
[Crossref]

H. Cheng, S.-S. Zhang, P.-P. Xin, Y. Cheng, and H.-P. Liu, “Theoretical simulation of 87rb absorption spectrum in a thermal cell,” Chin. Phys. B 25, 114203 (2016).
[Crossref]

Cheng, Y.

H. Cheng, S.-S. Zhang, P.-P. Xin, Y. Cheng, and H.-P. Liu, “Theoretical simulation of 87rb absorption spectrum in a thermal cell,” Chin. Phys. B 25, 114203 (2016).
[Crossref]

Corbalán, R.

J. Mompart and R. Corbalán, “Lasing without inversion,” J. Opt. B 2, R7 (2000).
[Crossref]

Deshmukh, P. C.

M. U. Momeen, G. Rangarajan, and P. C. Deshmukh, “Variations of intensity in rb d2 line at weak/intermediate fields,” J. Phys. B 40, 3163–3172 (2007).
[Crossref]

Dong, Y.

Y. Dong, H. Wang, J. Gao, and J. Zhang, “Quantum coherence effects in quasidegenerate two-level atomic systems,” Phys. Rev. A 74, 063810 (2006).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Failache, H.

P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65, 023814 (2002).
[Crossref]

Fan, H.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based rf electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Feng, Z.

Fiurásek, J.

R. Sobolewski, J. Wang, J. Wang, H. Liu, B. Yang, J. He, and J. Fiurásek, “Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8s1/2 state by using of ladder-type eit,” Proc. SPIE 8773, 877311 (2013).
[Crossref]

Fleischhauer, M.

L. Karpa, G. Nikoghosyan, F. Vewinger, M. Fleischhauer, and M. Weitz, “Frequency matching in light-storage spectroscopy of atomic raman transitions,” Phys. Rev. Lett. 103, 093601 (2009).
[Crossref] [PubMed]

Fortágh, J.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87rb to ns and nd rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Franson, J. D.

D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

Fu, P.-M.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Gao, J.

B. Yang, J. Gao, T. Zhang, and J. Wang, “Electromagnetically induced transparency without a doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A 83, 013818 (2011).
[Crossref]

Y. Dong, H. Wang, J. Gao, and J. Zhang, “Quantum coherence effects in quasidegenerate two-level atomic systems,” Phys. Rev. A 74, 063810 (2006).
[Crossref]

Gao, J.-Y.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Gao, Y.-L.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Gauguet, A.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Gordon, J. A.

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband rydberg atom-based electric-field probe for si-traceable, self-calibrated measurements,” Ieee. T. Antenn. Propag. 62, 6169–6182 (2014).
[Crossref]

Hakhumyan, G.

A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, “Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant,” Laser Phys. Lett. 11, 055701 (2014).
[Crossref]

A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, “Hyperfine paschen-back regime in alkali metal atoms: consistency of two theoretical considerations and experiment,” J. Opt. Soc. Am. B 31, 1046 (2014).
[Crossref]

G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, “Study of “forbidden” atomic transitions on d2 line using rb nano-cell placed in external magnetic field,” Eur. Phys. J. D 66119 (2012).
[Crossref]

Hattermann, H.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87rb to ns and nd rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

He, J.

R. Sobolewski, J. Wang, J. Wang, H. Liu, B. Yang, J. He, and J. Fiurásek, “Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8s1/2 state by using of ladder-type eit,” Proc. SPIE 8773, 877311 (2013).
[Crossref]

He, Z.-S.

Z.-S. He, J.-H. Tsai, Y.-Y. Chang, C.-C. Liao, and C.-C. Tsai, “Ladder-type electromagnetically induced transparency with optical pumping effect,” Phys. Rev. A 87, 033402 (2013).
[Crossref]

Z.-S. He, J.-H. Tsai, M.-T. Lee, Y.-Y. Chang, C.-C. Tsai, and T.-J. Whang, “Determination of the cesium 11s2s1/2 hyperfine magnetic coupling constant using electromagnetically induced transparency,” J. Phys. Soc. Jpn. 81, 124302 (2012).
[Crossref]

Höckh, S.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87rb to ns and nd rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Hollberg, L.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Holloway, C. L.

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband rydberg atom-based electric-field probe for si-traceable, self-calibrated measurements,” Ieee. T. Antenn. Propag. 62, 6169–6182 (2014).
[Crossref]

Hope, J. J.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H. A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Hughes, I. G.

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40, 4289–4292 (2015).
[Crossref] [PubMed]

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, “Absolute absorption and dispersion of a rubidium vapour in the hyperfine paschen-back regime,” J. Phys. B 45, 215005 (2012).
[Crossref]

Iftiquar, S. M.

S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically-induced-transparency medium due to doppler averaging,” Phys. Rev. A 77, 063807 (2008).
[Crossref]

Jackson, T. R.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

Javan, A.

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[Crossref]

Jefferts, S.

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband rydberg atom-based electric-field probe for si-traceable, self-calibrated measurements,” Ieee. T. Antenn. Propag. 62, 6169–6182 (2014).
[Crossref]

Jeong, T.

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89, 033822 (2014).
[Crossref]

Jessen, F.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87rb to ns and nd rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Jia, S.

S. Bao, H. Zhang, J. Zhou, L. Zhang, J. Zhao, L. Xiao, and S. Jia, “Polarization spectra of zeeman sublevels in rydberg electromagnetically induced transparency,” Phys. Rev. A 94, 043822 (2016).
[Crossref]

S. Bao, W. Yang, H. Zhang, L. Zhang, J. Zhao, and S. Jia, “Splitting of an electromagnetically induced transparency window of a cascade system with 133cs rydberg atoms in a static magnetic field,” J. Phys. Soc. Jpn. 84, 104301 (2015).
[Crossref]

J. Zhao, X. Zhu, L. Zhang, Z. Feng, C. Li, and S. Jia, “High sensitivity spectroscopy of cesium rydberg atoms using electromagnetically induced transparency,” Opt. Express 17, 15821–6 (2009).
[Crossref] [PubMed]

Jia, S. T.

S. X. Bao, H. Zhang, J. Zhou, L. J. Zhang, J. M. Zhao, L. T. Xiao, and S. T. Jia, “Tunable frequency stabilization to zeeman sublevel transitions between an intermediate state and rydberg states,” Laser Phys. 27, 015701 (2017).
[Crossref]

Jiang, X.

X. Jiang, H. Zhang, and Y. Wang, “Electromagnetically induced transparency in a zeeman-sublevels λ-system of cold 87rb atoms in free space,” Chin. Phys. B 25, 034204 (2016).
[Crossref]

Jiang, Y.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Jiang-Rui, G.

D. Ya-Bin, G. Jiang-Rui, and D. You-Er, “Quantum coherent effects in multi-zeeman-sublevel atomic systems,” Chin. Phys. B 17, 3306–3312 (2008).
[Crossref]

Jin, S.

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[Crossref] [PubMed]

Johnsson, M.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H. A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Jones, D. E.

D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

Jones, M. P. A.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Kang, Z.-H.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Karimkashi, S.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based rf electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Karlewski, F.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87rb to ns and nd rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Karpa, L.

L. Karpa, G. Nikoghosyan, F. Vewinger, M. Fleischhauer, and M. Weitz, “Frequency matching in light-storage spectroscopy of atomic raman transitions,” Phys. Rev. Lett. 103, 093601 (2009).
[Crossref] [PubMed]

Karve, G. R.

S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically-induced-transparency medium due to doppler averaging,” Phys. Rev. A 77, 063807 (2008).
[Crossref]

Keaveney, J.

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40, 4289–4292 (2015).
[Crossref] [PubMed]

A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and C. Adams, “Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor,” Phys. Rev. A 82, 045806 (2010).
[Crossref]

Kim, J. B.

K. Kim, M. Kwon, H. D. Park, H. S. Moon, H. S. Rawat, K. An, and J. B. Kim, “Electromagnetically induced absorption spectra depending on intensities and detunings of the coupling field in cs vapour,” J. Phys. B 34, 4801 (2001).
[Crossref]

Kim, K.

K. Kim, M. Kwon, H. D. Park, H. S. Moon, H. S. Rawat, K. An, and J. B. Kim, “Electromagnetically induced absorption spectra depending on intensities and detunings of the coupling field in cs vapour,” J. Phys. B 34, 4801 (2001).
[Crossref]

Kleinbach, K. S.

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, “Absolute absorption and dispersion of a rubidium vapour in the hyperfine paschen-back regime,” J. Phys. B 45, 215005 (2012).
[Crossref]

Knappe, S.

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, “Absolute absorption and dispersion of a rubidium vapour in the hyperfine paschen-back regime,” J. Phys. B 45, 215005 (2012).
[Crossref]

Kocharovskaya, O.

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[Crossref]

Krishna, A.

A. Krishna, K. Pandey, A. Wasan, and V. Natarajan, “High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency,” Europhys. Lett. 72, 221–227 (2005).
[Crossref]

Krohn, U.

A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and C. Adams, “Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor,” Phys. Rev. A 82, 045806 (2010).
[Crossref]

Kübler, H.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based rf electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Kumar, S.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based rf electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Kwon, M.

K. Kim, M. Kwon, H. D. Park, H. S. Moon, H. S. Rawat, K. An, and J. B. Kim, “Electromagnetically induced absorption spectra depending on intensities and detunings of the coupling field in cs vapour,” J. Phys. B 34, 4801 (2001).
[Crossref]

Lam, P. K.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H. A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Lee, H.

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[Crossref]

Lee, M.-T.

Z.-S. He, J.-H. Tsai, M.-T. Lee, Y.-Y. Chang, C.-C. Tsai, and T.-J. Whang, “Determination of the cesium 11s2s1/2 hyperfine magnetic coupling constant using electromagnetically induced transparency,” J. Phys. Soc. Jpn. 81, 124302 (2012).
[Crossref]

Leroy, C.

A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, “Hyperfine paschen-back regime in alkali metal atoms: consistency of two theoretical considerations and experiment,” J. Opt. Soc. Am. B 31, 1046 (2014).
[Crossref]

G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, “Study of “forbidden” atomic transitions on d2 line using rb nano-cell placed in external magnetic field,” Eur. Phys. J. D 66119 (2012).
[Crossref]

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast d1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B 105, 767–774 (2011).
[Crossref]

Lezama, A.

P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65, 023814 (2002).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[Crossref]

Li, C.

Li, Y.

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[Crossref] [PubMed]

Liao, C.-C.

Z.-S. He, J.-H. Tsai, Y.-Y. Chang, C.-C. Liao, and C.-C. Tsai, “Ladder-type electromagnetically induced transparency with optical pumping effect,” Phys. Rev. A 87, 033402 (2013).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Liu, H.

R. Sobolewski, J. Wang, J. Wang, H. Liu, B. Yang, J. He, and J. Fiurásek, “Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8s1/2 state by using of ladder-type eit,” Proc. SPIE 8773, 877311 (2013).
[Crossref]

Liu, H.-P.

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “High quality electromagnetically induced transparency spectroscopy of 87rb in a buffer gas cell with a magnetic field,” Chin. Phys. B 26, 74204–074204 (2017).
[Crossref]

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “Electromagnetically induced transparency of 87rb in a buffer gas cell with magnetic field,” J. Phys. B 50, 095401 (2017).
[Crossref]

H. Cheng, S.-S. Zhang, P.-P. Xin, Y. Cheng, and H.-P. Liu, “Theoretical simulation of 87rb absorption spectrum in a thermal cell,” Chin. Phys. B 25, 114203 (2016).
[Crossref]

Lu, X.-G.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Lukin, M. D.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Luo, J.

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “Electromagnetically induced transparency of 87rb in a buffer gas cell with magnetic field,” J. Phys. B 50, 095401 (2017).
[Crossref]

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “High quality electromagnetically induced transparency spectroscopy of 87rb in a buffer gas cell with a magnetic field,” Chin. Phys. B 26, 74204–074204 (2017).
[Crossref]

Ma, L.

L. Ma, D. A. Anderson, and G. Raithel, “Paschen-back effects and rydberg-state diamagnetism in vapor-cell electromagnetically induced transparency,” Phys. Rev. A 95, 061804 (2017).
[Crossref]

Mack, M.

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87rb to ns and nd rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

Mariotti, E.

A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, “Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant,” Laser Phys. Lett. 11, 055701 (2014).
[Crossref]

Maxwell, D.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Meschede, D.

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[Crossref]

Miao, X.-X.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Miller, S. A.

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband rydberg atom-based electric-field probe for si-traceable, self-calibrated measurements,” Ieee. T. Antenn. Propag. 62, 6169–6182 (2014).
[Crossref]

Mirzoyan, R.

A. Sargsyan, R. Mirzoyan, T. Vartanyan, and D. Sarkisyan, “Determination of the structure of hyperfine sublevels of rb in strong magnetic fields by means of the coherent population trapping technique,” J. Exp. Theor. Phys. 118, 359–364 (2014).
[Crossref]

A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “Splitting of the electromagnetically induced transparency resonance on 85rb atoms in strong magnetic fields up to the paschen-back regime,” JETP Lett. 96, 303–307 (2012).
[Crossref]

A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “A study of dark resonance splitting for the d1 line of 87rb in strong magnetic fields,” Opt. Spectrosc. 113, 456–462 (2012).
[Crossref]

G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, “Study of “forbidden” atomic transitions on d2 line using rb nano-cell placed in external magnetic field,” Eur. Phys. J. D 66119 (2012).
[Crossref]

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast d1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B 105, 767–774 (2011).
[Crossref]

Mohapatra, A. K.

A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, “Electromagnetically induced transparency and two-photon absorption in the ladder system in thin columns of atomic vapors,” Opt. Spectrosc. 109, 529–537 (2010).
[Crossref]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

Momeen, M. U.

M. U. Momeen, G. Rangarajan, and P. C. Deshmukh, “Variations of intensity in rb d2 line at weak/intermediate fields,” J. Phys. B 40, 3163–3172 (2007).
[Crossref]

Mompart, J.

J. Mompart and R. Corbalán, “Lasing without inversion,” J. Opt. B 2, R7 (2000).
[Crossref]

Moon, H. S.

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89, 033822 (2014).
[Crossref]

H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
[Crossref]

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
[Crossref]

K. Kim, M. Kwon, H. D. Park, H. S. Moon, H. S. Rawat, K. An, and J. B. Kim, “Electromagnetically induced absorption spectra depending on intensities and detunings of the coupling field in cs vapour,” J. Phys. B 34, 4801 (2001).
[Crossref]

Naber, J.

J. Naber, R. Spreeuw, A. Tauschinsky, and B. van Linden van den Heuvell, “Electromagnetically induced transparency with rydberg atoms across the breit-rabi regime,” SciPost Phys. 2, 015 (2017).
[Crossref]

Nagel, A.

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[Crossref]

Natarajan, V.

S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically-induced-transparency medium due to doppler averaging,” Phys. Rev. A 77, 063807 (2008).
[Crossref]

A. Krishna, K. Pandey, A. Wasan, and V. Natarajan, “High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency,” Europhys. Lett. 72, 221–227 (2005).
[Crossref]

Newell, R.

A. Tauschinsky, R. Newell, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Measurement of 87rb rydberg-state hyperfine splitting in a room-temperature vapor cell,” Phys. Rev. A 87, 042522 (2013).
[Crossref]

Nikoghosyan, G.

L. Karpa, G. Nikoghosyan, F. Vewinger, M. Fleischhauer, and M. Weitz, “Frequency matching in light-storage spectroscopy of atomic raman transitions,” Phys. Rev. Lett. 103, 093601 (2009).
[Crossref] [PubMed]

Nikonov, D. E.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Noh, H.-R.

H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
[Crossref]

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
[Crossref]

Pandey, K.

A. Krishna, K. Pandey, A. Wasan, and V. Natarajan, “High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency,” Europhys. Lett. 72, 221–227 (2005).
[Crossref]

Pang, Z.-G.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Papoyan, A.

A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, “Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant,” Laser Phys. Lett. 11, 055701 (2014).
[Crossref]

A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, “Hyperfine paschen-back regime in alkali metal atoms: consistency of two theoretical considerations and experiment,” J. Opt. Soc. Am. B 31, 1046 (2014).
[Crossref]

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast d1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B 105, 767–774 (2011).
[Crossref]

A. Sargsyan, D. Sarkisyan, and A. Papoyan, “Dark-line atomic resonances in a submicron-thin rb vapor layer,” Phys. Rev. A 73, 033803 (2006).
[Crossref]

Park, H. D.

K. Kim, M. Kwon, H. D. Park, H. S. Moon, H. S. Rawat, K. An, and J. B. Kim, “Electromagnetically induced absorption spectra depending on intensities and detunings of the coupling field in cs vapour,” J. Phys. B 34, 4801 (2001).
[Crossref]

Pashayan-Leroy, Y.

A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, “Hyperfine paschen-back regime in alkali metal atoms: consistency of two theoretical considerations and experiment,” J. Opt. Soc. Am. B 31, 1046 (2014).
[Crossref]

G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, “Study of “forbidden” atomic transitions on d2 line using rb nano-cell placed in external magnetic field,” Eur. Phys. J. D 66119 (2012).
[Crossref]

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast d1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B 105, 767–774 (2011).
[Crossref]

Pavlovic, Vladan

Vladan Pavlović and Ljiljana Stevanović, “Group velocity of light in a three level ladder-type spherical quantum dot with hydrogenic impurity,” Superlattice. Microst. 100, 500–507 (2016).
[Crossref]

Pei, L.-Y.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Peng, A.

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H. A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

Pittman, T. B.

D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

Pritchard, J. D.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Raithel, G.

L. Ma, D. A. Anderson, and G. Raithel, “Paschen-back effects and rydberg-state diamagnetism in vapor-cell electromagnetically induced transparency,” Phys. Rev. A 95, 061804 (2017).
[Crossref]

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband rydberg atom-based electric-field probe for si-traceable, self-calibrated measurements,” Ieee. T. Antenn. Propag. 62, 6169–6182 (2014).
[Crossref]

Rangarajan, G.

M. U. Momeen, G. Rangarajan, and P. C. Deshmukh, “Variations of intensity in rb d2 line at weak/intermediate fields,” J. Phys. B 40, 3163–3172 (2007).
[Crossref]

Rawat, H. S.

K. Kim, M. Kwon, H. D. Park, H. S. Moon, H. S. Rawat, K. An, and J. B. Kim, “Electromagnetically induced absorption spectra depending on intensities and detunings of the coupling field in cs vapour,” J. Phys. B 34, 4801 (2001).
[Crossref]

Robinson, H. G.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Sargsyan, A.

A. Sargsyan, R. Mirzoyan, T. Vartanyan, and D. Sarkisyan, “Determination of the structure of hyperfine sublevels of rb in strong magnetic fields by means of the coherent population trapping technique,” J. Exp. Theor. Phys. 118, 359–364 (2014).
[Crossref]

A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, “Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant,” Laser Phys. Lett. 11, 055701 (2014).
[Crossref]

A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, “Hyperfine paschen-back regime in alkali metal atoms: consistency of two theoretical considerations and experiment,” J. Opt. Soc. Am. B 31, 1046 (2014).
[Crossref]

A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “A study of dark resonance splitting for the d1 line of 87rb in strong magnetic fields,” Opt. Spectrosc. 113, 456–462 (2012).
[Crossref]

A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “Splitting of the electromagnetically induced transparency resonance on 85rb atoms in strong magnetic fields up to the paschen-back regime,” JETP Lett. 96, 303–307 (2012).
[Crossref]

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast d1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B 105, 767–774 (2011).
[Crossref]

A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, “Electromagnetically induced transparency and two-photon absorption in the ladder system in thin columns of atomic vapors,” Opt. Spectrosc. 109, 529–537 (2010).
[Crossref]

A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and C. Adams, “Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor,” Phys. Rev. A 82, 045806 (2010).
[Crossref]

A. Sargsyan, D. Sarkisyan, and A. Papoyan, “Dark-line atomic resonances in a submicron-thin rb vapor layer,” Phys. Rev. A 73, 033803 (2006).
[Crossref]

Sarkisyan, D.

A. Sargsyan, R. Mirzoyan, T. Vartanyan, and D. Sarkisyan, “Determination of the structure of hyperfine sublevels of rb in strong magnetic fields by means of the coherent population trapping technique,” J. Exp. Theor. Phys. 118, 359–364 (2014).
[Crossref]

A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, “Hyperfine paschen-back regime in alkali metal atoms: consistency of two theoretical considerations and experiment,” J. Opt. Soc. Am. B 31, 1046 (2014).
[Crossref]

A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, “Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant,” Laser Phys. Lett. 11, 055701 (2014).
[Crossref]

G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, “Study of “forbidden” atomic transitions on d2 line using rb nano-cell placed in external magnetic field,” Eur. Phys. J. D 66119 (2012).
[Crossref]

A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “Splitting of the electromagnetically induced transparency resonance on 85rb atoms in strong magnetic fields up to the paschen-back regime,” JETP Lett. 96, 303–307 (2012).
[Crossref]

A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “A study of dark resonance splitting for the d1 line of 87rb in strong magnetic fields,” Opt. Spectrosc. 113, 456–462 (2012).
[Crossref]

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast d1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B 105, 767–774 (2011).
[Crossref]

A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and C. Adams, “Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor,” Phys. Rev. A 82, 045806 (2010).
[Crossref]

A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, “Electromagnetically induced transparency and two-photon absorption in the ladder system in thin columns of atomic vapors,” Opt. Spectrosc. 109, 529–537 (2010).
[Crossref]

A. Sargsyan, D. Sarkisyan, and A. Papoyan, “Dark-line atomic resonances in a submicron-thin rb vapor layer,” Phys. Rev. A 73, 033803 (2006).
[Crossref]

Schwarzkopf, A.

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband rydberg atom-based electric-field probe for si-traceable, self-calibrated measurements,” Ieee. T. Antenn. Propag. 62, 6169–6182 (2014).
[Crossref]

Scully, M. O.

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[Crossref]

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Sedlacek, J.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based rf electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Shaffer, J. P.

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based rf electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

Shao, Z.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Sobolewski, R.

R. Sobolewski, J. Wang, J. Wang, H. Liu, B. Yang, J. He, and J. Fiurásek, “Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8s1/2 state by using of ladder-type eit,” Proc. SPIE 8773, 877311 (2013).
[Crossref]

Spreeuw, R.

J. Naber, R. Spreeuw, A. Tauschinsky, and B. van Linden van den Heuvell, “Electromagnetically induced transparency with rydberg atoms across the breit-rabi regime,” SciPost Phys. 2, 015 (2017).
[Crossref]

Spreeuw, R. J. C.

A. Tauschinsky, R. Newell, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Measurement of 87rb rydberg-state hyperfine splitting in a room-temperature vapor cell,” Phys. Rev. A 87, 042522 (2013).
[Crossref]

Stevanovic, Ljiljana

Vladan Pavlović and Ljiljana Stevanović, “Group velocity of light in a three level ladder-type spherical quantum dot with hydrogenic impurity,” Superlattice. Microst. 100, 500–507 (2016).
[Crossref]

Sun, G.-X.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Tauschinsky, A.

J. Naber, R. Spreeuw, A. Tauschinsky, and B. van Linden van den Heuvell, “Electromagnetically induced transparency with rydberg atoms across the breit-rabi regime,” SciPost Phys. 2, 015 (2017).
[Crossref]

A. Tauschinsky, R. Newell, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Measurement of 87rb rydberg-state hyperfine splitting in a room-temperature vapor cell,” Phys. Rev. A 87, 042522 (2013).
[Crossref]

Thaicharoen, N.

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband rydberg atom-based electric-field probe for si-traceable, self-calibrated measurements,” Ieee. T. Antenn. Propag. 62, 6169–6182 (2014).
[Crossref]

Tonoyan, A.

A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, “Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant,” Laser Phys. Lett. 11, 055701 (2014).
[Crossref]

Tsai, C.-C.

Z.-S. He, J.-H. Tsai, Y.-Y. Chang, C.-C. Liao, and C.-C. Tsai, “Ladder-type electromagnetically induced transparency with optical pumping effect,” Phys. Rev. A 87, 033402 (2013).
[Crossref]

Z.-S. He, J.-H. Tsai, M.-T. Lee, Y.-Y. Chang, C.-C. Tsai, and T.-J. Whang, “Determination of the cesium 11s2s1/2 hyperfine magnetic coupling constant using electromagnetically induced transparency,” J. Phys. Soc. Jpn. 81, 124302 (2012).
[Crossref]

Tsai, J.-H.

Z.-S. He, J.-H. Tsai, Y.-Y. Chang, C.-C. Liao, and C.-C. Tsai, “Ladder-type electromagnetically induced transparency with optical pumping effect,” Phys. Rev. A 87, 033402 (2013).
[Crossref]

Z.-S. He, J.-H. Tsai, M.-T. Lee, Y.-Y. Chang, C.-C. Tsai, and T.-J. Whang, “Determination of the cesium 11s2s1/2 hyperfine magnetic coupling constant using electromagnetically induced transparency,” J. Phys. Soc. Jpn. 81, 124302 (2012).
[Crossref]

Valente, P.

P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65, 023814 (2002).
[Crossref]

van Linden van den Heuvell, B.

J. Naber, R. Spreeuw, A. Tauschinsky, and B. van Linden van den Heuvell, “Electromagnetically induced transparency with rydberg atoms across the breit-rabi regime,” SciPost Phys. 2, 015 (2017).
[Crossref]

van Linden van den Heuvell, H. B.

A. Tauschinsky, R. Newell, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Measurement of 87rb rydberg-state hyperfine splitting in a room-temperature vapor cell,” Phys. Rev. A 87, 042522 (2013).
[Crossref]

Vartanyan, T.

A. Sargsyan, R. Mirzoyan, T. Vartanyan, and D. Sarkisyan, “Determination of the structure of hyperfine sublevels of rb in strong magnetic fields by means of the coherent population trapping technique,” J. Exp. Theor. Phys. 118, 359–364 (2014).
[Crossref]

Velichansky, V. L.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Vewinger, F.

L. Karpa, G. Nikoghosyan, F. Vewinger, M. Fleischhauer, and M. Weitz, “Frequency matching in light-storage spectroscopy of atomic raman transitions,” Phys. Rev. Lett. 103, 093601 (2009).
[Crossref] [PubMed]

Wang, H.

Y. Dong, H. Wang, J. Gao, and J. Zhang, “Quantum coherence effects in quasidegenerate two-level atomic systems,” Phys. Rev. A 74, 063810 (2006).
[Crossref]

Wang, H.-M.

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “High quality electromagnetically induced transparency spectroscopy of 87rb in a buffer gas cell with a magnetic field,” Chin. Phys. B 26, 74204–074204 (2017).
[Crossref]

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “Electromagnetically induced transparency of 87rb in a buffer gas cell with magnetic field,” J. Phys. B 50, 095401 (2017).
[Crossref]

Wang, J.

R. Sobolewski, J. Wang, J. Wang, H. Liu, B. Yang, J. He, and J. Fiurásek, “Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8s1/2 state by using of ladder-type eit,” Proc. SPIE 8773, 877311 (2013).
[Crossref]

R. Sobolewski, J. Wang, J. Wang, H. Liu, B. Yang, J. He, and J. Fiurásek, “Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8s1/2 state by using of ladder-type eit,” Proc. SPIE 8773, 877311 (2013).
[Crossref]

B. Yang, J. Gao, T. Zhang, and J. Wang, “Electromagnetically induced transparency without a doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A 83, 013818 (2011).
[Crossref]

Wang, M.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Wang, R.-Q.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Wang, Y.

X. Jiang, H. Zhang, and Y. Wang, “Electromagnetically induced transparency in a zeeman-sublevels λ-system of cold 87rb atoms in free space,” Chin. Phys. B 25, 034204 (2016).
[Crossref]

Wang, Z.

Z. Wang, “Control of the optical multistability in a three-level ladder-type quantum well system,” Opt. Commun. 282, 4745–4748 (2009).
[Crossref]

Wasan, A.

A. Krishna, K. Pandey, A. Wasan, and V. Natarajan, “High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency,” Europhys. Lett. 72, 221–227 (2005).
[Crossref]

Weatherill, K. J.

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

Wei, X.-G.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Weis, A.

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[Crossref]

Weitz, M.

L. Karpa, G. Nikoghosyan, F. Vewinger, M. Fleischhauer, and M. Weitz, “Frequency matching in light-storage spectroscopy of atomic raman transitions,” Phys. Rev. Lett. 103, 093601 (2009).
[Crossref] [PubMed]

Weller, L.

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, “Absolute absorption and dispersion of a rubidium vapour in the hyperfine paschen-back regime,” J. Phys. B 45, 215005 (2012).
[Crossref]

Whang, T.-J.

Z.-S. He, J.-H. Tsai, M.-T. Lee, Y.-Y. Chang, C.-C. Tsai, and T.-J. Whang, “Determination of the cesium 11s2s1/2 hyperfine magnetic coupling constant using electromagnetically induced transparency,” J. Phys. Soc. Jpn. 81, 124302 (2012).
[Crossref]

Whiting, D. J.

Wu, J.-H.

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

Wu, L.-A.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Wynands, R.

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[Crossref]

Xiao, L.

S. Bao, H. Zhang, J. Zhou, L. Zhang, J. Zhao, L. Xiao, and S. Jia, “Polarization spectra of zeeman sublevels in rydberg electromagnetically induced transparency,” Phys. Rev. A 94, 043822 (2016).
[Crossref]

Xiao, L. T.

S. X. Bao, H. Zhang, J. Zhou, L. J. Zhang, J. M. Zhao, L. T. Xiao, and S. T. Jia, “Tunable frequency stabilization to zeeman sublevel transitions between an intermediate state and rydberg states,” Laser Phys. 27, 015701 (2017).
[Crossref]

Xiao, M.

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[Crossref] [PubMed]

Xin, P.-P.

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “High quality electromagnetically induced transparency spectroscopy of 87rb in a buffer gas cell with a magnetic field,” Chin. Phys. B 26, 74204–074204 (2017).
[Crossref]

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “Electromagnetically induced transparency of 87rb in a buffer gas cell with magnetic field,” J. Phys. B 50, 095401 (2017).
[Crossref]

H. Cheng, S.-S. Zhang, P.-P. Xin, Y. Cheng, and H.-P. Liu, “Theoretical simulation of 87rb absorption spectrum in a thermal cell,” Chin. Phys. B 25, 114203 (2016).
[Crossref]

Ya-Bin, D.

D. Ya-Bin, G. Jiang-Rui, and D. You-Er, “Quantum coherent effects in multi-zeeman-sublevel atomic systems,” Chin. Phys. B 17, 3306–3312 (2008).
[Crossref]

Yang, B.

R. Sobolewski, J. Wang, J. Wang, H. Liu, B. Yang, J. He, and J. Fiurásek, “Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8s1/2 state by using of ladder-type eit,” Proc. SPIE 8773, 877311 (2013).
[Crossref]

B. Yang, J. Gao, T. Zhang, and J. Wang, “Electromagnetically induced transparency without a doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A 83, 013818 (2011).
[Crossref]

Yang, S.-P.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Yang, W.

S. Bao, W. Yang, H. Zhang, L. Zhang, J. Zhao, and S. Jia, “Splitting of an electromagnetically induced transparency window of a cascade system with 133cs rydberg atoms in a static magnetic field,” J. Phys. Soc. Jpn. 84, 104301 (2015).
[Crossref]

You-Er, D.

D. Ya-Bin, G. Jiang-Rui, and D. You-Er, “Quantum coherent effects in multi-zeeman-sublevel atomic systems,” Chin. Phys. B 17, 3306–3312 (2008).
[Crossref]

Zentile, M. A.

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40, 4289–4292 (2015).
[Crossref] [PubMed]

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, “Absolute absorption and dispersion of a rubidium vapour in the hyperfine paschen-back regime,” J. Phys. B 45, 215005 (2012).
[Crossref]

Zhang, H.

S. X. Bao, H. Zhang, J. Zhou, L. J. Zhang, J. M. Zhao, L. T. Xiao, and S. T. Jia, “Tunable frequency stabilization to zeeman sublevel transitions between an intermediate state and rydberg states,” Laser Phys. 27, 015701 (2017).
[Crossref]

S. Bao, H. Zhang, J. Zhou, L. Zhang, J. Zhao, L. Xiao, and S. Jia, “Polarization spectra of zeeman sublevels in rydberg electromagnetically induced transparency,” Phys. Rev. A 94, 043822 (2016).
[Crossref]

X. Jiang, H. Zhang, and Y. Wang, “Electromagnetically induced transparency in a zeeman-sublevels λ-system of cold 87rb atoms in free space,” Chin. Phys. B 25, 034204 (2016).
[Crossref]

S. Bao, W. Yang, H. Zhang, L. Zhang, J. Zhao, and S. Jia, “Splitting of an electromagnetically induced transparency window of a cascade system with 133cs rydberg atoms in a static magnetic field,” J. Phys. Soc. Jpn. 84, 104301 (2015).
[Crossref]

Zhang, J.

Y. Dong, H. Wang, J. Gao, and J. Zhang, “Quantum coherence effects in quasidegenerate two-level atomic systems,” Phys. Rev. A 74, 063810 (2006).
[Crossref]

Zhang, L.

S. Bao, H. Zhang, J. Zhou, L. Zhang, J. Zhao, L. Xiao, and S. Jia, “Polarization spectra of zeeman sublevels in rydberg electromagnetically induced transparency,” Phys. Rev. A 94, 043822 (2016).
[Crossref]

S. Bao, W. Yang, H. Zhang, L. Zhang, J. Zhao, and S. Jia, “Splitting of an electromagnetically induced transparency window of a cascade system with 133cs rydberg atoms in a static magnetic field,” J. Phys. Soc. Jpn. 84, 104301 (2015).
[Crossref]

J. Zhao, X. Zhu, L. Zhang, Z. Feng, C. Li, and S. Jia, “High sensitivity spectroscopy of cesium rydberg atoms using electromagnetically induced transparency,” Opt. Express 17, 15821–6 (2009).
[Crossref] [PubMed]

Zhang, L. J.

S. X. Bao, H. Zhang, J. Zhou, L. J. Zhang, J. M. Zhao, L. T. Xiao, and S. T. Jia, “Tunable frequency stabilization to zeeman sublevel transitions between an intermediate state and rydberg states,” Laser Phys. 27, 015701 (2017).
[Crossref]

Zhang, S.-S.

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “High quality electromagnetically induced transparency spectroscopy of 87rb in a buffer gas cell with a magnetic field,” Chin. Phys. B 26, 74204–074204 (2017).
[Crossref]

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “Electromagnetically induced transparency of 87rb in a buffer gas cell with magnetic field,” J. Phys. B 50, 095401 (2017).
[Crossref]

H. Cheng, S.-S. Zhang, P.-P. Xin, Y. Cheng, and H.-P. Liu, “Theoretical simulation of 87rb absorption spectrum in a thermal cell,” Chin. Phys. B 25, 114203 (2016).
[Crossref]

Zhang, T.

B. Yang, J. Gao, T. Zhang, and J. Wang, “Electromagnetically induced transparency without a doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A 83, 013818 (2011).
[Crossref]

Zhao, J.

S. Bao, H. Zhang, J. Zhou, L. Zhang, J. Zhao, L. Xiao, and S. Jia, “Polarization spectra of zeeman sublevels in rydberg electromagnetically induced transparency,” Phys. Rev. A 94, 043822 (2016).
[Crossref]

S. Bao, W. Yang, H. Zhang, L. Zhang, J. Zhao, and S. Jia, “Splitting of an electromagnetically induced transparency window of a cascade system with 133cs rydberg atoms in a static magnetic field,” J. Phys. Soc. Jpn. 84, 104301 (2015).
[Crossref]

J. Zhao, X. Zhu, L. Zhang, Z. Feng, C. Li, and S. Jia, “High sensitivity spectroscopy of cesium rydberg atoms using electromagnetically induced transparency,” Opt. Express 17, 15821–6 (2009).
[Crossref] [PubMed]

Zhao, J. M.

S. X. Bao, H. Zhang, J. Zhou, L. J. Zhang, J. M. Zhao, L. T. Xiao, and S. T. Jia, “Tunable frequency stabilization to zeeman sublevel transitions between an intermediate state and rydberg states,” Laser Phys. 27, 015701 (2017).
[Crossref]

Zhou, J.

S. X. Bao, H. Zhang, J. Zhou, L. J. Zhang, J. M. Zhao, L. T. Xiao, and S. T. Jia, “Tunable frequency stabilization to zeeman sublevel transitions between an intermediate state and rydberg states,” Laser Phys. 27, 015701 (2017).
[Crossref]

S. Bao, H. Zhang, J. Zhou, L. Zhang, J. Zhao, L. Xiao, and S. Jia, “Polarization spectra of zeeman sublevels in rydberg electromagnetically induced transparency,” Phys. Rev. A 94, 043822 (2016).
[Crossref]

Zhu, X.

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Zuo, Z.-C.

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Appl. Phys. B (1)

A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast d1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B 105, 767–774 (2011).
[Crossref]

Chin. Phys. B (5)

X. Jiang, H. Zhang, and Y. Wang, “Electromagnetically induced transparency in a zeeman-sublevels λ-system of cold 87rb atoms in free space,” Chin. Phys. B 25, 034204 (2016).
[Crossref]

D. Ya-Bin, G. Jiang-Rui, and D. You-Er, “Quantum coherent effects in multi-zeeman-sublevel atomic systems,” Chin. Phys. B 17, 3306–3312 (2008).
[Crossref]

H. Cheng, S.-S. Zhang, P.-P. Xin, Y. Cheng, and H.-P. Liu, “Theoretical simulation of 87rb absorption spectrum in a thermal cell,” Chin. Phys. B 25, 114203 (2016).
[Crossref]

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “High quality electromagnetically induced transparency spectroscopy of 87rb in a buffer gas cell with a magnetic field,” Chin. Phys. B 26, 74204–074204 (2017).
[Crossref]

M. Wang, X.-G. Lu, J.-H. Bai, L.-Y. Pei, X.-X. Miao, Y.-L. Gao, L.-A. Wu, P.-M. Fu, S.-P. Yang, Z.-G. Pang, R.-Q. Wang, and Z.-C. Zuo, “Kramers-kronig relation in a doppler-broadened λ-type three-level system,” Chin. Phys. B 24, 114205 (2015).
[Crossref]

Eur. Phys. J. D (1)

G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, and D. Sarkisyan, “Study of “forbidden” atomic transitions on d2 line using rb nano-cell placed in external magnetic field,” Eur. Phys. J. D 66119 (2012).
[Crossref]

Europhys. Lett. (1)

A. Krishna, K. Pandey, A. Wasan, and V. Natarajan, “High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency,” Europhys. Lett. 72, 221–227 (2005).
[Crossref]

Ieee. T. Antenn. Propag. (1)

C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel, “Broadband rydberg atom-based electric-field probe for si-traceable, self-calibrated measurements,” Ieee. T. Antenn. Propag. 62, 6169–6182 (2014).
[Crossref]

J. Exp. Theor. Phys. (1)

A. Sargsyan, R. Mirzoyan, T. Vartanyan, and D. Sarkisyan, “Determination of the structure of hyperfine sublevels of rb in strong magnetic fields by means of the coherent population trapping technique,” J. Exp. Theor. Phys. 118, 359–364 (2014).
[Crossref]

J. Opt. B (1)

J. Mompart and R. Corbalán, “Lasing without inversion,” J. Opt. B 2, R7 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (5)

H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, “Electromagnetically induced transparency of 87rb in a buffer gas cell with magnetic field,” J. Phys. B 50, 095401 (2017).
[Crossref]

M. U. Momeen, G. Rangarajan, and P. C. Deshmukh, “Variations of intensity in rb d2 line at weak/intermediate fields,” J. Phys. B 40, 3163–3172 (2007).
[Crossref]

K. Kim, M. Kwon, H. D. Park, H. S. Moon, H. S. Rawat, K. An, and J. B. Kim, “Electromagnetically induced absorption spectra depending on intensities and detunings of the coupling field in cs vapour,” J. Phys. B 34, 4801 (2001).
[Crossref]

H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer, “Atom based rf electric field sensing,” J. Phys. B 48, 202001 (2015).
[Crossref]

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, C. S. Adams, and I. G. Hughes, “Absolute absorption and dispersion of a rubidium vapour in the hyperfine paschen-back regime,” J. Phys. B 45, 215005 (2012).
[Crossref]

J. Phys. Soc. Jpn. (2)

Z.-S. He, J.-H. Tsai, M.-T. Lee, Y.-Y. Chang, C.-C. Tsai, and T.-J. Whang, “Determination of the cesium 11s2s1/2 hyperfine magnetic coupling constant using electromagnetically induced transparency,” J. Phys. Soc. Jpn. 81, 124302 (2012).
[Crossref]

S. Bao, W. Yang, H. Zhang, L. Zhang, J. Zhao, and S. Jia, “Splitting of an electromagnetically induced transparency window of a cascade system with 133cs rydberg atoms in a static magnetic field,” J. Phys. Soc. Jpn. 84, 104301 (2015).
[Crossref]

JETP Lett. (1)

A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “Splitting of the electromagnetically induced transparency resonance on 85rb atoms in strong magnetic fields up to the paschen-back regime,” JETP Lett. 96, 303–307 (2012).
[Crossref]

Laser Phys. (1)

S. X. Bao, H. Zhang, J. Zhou, L. J. Zhang, J. M. Zhao, L. T. Xiao, and S. T. Jia, “Tunable frequency stabilization to zeeman sublevel transitions between an intermediate state and rydberg states,” Laser Phys. 27, 015701 (2017).
[Crossref]

Laser Phys. Lett. (1)

A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, “Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant,” Laser Phys. Lett. 11, 055701 (2014).
[Crossref]

Nature (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Wang, “Control of the optical multistability in a three-level ladder-type quantum well system,” Opt. Commun. 282, 4745–4748 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Spectrosc. (2)

A. Sargsyan, R. Mirzoyan, and D. Sarkisyan, “A study of dark resonance splitting for the d1 line of 87rb in strong magnetic fields,” Opt. Spectrosc. 113, 456–462 (2012).
[Crossref]

A. Sargsyan, M. G. Bason, D. Sarkisyan, A. K. Mohapatra, and C. S. Adams, “Electromagnetically induced transparency and two-photon absorption in the ladder system in thin columns of atomic vapors,” Opt. Spectrosc. 109, 529–537 (2010).
[Crossref]

Phys. Rev. A (21)

A. Tauschinsky, R. Newell, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, “Measurement of 87rb rydberg-state hyperfine splitting in a room-temperature vapor cell,” Phys. Rev. A 87, 042522 (2013).
[Crossref]

Z.-S. He, J.-H. Tsai, Y.-Y. Chang, C.-C. Liao, and C.-C. Tsai, “Ladder-type electromagnetically induced transparency with optical pumping effect,” Phys. Rev. A 87, 033402 (2013).
[Crossref]

M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano, and J. Fortágh, “Measurement of absolute transition frequencies of 87rb to ns and nd rydberg states by means of electromagnetically induced transparency,” Phys. Rev. A 83, 052515 (2011).
[Crossref]

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89, 033822 (2014).
[Crossref]

D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

R. Wynands, A. Nagel, S. Brandt, D. Meschede, and A. Weis, “Selection rules and line strengths of zeeman-split dark resonances,” Phys. Rev. A 58, 196–203 (1998).
[Crossref]

A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, and C. Adams, “Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor,” Phys. Rev. A 82, 045806 (2010).
[Crossref]

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
[Crossref]

B. Yang, J. Gao, T. Zhang, and J. Wang, “Electromagnetically induced transparency without a doppler background in a multilevel ladder-type cesium atomic system,” Phys. Rev. A 83, 013818 (2011).
[Crossref]

H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in rb vapor,” Phys. Rev. A 57, 2996–3002 (1998).
[Crossref]

A. Sargsyan, D. Sarkisyan, and A. Papoyan, “Dark-line atomic resonances in a submicron-thin rb vapor layer,” Phys. Rev. A 73, 033803 (2006).
[Crossref]

P. Valente, H. Failache, and A. Lezama, “Comparative study of the transient evolution of hanle electromagnetically induced transparency and absorption resonances,” Phys. Rev. A 65, 023814 (2002).
[Crossref]

Y. Dong, H. Wang, J. Gao, and J. Zhang, “Quantum coherence effects in quasidegenerate two-level atomic systems,” Phys. Rev. A 74, 063810 (2006).
[Crossref]

S. M. Iftiquar, G. R. Karve, and V. Natarajan, “Subnatural linewidth for probe absorption in an electromagnetically-induced-transparency medium due to doppler averaging,” Phys. Rev. A 77, 063807 (2008).
[Crossref]

X.-G. Wei, J.-H. Wu, G.-X. Sun, Z. Shao, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, “Splitting of an electromagnetically induced transparency window of rubidium atoms in a static magnetic field,” Phys. Rev. A 72, 023806 (2005).
[Crossref]

A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H. A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005).
[Crossref]

L. Ma, D. A. Anderson, and G. Raithel, “Paschen-back effects and rydberg-state diamagnetism in vapor-cell electromagnetically induced transparency,” Phys. Rev. A 95, 061804 (2017).
[Crossref]

S. Bao, H. Zhang, J. Zhou, L. Zhang, J. Zhao, L. Xiao, and S. Jia, “Polarization spectra of zeeman sublevels in rydberg electromagnetically induced transparency,” Phys. Rev. A 94, 043822 (2016).
[Crossref]

A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002).
[Crossref]

Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51, R1754–R1757 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

L. Karpa, G. Nikoghosyan, F. Vewinger, M. Fleischhauer, and M. Weitz, “Frequency matching in light-storage spectroscopy of atomic raman transitions,” Phys. Rev. Lett. 103, 093601 (2009).
[Crossref] [PubMed]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010).
[Crossref]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

R. Sobolewski, J. Wang, J. Wang, H. Liu, B. Yang, J. He, and J. Fiurásek, “Measurement of hyperfine splitting and determination of hyperfine structure constant of cesium 8s1/2 state by using of ladder-type eit,” Proc. SPIE 8773, 877311 (2013).
[Crossref]

SciPost Phys. (1)

J. Naber, R. Spreeuw, A. Tauschinsky, and B. van Linden van den Heuvell, “Electromagnetically induced transparency with rydberg atoms across the breit-rabi regime,” SciPost Phys. 2, 015 (2017).
[Crossref]

Superlattice. Microst. (1)

Vladan Pavlović and Ljiljana Stevanović, “Group velocity of light in a three level ladder-type spherical quantum dot with hydrogenic impurity,” Superlattice. Microst. 100, 500–507 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The energy level scheme (a) and experimental setup (b) of ladder-type EIT system for 87Rb. It should be noted that the hyperfine levels of Rydberg state are nearly degenerate in free fields for a vanishing coupling constant between the nuclear spin I and the total angular momentum J. The 780 nm probe (thin red line) and 480 nm coupling (thick blue line) beams are counter-propagated and overlapped in the vapor cell. PBS: polarizing beam splitter; DM: 45° dichroic mirror; BS: beam splitter; M: mirror; λ/2: half wave plate; λ/4: quarter wave plate; BPD: balanced photodetector.
Fig. 2
Fig. 2 Experimentally measured (blue lines) and theoretically calculated (red lines) absorptions of the probe beam as a function of probe beam frequency shift for different coupling detunings. The wavelength mismatching effect has been included in the calculation.
Fig. 3
Fig. 3 Ladder-type EIT system of 87Rb atom in a magnetic field. The probe laser frequency ωp is scanned over the F = 2 to 5P3/2 transition, whereas the frequency ωc is resonant to the transition F′ = 3 → 50S1/2. ω0p and ω0c denote the frequencies of the probe and coupling lasers in zero magnetic field, respectively.
Fig. 4
Fig. 4 The spectra for the probe and coupling laser σ+ and σ polarized in a magnetic field B = 37 Gauss. The red line is the experimental observation while the blue line is the calculated one. In the coupled basis, F is no longer a good quantum number for the Rydberg states except for the lines D and E.
Fig. 5
Fig. 5 The assignment of the Rydberg state in the three-level ladder-type EIT configuration for the spectral line A and A′ shown in Fig. 4. In the coupled basis, different F-component of Rydberg state mixes each other, making the coupling laser can also transit from F′ = 3 to F″ = 1 (in dotted olive lines), but they can be described by the good quantum numbers mJ and mI in the decoupled basis |JmJ〉|ImI〉 as shown.
Fig. 6
Fig. 6 The spectra for the probe and coupling laser σ+ and σ+ polarized in a magnetic field B = 40 Gauss. Similar to that shown in Fig. 4, the Rydberg state has to been described by a decoupled basis |JmJ, ImI〉 rather than a coupled basis.
Fig. 7
Fig. 7 The calculated spectra of Rydberg EIT at B = 40 Gauss for the polarization combinations of σ+σ and σ+σ+. They have completely different spectral patterns.
Fig. 8
Fig. 8 The experimental and calculated spectra of Rydberg EIT at various values of magnetic field from 0 to 47 Gauss. A narrow linewidth is used for resolving the lines.

Tables (2)

Tables Icon

Table 1 Assignment for the spectral lines shown in Fig. 4

Tables Icon

Table 2 Assignment for the spectral lines shown in Fig. 6

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H ^ ¯ = H ^ 0 + H ^ fs + H ^ hfs + H ^ B ,
| ( JI ) F m F = ( 1 ) J I + m F 2 F + 1 × m J , m I ( J I F m J m I m F ) | J m J | I m I ,
Δ E hfs = A hfs 2 K + B hfs 4 3 2 K ( K + 1 ) 2 I ( I + 1 ) J ( J + 1 ) I ( 2 I 1 ) J ( 2 J 1 ) ,
H B = μ B g J J B + μ B g I I B ,
( JI ) F i m F | μ B g J J B | ( JI ) F j m F = μ B B g J ( 1 ) J + I + F i + F j m F + 1 × ( 2 F i + 1 ) ( 2 F j + 1 ) J ( J + 1 ) ( 2 J + 1 ) × ( F i 1 F j m F 0 m F ) { J F i I F j J 1 }
( JI ) F i m F | μ B g I I B | ( JI ) F j m F = μ B B g I ( 1 ) J + I + F i + F j m F + 1 × ( 2 F i + 1 ) ( 2 F j + 1 ) I ( I + 1 ) ( 2 I + 1 ) × ( F i 1 F j m F 0 m F ) { I F i I F j I 1 }
σ m F m F = F m F | e r | F m F = J | e r | J ( 1 ) 2 F + J + I + m F ( 2 F + 1 ) ( 2 F + 1 ) ( 2 J + 1 ) × ( F 1 F m F m F m F m F ) { J J 1 F F I } .
Ψ = F | m F | C F | F m F

Metrics