Abstract

Since avalanche gain and breakdown voltage in most semiconductor materials change with temperature, instruments utilizing Avalanche Photodiodes (APDs) for their avalanche gains need to incorporate either temperature stabilization or voltage adjustment in the APD operation circuits. In this work we evaluated the temperature and temporal stability of avalanche gain in Al0.85Ga0.15As0.56Sb0.44, a wide bandgap semiconductor lattice-matched to InP substrates. We investigated the temperature and temporal stability of the gain and breakdown voltage at temperatures of 24 °C (room temperature) to 80 °C. The breakdown voltage varies linearly with temperature with a temperature coefficient of 1.60 mV/K. The avalanche gain reduces from 10 to 8.5, a reduction of 15%, when the temperature increases from 24 to 80°C. The temporal stability of gain was recorded when the APD was biased to achieve an avalanche gain of 10. Fluctuations are within ± 0.7% at 24°C, increasing to ± 1.33% at 80°C. The temperature and temporal stability of avalanche gain indicates the potential of using Al0.85Ga0.15As0.56Sb0.44 APDs grown on InP substrates to achieve high tolerance to temperature fluctuation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High temperature and wavelength dependence of avalanche gain of AlAsSb avalanche photodiodes

Ian C. Sandall, Shiyu Xie, JingJing Xie, and Chee Hing Tan
Opt. Lett. 36(21) 4287-4289 (2011)

AlxIn1-xAsySb1-y photodiodes with low avalanche breakdown temperature dependence

Andrew H. Jones, Yuan Yuan, Min Ren, Scott J. Maddox, Seth R. Bank, and Joe C. Campbell
Opt. Express 25(20) 24340-24345 (2017)

Proton radiation effect on InAs avalanche photodiodes

Xinxin Zhou, Benjamin White, Xiao Meng, Shiyong Zhang, Marina Gutierrez, Mark Robbins, Luis Gomez Rojas, Nick Nelms, Chee Hing Tan, and Jo Shien Ng
Opt. Express 25(3) 2818-2825 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Cho and H. H. Lee, “Impact ionization coefficient and energy distribution function in polar and nonpolar semiconductors,” J. Appl. Phys. 71(3), 1298–1305 (1992).
    [Crossref]
  2. L. Tirino, M. Weber, K. F. Brennan, E. Bellotti, and M. Goano, “Temperature dependence of the impact ionization coefficients in GaAs, cubic SiC, and zinc-blende GaN,” J. Appl. Phys. 94(1), 423–430 (2003).
    [Crossref]
  3. B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photonics Technol. Lett. 18(18), 1898–1900 (2006).
    [Crossref]
  4. L. J. J. Tan, J. S. Ng, C. H. Tan, and J. P. R. David, “Avalanche Noise Characteristics in Submicron InP Diodes,” IEEE J. Quantum Electron. 44(4), 378–382 (2008).
    [Crossref]
  5. L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
    [Crossref]
  6. X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
    [Crossref] [PubMed]
  7. X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, “Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown,” R. Soc. Open Sci. 4(5), 170071 (2017).
    [Crossref] [PubMed]
  8. J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess Noise Characteristics of Thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
    [Crossref]
  9. X. Zhou, L. L. G. Pinel, S. J. Dimler, S. Zhang, J. S. Ng, and C. H. Tan, “Thin Al1-xGaxAs0.56Sb0.44 Diodes With Low Excess Noise,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1 (2018).
    [Crossref]
  10. M. Guden and J. Piprek, “Material parameters of quaternary III - V semiconductors for multilayer mirrors at 1.55 μm wavelength,” Model. Simul. Mater. Sci. Eng. 4(4), 349–357 (1996).
    [Crossref]
  11. T. Kagawa and G. Motosugi, “AlGaAsSb Avalanche Photodiodes for 1.0–1.3 µm Wavelength Region,” Jpn. J. Appl. Phys. 18(12), 2317–2318 (1979).
    [Crossref]
  12. S. Miura, T. Mikawa, H. Kuwatsuka, N. Yasuoka, T. Tanahashi, and O. Wada, “AlGaSb avalanche photodiode exhibiting a very low excess noise factor,” Appl. Phys. Lett. 54(24), 2422–2423 (1989).
    [Crossref]
  13. M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014).
    [Crossref]
  14. M. E. Woodson, M. Ren, S. J. Maddox, Y. Chen, S. R. Bank, and J. C. Campbell, “Low-noise AlInAsSb avalanche photodiode,” Appl. Phys. Lett. 108(8), 081102 (2016).
    [Crossref]
  15. L. L. G. Pinel and et al.., “Improving Wet Etching of InGaAs/AlGaAsSb Avalanche Photodiode,” in 19th International Conference on Molecular Beam Epitaxy (2016).
  16. M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a Schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
    [Crossref]
  17. Hamamatsu Photonics Data sheets for S6045 and S5344, Si APDs. Hamamatsu Photonics Inc., March 2014.
  18. F. Ma, G. Karve, X. Zheng, X. Sun, A. L. Holmes, and J. C. Campbell, “Low-temperature breakdown properties of AlxGa1-xAs avalanche photodiodes,” Appl. Phys. Lett. 81(10), 1908–1910 (2002).
    [Crossref]
  19. J. S. L. Ong, J. S. Ng, A. B. Krysa, and J. P. R. David, “Temperature dependence of avalanche multiplication and breakdown voltage in Al0.52In0.48P,” J. Appl. Phys. 115(6), 064507 (2014).
    [Crossref]
  20. D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron Dev. 53(9), 2328–2334 (2006).
    [Crossref]
  21. S. Xie and C. H. Tan, “AlAsSb Avalanche Photodiodes With a Sub-mV/K Temperature Coefficient of Breakdown Voltage,” IEEE J. Quantum Electron. 47(11), 1391–1395 (2011).
    [Crossref]
  22. D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
    [Crossref]

2018 (1)

X. Zhou, L. L. G. Pinel, S. J. Dimler, S. Zhang, J. S. Ng, and C. H. Tan, “Thin Al1-xGaxAs0.56Sb0.44 Diodes With Low Excess Noise,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1 (2018).
[Crossref]

2017 (1)

X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, “Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown,” R. Soc. Open Sci. 4(5), 170071 (2017).
[Crossref] [PubMed]

2016 (2)

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref] [PubMed]

M. E. Woodson, M. Ren, S. J. Maddox, Y. Chen, S. R. Bank, and J. C. Campbell, “Low-noise AlInAsSb avalanche photodiode,” Appl. Phys. Lett. 108(8), 081102 (2016).
[Crossref]

2014 (2)

J. S. L. Ong, J. S. Ng, A. B. Krysa, and J. P. R. David, “Temperature dependence of avalanche multiplication and breakdown voltage in Al0.52In0.48P,” J. Appl. Phys. 115(6), 064507 (2014).
[Crossref]

M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014).
[Crossref]

2012 (1)

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess Noise Characteristics of Thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

2011 (2)

S. Xie and C. H. Tan, “AlAsSb Avalanche Photodiodes With a Sub-mV/K Temperature Coefficient of Breakdown Voltage,” IEEE J. Quantum Electron. 47(11), 1391–1395 (2011).
[Crossref]

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

2010 (1)

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

2008 (1)

L. J. J. Tan, J. S. Ng, C. H. Tan, and J. P. R. David, “Avalanche Noise Characteristics in Submicron InP Diodes,” IEEE J. Quantum Electron. 44(4), 378–382 (2008).
[Crossref]

2006 (2)

B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photonics Technol. Lett. 18(18), 1898–1900 (2006).
[Crossref]

D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron Dev. 53(9), 2328–2334 (2006).
[Crossref]

2003 (1)

L. Tirino, M. Weber, K. F. Brennan, E. Bellotti, and M. Goano, “Temperature dependence of the impact ionization coefficients in GaAs, cubic SiC, and zinc-blende GaN,” J. Appl. Phys. 94(1), 423–430 (2003).
[Crossref]

2002 (1)

F. Ma, G. Karve, X. Zheng, X. Sun, A. L. Holmes, and J. C. Campbell, “Low-temperature breakdown properties of AlxGa1-xAs avalanche photodiodes,” Appl. Phys. Lett. 81(10), 1908–1910 (2002).
[Crossref]

1996 (1)

M. Guden and J. Piprek, “Material parameters of quaternary III - V semiconductors for multilayer mirrors at 1.55 μm wavelength,” Model. Simul. Mater. Sci. Eng. 4(4), 349–357 (1996).
[Crossref]

1992 (1)

S. M. Cho and H. H. Lee, “Impact ionization coefficient and energy distribution function in polar and nonpolar semiconductors,” J. Appl. Phys. 71(3), 1298–1305 (1992).
[Crossref]

1989 (1)

S. Miura, T. Mikawa, H. Kuwatsuka, N. Yasuoka, T. Tanahashi, and O. Wada, “AlGaSb avalanche photodiode exhibiting a very low excess noise factor,” Appl. Phys. Lett. 54(24), 2422–2423 (1989).
[Crossref]

1979 (1)

T. Kagawa and G. Motosugi, “AlGaAsSb Avalanche Photodiodes for 1.0–1.3 µm Wavelength Region,” Jpn. J. Appl. Phys. 18(12), 2317–2318 (1979).
[Crossref]

1973 (1)

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a Schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
[Crossref]

Abdullah, S.

X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, “Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown,” R. Soc. Open Sci. 4(5), 170071 (2017).
[Crossref] [PubMed]

Bailey, R.

M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014).
[Crossref]

Bank, S. R.

M. E. Woodson, M. Ren, S. J. Maddox, Y. Chen, S. R. Bank, and J. C. Campbell, “Low-noise AlInAsSb avalanche photodiode,” Appl. Phys. Lett. 108(8), 081102 (2016).
[Crossref]

Bellotti, E.

L. Tirino, M. Weber, K. F. Brennan, E. Bellotti, and M. Goano, “Temperature dependence of the impact ionization coefficients in GaAs, cubic SiC, and zinc-blende GaN,” J. Appl. Phys. 94(1), 423–430 (2003).
[Crossref]

Brennan, K. F.

L. Tirino, M. Weber, K. F. Brennan, E. Bellotti, and M. Goano, “Temperature dependence of the impact ionization coefficients in GaAs, cubic SiC, and zinc-blende GaN,” J. Appl. Phys. 94(1), 423–430 (2003).
[Crossref]

Calandri, N.

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref] [PubMed]

Campbell, J. C.

M. E. Woodson, M. Ren, S. J. Maddox, Y. Chen, S. R. Bank, and J. C. Campbell, “Low-noise AlInAsSb avalanche photodiode,” Appl. Phys. Lett. 108(8), 081102 (2016).
[Crossref]

F. Ma, G. Karve, X. Zheng, X. Sun, A. L. Holmes, and J. C. Campbell, “Low-temperature breakdown properties of AlxGa1-xAs avalanche photodiodes,” Appl. Phys. Lett. 81(10), 1908–1910 (2002).
[Crossref]

Chen, Y.

M. E. Woodson, M. Ren, S. J. Maddox, Y. Chen, S. R. Bank, and J. C. Campbell, “Low-noise AlInAsSb avalanche photodiode,” Appl. Phys. Lett. 108(8), 081102 (2016).
[Crossref]

Cho, S. M.

S. M. Cho and H. H. Lee, “Impact ionization coefficient and energy distribution function in polar and nonpolar semiconductors,” J. Appl. Phys. 71(3), 1298–1305 (1992).
[Crossref]

David, J. P. R.

J. S. L. Ong, J. S. Ng, A. B. Krysa, and J. P. R. David, “Temperature dependence of avalanche multiplication and breakdown voltage in Al0.52In0.48P,” J. Appl. Phys. 115(6), 064507 (2014).
[Crossref]

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

L. J. J. Tan, J. S. Ng, C. H. Tan, and J. P. R. David, “Avalanche Noise Characteristics in Submicron InP Diodes,” IEEE J. Quantum Electron. 44(4), 378–382 (2008).
[Crossref]

D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron Dev. 53(9), 2328–2334 (2006).
[Crossref]

Diagne, M.

M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014).
[Crossref]

Dimler, S. J.

X. Zhou, L. L. G. Pinel, S. J. Dimler, S. Zhang, J. S. Ng, and C. H. Tan, “Thin Al1-xGaxAs0.56Sb0.44 Diodes With Low Excess Noise,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1 (2018).
[Crossref]

Donnelly, J.

M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014).
[Crossref]

Duerr, E.

M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014).
[Crossref]

Goano, M.

L. Tirino, M. Weber, K. F. Brennan, E. Bellotti, and M. Goano, “Temperature dependence of the impact ionization coefficients in GaAs, cubic SiC, and zinc-blende GaN,” J. Appl. Phys. 94(1), 423–430 (2003).
[Crossref]

Goh, Y. L.

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

Goodhue, W.

M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014).
[Crossref]

Grzesik, M.

M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014).
[Crossref]

Guden, M.

M. Guden and J. Piprek, “Material parameters of quaternary III - V semiconductors for multilayer mirrors at 1.55 μm wavelength,” Model. Simul. Mater. Sci. Eng. 4(4), 349–357 (1996).
[Crossref]

Gunther, D.

B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photonics Technol. Lett. 18(18), 1898–1900 (2006).
[Crossref]

Holmes, A. L.

F. Ma, G. Karve, X. Zheng, X. Sun, A. L. Holmes, and J. C. Campbell, “Low-temperature breakdown properties of AlxGa1-xAs avalanche photodiodes,” Appl. Phys. Lett. 81(10), 1908–1910 (2002).
[Crossref]

Jazwiecki, M.

B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photonics Technol. Lett. 18(18), 1898–1900 (2006).
[Crossref]

Johnson, W. C.

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a Schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
[Crossref]

Jones, S. K.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

Kagawa, T.

T. Kagawa and G. Motosugi, “AlGaAsSb Avalanche Photodiodes for 1.0–1.3 µm Wavelength Region,” Jpn. J. Appl. Phys. 18(12), 2317–2318 (1979).
[Crossref]

Karve, G.

F. Ma, G. Karve, X. Zheng, X. Sun, A. L. Holmes, and J. C. Campbell, “Low-temperature breakdown properties of AlxGa1-xAs avalanche photodiodes,” Appl. Phys. Lett. 81(10), 1908–1910 (2002).
[Crossref]

Ko, J.

B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photonics Technol. Lett. 18(18), 1898–1900 (2006).
[Crossref]

Krysa, A. B.

J. S. L. Ong, J. S. Ng, A. B. Krysa, and J. P. R. David, “Temperature dependence of avalanche multiplication and breakdown voltage in Al0.52In0.48P,” J. Appl. Phys. 115(6), 064507 (2014).
[Crossref]

Kuwatsuka, H.

S. Miura, T. Mikawa, H. Kuwatsuka, N. Yasuoka, T. Tanahashi, and O. Wada, “AlGaSb avalanche photodiode exhibiting a very low excess noise factor,” Appl. Phys. Lett. 54(24), 2422–2423 (1989).
[Crossref]

Lampert, M. A.

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a Schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
[Crossref]

Lee, H. H.

S. M. Cho and H. H. Lee, “Impact ionization coefficient and energy distribution function in polar and nonpolar semiconductors,” J. Appl. Phys. 71(3), 1298–1305 (1992).
[Crossref]

Levine, B. F.

B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photonics Technol. Lett. 18(18), 1898–1900 (2006).
[Crossref]

Ma, F.

F. Ma, G. Karve, X. Zheng, X. Sun, A. L. Holmes, and J. C. Campbell, “Low-temperature breakdown properties of AlxGa1-xAs avalanche photodiodes,” Appl. Phys. Lett. 81(10), 1908–1910 (2002).
[Crossref]

Maddox, S. J.

M. E. Woodson, M. Ren, S. J. Maddox, Y. Chen, S. R. Bank, and J. C. Campbell, “Low-noise AlInAsSb avalanche photodiode,” Appl. Phys. Lett. 108(8), 081102 (2016).
[Crossref]

Manfra, M.

M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014).
[Crossref]

Massey, D. J.

D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron Dev. 53(9), 2328–2334 (2006).
[Crossref]

Meier, J. H.

B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photonics Technol. Lett. 18(18), 1898–1900 (2006).
[Crossref]

Meng, X.

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref] [PubMed]

Mikawa, T.

S. Miura, T. Mikawa, H. Kuwatsuka, N. Yasuoka, T. Tanahashi, and O. Wada, “AlGaSb avalanche photodiode exhibiting a very low excess noise factor,” Appl. Phys. Lett. 54(24), 2422–2423 (1989).
[Crossref]

Miura, S.

S. Miura, T. Mikawa, H. Kuwatsuka, N. Yasuoka, T. Tanahashi, and O. Wada, “AlGaSb avalanche photodiode exhibiting a very low excess noise factor,” Appl. Phys. Lett. 54(24), 2422–2423 (1989).
[Crossref]

Moreno, M.

X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, “Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown,” R. Soc. Open Sci. 4(5), 170071 (2017).
[Crossref] [PubMed]

Motosugi, G.

T. Kagawa and G. Motosugi, “AlGaAsSb Avalanche Photodiodes for 1.0–1.3 µm Wavelength Region,” Jpn. J. Appl. Phys. 18(12), 2317–2318 (1979).
[Crossref]

Ng, J. S.

X. Zhou, L. L. G. Pinel, S. J. Dimler, S. Zhang, J. S. Ng, and C. H. Tan, “Thin Al1-xGaxAs0.56Sb0.44 Diodes With Low Excess Noise,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1 (2018).
[Crossref]

X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, “Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown,” R. Soc. Open Sci. 4(5), 170071 (2017).
[Crossref] [PubMed]

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref] [PubMed]

J. S. L. Ong, J. S. Ng, A. B. Krysa, and J. P. R. David, “Temperature dependence of avalanche multiplication and breakdown voltage in Al0.52In0.48P,” J. Appl. Phys. 115(6), 064507 (2014).
[Crossref]

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

L. J. J. Tan, J. S. Ng, C. H. Tan, and J. P. R. David, “Avalanche Noise Characteristics in Submicron InP Diodes,” IEEE J. Quantum Electron. 44(4), 378–382 (2008).
[Crossref]

Ong, D. S. G.

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

Ong, J. S. L.

J. S. L. Ong, J. S. Ng, A. B. Krysa, and J. P. R. David, “Temperature dependence of avalanche multiplication and breakdown voltage in Al0.52In0.48P,” J. Appl. Phys. 115(6), 064507 (2014).
[Crossref]

Pinel, L. L. G.

X. Zhou, L. L. G. Pinel, S. J. Dimler, S. Zhang, J. S. Ng, and C. H. Tan, “Thin Al1-xGaxAs0.56Sb0.44 Diodes With Low Excess Noise,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1 (2018).
[Crossref]

L. L. G. Pinel and et al.., “Improving Wet Etching of InGaAs/AlGaAsSb Avalanche Photodiode,” in 19th International Conference on Molecular Beam Epitaxy (2016).

Piprek, J.

M. Guden and J. Piprek, “Material parameters of quaternary III - V semiconductors for multilayer mirrors at 1.55 μm wavelength,” Model. Simul. Mater. Sci. Eng. 4(4), 349–357 (1996).
[Crossref]

Qian, Y.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

Rees, G. J.

D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron Dev. 53(9), 2328–2334 (2006).
[Crossref]

Ren, M.

M. E. Woodson, M. Ren, S. J. Maddox, Y. Chen, S. R. Bank, and J. C. Campbell, “Low-noise AlInAsSb avalanche photodiode,” Appl. Phys. Lett. 108(8), 081102 (2016).
[Crossref]

Sacks, R. N.

B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photonics Technol. Lett. 18(18), 1898–1900 (2006).
[Crossref]

Sanzaro, M.

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref] [PubMed]

Sun, X.

F. Ma, G. Karve, X. Zheng, X. Sun, A. L. Holmes, and J. C. Campbell, “Low-temperature breakdown properties of AlxGa1-xAs avalanche photodiodes,” Appl. Phys. Lett. 81(10), 1908–1910 (2002).
[Crossref]

Tan, C. H.

X. Zhou, L. L. G. Pinel, S. J. Dimler, S. Zhang, J. S. Ng, and C. H. Tan, “Thin Al1-xGaxAs0.56Sb0.44 Diodes With Low Excess Noise,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1 (2018).
[Crossref]

X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, “Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown,” R. Soc. Open Sci. 4(5), 170071 (2017).
[Crossref] [PubMed]

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref] [PubMed]

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess Noise Characteristics of Thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

S. Xie and C. H. Tan, “AlAsSb Avalanche Photodiodes With a Sub-mV/K Temperature Coefficient of Breakdown Voltage,” IEEE J. Quantum Electron. 47(11), 1391–1395 (2011).
[Crossref]

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

L. J. J. Tan, J. S. Ng, C. H. Tan, and J. P. R. David, “Avalanche Noise Characteristics in Submicron InP Diodes,” IEEE J. Quantum Electron. 44(4), 378–382 (2008).
[Crossref]

Tan, L. J. J.

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

L. J. J. Tan, J. S. Ng, C. H. Tan, and J. P. R. David, “Avalanche Noise Characteristics in Submicron InP Diodes,” IEEE J. Quantum Electron. 44(4), 378–382 (2008).
[Crossref]

Tanahashi, T.

S. Miura, T. Mikawa, H. Kuwatsuka, N. Yasuoka, T. Tanahashi, and O. Wada, “AlGaSb avalanche photodiode exhibiting a very low excess noise factor,” Appl. Phys. Lett. 54(24), 2422–2423 (1989).
[Crossref]

Tirino, L.

L. Tirino, M. Weber, K. F. Brennan, E. Bellotti, and M. Goano, “Temperature dependence of the impact ionization coefficients in GaAs, cubic SiC, and zinc-blende GaN,” J. Appl. Phys. 94(1), 423–430 (2003).
[Crossref]

Tosi, A.

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref] [PubMed]

Tozer, R. C.

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess Noise Characteristics of Thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

Turner, G.

M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014).
[Crossref]

Valdmanis, J. A.

B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photonics Technol. Lett. 18(18), 1898–1900 (2006).
[Crossref]

Wada, O.

S. Miura, T. Mikawa, H. Kuwatsuka, N. Yasuoka, T. Tanahashi, and O. Wada, “AlGaSb avalanche photodiode exhibiting a very low excess noise factor,” Appl. Phys. Lett. 54(24), 2422–2423 (1989).
[Crossref]

Weber, M.

L. Tirino, M. Weber, K. F. Brennan, E. Bellotti, and M. Goano, “Temperature dependence of the impact ionization coefficients in GaAs, cubic SiC, and zinc-blende GaN,” J. Appl. Phys. 94(1), 423–430 (2003).
[Crossref]

Woods, M. H.

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a Schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
[Crossref]

Woodson, M. E.

M. E. Woodson, M. Ren, S. J. Maddox, Y. Chen, S. R. Bank, and J. C. Campbell, “Low-noise AlInAsSb avalanche photodiode,” Appl. Phys. Lett. 108(8), 081102 (2016).
[Crossref]

Xie, J.

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess Noise Characteristics of Thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

Xie, S.

X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, “Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown,” R. Soc. Open Sci. 4(5), 170071 (2017).
[Crossref] [PubMed]

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref] [PubMed]

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess Noise Characteristics of Thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

S. Xie and C. H. Tan, “AlAsSb Avalanche Photodiodes With a Sub-mV/K Temperature Coefficient of Breakdown Voltage,” IEEE J. Quantum Electron. 47(11), 1391–1395 (2011).
[Crossref]

Yasuoka, N.

S. Miura, T. Mikawa, H. Kuwatsuka, N. Yasuoka, T. Tanahashi, and O. Wada, “AlGaSb avalanche photodiode exhibiting a very low excess noise factor,” Appl. Phys. Lett. 54(24), 2422–2423 (1989).
[Crossref]

Zhang, S.

X. Zhou, L. L. G. Pinel, S. J. Dimler, S. Zhang, J. S. Ng, and C. H. Tan, “Thin Al1-xGaxAs0.56Sb0.44 Diodes With Low Excess Noise,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1 (2018).
[Crossref]

X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, “Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown,” R. Soc. Open Sci. 4(5), 170071 (2017).
[Crossref] [PubMed]

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

Zheng, X.

F. Ma, G. Karve, X. Zheng, X. Sun, A. L. Holmes, and J. C. Campbell, “Low-temperature breakdown properties of AlxGa1-xAs avalanche photodiodes,” Appl. Phys. Lett. 81(10), 1908–1910 (2002).
[Crossref]

Zhou, X.

X. Zhou, L. L. G. Pinel, S. J. Dimler, S. Zhang, J. S. Ng, and C. H. Tan, “Thin Al1-xGaxAs0.56Sb0.44 Diodes With Low Excess Noise,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1 (2018).
[Crossref]

X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, “Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown,” R. Soc. Open Sci. 4(5), 170071 (2017).
[Crossref] [PubMed]

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

S. Miura, T. Mikawa, H. Kuwatsuka, N. Yasuoka, T. Tanahashi, and O. Wada, “AlGaSb avalanche photodiode exhibiting a very low excess noise factor,” Appl. Phys. Lett. 54(24), 2422–2423 (1989).
[Crossref]

M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014).
[Crossref]

M. E. Woodson, M. Ren, S. J. Maddox, Y. Chen, S. R. Bank, and J. C. Campbell, “Low-noise AlInAsSb avalanche photodiode,” Appl. Phys. Lett. 108(8), 081102 (2016).
[Crossref]

F. Ma, G. Karve, X. Zheng, X. Sun, A. L. Holmes, and J. C. Campbell, “Low-temperature breakdown properties of AlxGa1-xAs avalanche photodiodes,” Appl. Phys. Lett. 81(10), 1908–1910 (2002).
[Crossref]

IEEE J. Quantum Electron. (3)

S. Xie and C. H. Tan, “AlAsSb Avalanche Photodiodes With a Sub-mV/K Temperature Coefficient of Breakdown Voltage,” IEEE J. Quantum Electron. 47(11), 1391–1395 (2011).
[Crossref]

L. J. J. Tan, J. S. Ng, C. H. Tan, and J. P. R. David, “Avalanche Noise Characteristics in Submicron InP Diodes,” IEEE J. Quantum Electron. 44(4), 378–382 (2008).
[Crossref]

L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Zhou, L. L. G. Pinel, S. J. Dimler, S. Zhang, J. S. Ng, and C. H. Tan, “Thin Al1-xGaxAs0.56Sb0.44 Diodes With Low Excess Noise,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photonics Technol. Lett. 18(18), 1898–1900 (2006).
[Crossref]

IEEE Trans. Electron Dev. (3)

J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess Noise Characteristics of Thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012).
[Crossref]

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
[Crossref]

D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron Dev. 53(9), 2328–2334 (2006).
[Crossref]

J. Appl. Phys. (3)

J. S. L. Ong, J. S. Ng, A. B. Krysa, and J. P. R. David, “Temperature dependence of avalanche multiplication and breakdown voltage in Al0.52In0.48P,” J. Appl. Phys. 115(6), 064507 (2014).
[Crossref]

S. M. Cho and H. H. Lee, “Impact ionization coefficient and energy distribution function in polar and nonpolar semiconductors,” J. Appl. Phys. 71(3), 1298–1305 (1992).
[Crossref]

L. Tirino, M. Weber, K. F. Brennan, E. Bellotti, and M. Goano, “Temperature dependence of the impact ionization coefficients in GaAs, cubic SiC, and zinc-blende GaN,” J. Appl. Phys. 94(1), 423–430 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Kagawa and G. Motosugi, “AlGaAsSb Avalanche Photodiodes for 1.0–1.3 µm Wavelength Region,” Jpn. J. Appl. Phys. 18(12), 2317–2318 (1979).
[Crossref]

Model. Simul. Mater. Sci. Eng. (1)

M. Guden and J. Piprek, “Material parameters of quaternary III - V semiconductors for multilayer mirrors at 1.55 μm wavelength,” Model. Simul. Mater. Sci. Eng. 4(4), 349–357 (1996).
[Crossref]

R. Soc. Open Sci. (2)

X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016).
[Crossref] [PubMed]

X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, “Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown,” R. Soc. Open Sci. 4(5), 170071 (2017).
[Crossref] [PubMed]

Solid-State Electron. (1)

M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a Schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973).
[Crossref]

Other (2)

Hamamatsu Photonics Data sheets for S6045 and S5344, Si APDs. Hamamatsu Photonics Inc., March 2014.

L. L. G. Pinel and et al.., “Improving Wet Etching of InGaAs/AlGaAsSb Avalanche Photodiode,” in 19th International Conference on Molecular Beam Epitaxy (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Wafer structure and (b) top view of circular mesa diodes with 220 µm diameter used in this work.
Fig. 2
Fig. 2 (a) Room temperature dark currents of 27 APDs with diameter of 220 µm. Data of four APDs selected for subsequent high temperature measurement are plotted in black solid lines. Blue reference line indicates −11.9 V reverse bias. (b) Measured gain at room temperature from the four selected APDs.
Fig. 3
Fig. 3 1/M plotted as a function of reverse bias for each APD. Solid lines represent linear fit to the experimental data.
Fig. 4
Fig. 4 Fluctuations of M versus time for APD-1, −2, −3 and −4, at 24, 40, 60 and 80 °C, with reference to mean gain values at respective temperatures at 11.9 V. Two sets of data were recorded for each APD at a given temperature.
Fig. 5
Fig. 5 (a) Comparison of M versus temperature between the Al0.85Ga0.15As0.56Sb0.44 APDs and commercial Si APDs. Solid lines are linear fittings to the data. (b) Dark currents of the four Al0.85Ga0.15As0.56Sb0.44 APDs before (lines) and after (symbols) temperature dependence measurements.

Metrics