Abstract

A fiber probe is presented that traps single micro-sized particles and allows detection of their optical properties. The trapping mechanism used is based on fluid suction with a micro-structured optical fiber that has five holes along its cladding. Proof-of-principle experiments with a diluted solution of fluorescently labeled particles are performed. The fiber probe presented here may find various applications in life-science and environmental monitoring.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A fiber optic system for detection and collection of micrometer-size particles

Aziza Sudirman, Sebastián Etcheverry, Mårten Stjernström, Fredrik Laurell, and Walter Margulis
Opt. Express 22(18) 21480-21487 (2014)

Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber

Charithra Rajapakse, Fan Wang, Tiffany C. Y. Tang, Peter J. Reece, Sergio G. Leon-Saval, and Alexander Argyros
Opt. Express 20(10) 11232-11240 (2012)

Three-dimensional optical trapping of partially silvered silica microparticles

P. Jordan, J. Cooper, G. McNay, F. T. Docherty, W. E. Smith, G. Sinclair, and M. J. Padgett
Opt. Lett. 29(21) 2488-2490 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. A. Nilsson, F. Petersson, H. Jönsson, and T. Laurell, “Acoustic control of suspended particles in micro fluidic chips,” Lab Chip 4(2), 131–135 (2004).
    [Crossref] [PubMed]
  3. L. S. Jang, P. H. Huang, and K. C. Lan, “Biosensors and Bioelectronics Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes,” Biosens. Bioelectron. 24(12), 3637–3644 (2009).
    [Crossref] [PubMed]
  4. L. Yuan, Z. Liu, J. Yang, and C. Guan, “Twin-core fiber optical tweezers,” Opt. Express 16(7), 4559–4566 (2008).
    [Crossref] [PubMed]
  5. V. K. Shinoj and V. M. Murukeshan, “Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles,” Opt. Lett. 37(10), 1607–1609 (2012).
    [Crossref] [PubMed]
  6. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
    [Crossref] [PubMed]
  7. H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2(1), 818 (2012).
    [Crossref] [PubMed]
  8. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref] [PubMed]
  9. S. Lee, B. Joo, P. J. Jeon, S. Im, and K. Oh, “Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher,” Biomed. Opt. Express 6(11), 4417–4432 (2015).
    [Crossref] [PubMed]
  10. H. Xin, H. Lei, Y. Zhang, X. Li, and B. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
    [Crossref] [PubMed]
  11. P. H. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2512–2520 (2012).
    [Crossref]
  12. N. Rasenack and B. W. Müller, “Micron-Size Drug Particles: Common and Novel Micronization Techniques,” Pharm. Dev. Technol. 9(1), 1–13 (2004).
    [Crossref] [PubMed]
  13. B. J. Marquardt, S. R. Goode, and S. M. Angel, “In Situ Determination of Lead in Paint by Laser-Induced Breakdown Spectroscopy Using a Fiber-Optic Probe,” Anal. Chem. 68(6), 977–981 (1996).
    [Crossref]
  14. B. Thornton and T. Ura, “Hollow-Optical-Fiber-Based Laser-Induced Breakdown Spectroscopy System and its Use in Soil Salinity Measurements,” Appl. Phys. Express 6(10), 102402 (2013).
    [Crossref]
  15. C. J. Engelbrecht, W. Göbel, and F. Helmchen, “Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection,” Opt. Express 17(8), 6421–6435 (2009).
    [Crossref] [PubMed]
  16. S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
    [Crossref] [PubMed]
  17. A. Sudirman and W. Margulis, “All-Fiber Optofluidic Component to Combine Light and Fluid,” IEEE Photonics Technol. Lett. 26(10), 1031–1033 (2014).
    [Crossref]
  18. G. E. Town and J. T. Lizier, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett. 26(14), 1042–1044 (2001).
    [Crossref] [PubMed]
  19. Y. Huang, X. Wang, and R. Bao, “Etching Method of the Fabrication Optical Tapered Fiber and Its Formula,” Appl. Mech. Mater. 145, 520–524 (2011).
    [Crossref]
  20. R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
    [Crossref] [PubMed]
  21. S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
    [Crossref] [PubMed]
  22. D. Ryan, K. Ren, and H. Wu, “Single-cell assays,” Biomicrofluidics 5(2), 021501 (2011).
    [Crossref] [PubMed]
  23. A. Sudirman, S. Etcheverry, M. Stjernström, F. Laurell, and W. Margulis, “A fiber optic system for detection and collection of micrometer-size particles,” Opt. Express 22(18), 21480–21487 (2014).
    [Crossref] [PubMed]
  24. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
    [Crossref] [PubMed]
  25. O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
    [Crossref] [PubMed]

2017 (1)

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

2015 (2)

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

S. Lee, B. Joo, P. J. Jeon, S. Im, and K. Oh, “Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher,” Biomed. Opt. Express 6(11), 4417–4432 (2015).
[Crossref] [PubMed]

2014 (2)

A. Sudirman, S. Etcheverry, M. Stjernström, F. Laurell, and W. Margulis, “A fiber optic system for detection and collection of micrometer-size particles,” Opt. Express 22(18), 21480–21487 (2014).
[Crossref] [PubMed]

A. Sudirman and W. Margulis, “All-Fiber Optofluidic Component to Combine Light and Fluid,” IEEE Photonics Technol. Lett. 26(10), 1031–1033 (2014).
[Crossref]

2013 (1)

B. Thornton and T. Ura, “Hollow-Optical-Fiber-Based Laser-Induced Breakdown Spectroscopy System and its Use in Soil Salinity Measurements,” Appl. Phys. Express 6(10), 102402 (2013).
[Crossref]

2012 (3)

P. H. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2512–2520 (2012).
[Crossref]

H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2(1), 818 (2012).
[Crossref] [PubMed]

V. K. Shinoj and V. M. Murukeshan, “Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles,” Opt. Lett. 37(10), 1607–1609 (2012).
[Crossref] [PubMed]

2011 (3)

H. Xin, H. Lei, Y. Zhang, X. Li, and B. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
[Crossref] [PubMed]

Y. Huang, X. Wang, and R. Bao, “Etching Method of the Fabrication Optical Tapered Fiber and Its Formula,” Appl. Mech. Mater. 145, 520–524 (2011).
[Crossref]

D. Ryan, K. Ren, and H. Wu, “Single-cell assays,” Biomicrofluidics 5(2), 021501 (2011).
[Crossref] [PubMed]

2009 (2)

L. S. Jang, P. H. Huang, and K. C. Lan, “Biosensors and Bioelectronics Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes,” Biosens. Bioelectron. 24(12), 3637–3644 (2009).
[Crossref] [PubMed]

C. J. Engelbrecht, W. Göbel, and F. Helmchen, “Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection,” Opt. Express 17(8), 6421–6435 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

2004 (2)

A. Nilsson, F. Petersson, H. Jönsson, and T. Laurell, “Acoustic control of suspended particles in micro fluidic chips,” Lab Chip 4(2), 131–135 (2004).
[Crossref] [PubMed]

N. Rasenack and B. W. Müller, “Micron-Size Drug Particles: Common and Novel Micronization Techniques,” Pharm. Dev. Technol. 9(1), 1–13 (2004).
[Crossref] [PubMed]

2001 (2)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

G. E. Town and J. T. Lizier, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett. 26(14), 1042–1044 (2001).
[Crossref] [PubMed]

2000 (1)

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
[Crossref] [PubMed]

1996 (1)

B. J. Marquardt, S. R. Goode, and S. M. Angel, “In Situ Determination of Lead in Paint by Laser-Induced Breakdown Spectroscopy Using a Fiber-Optic Probe,” Anal. Chem. 68(6), 977–981 (1996).
[Crossref]

1986 (1)

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Angel, S. M.

B. J. Marquardt, S. R. Goode, and S. M. Angel, “In Situ Determination of Lead in Paint by Laser-Induced Breakdown Spectroscopy Using a Fiber-Optic Probe,” Anal. Chem. 68(6), 977–981 (1996).
[Crossref]

Ashkin, A.

Balis, U. J.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Bao, R.

Y. Huang, X. Wang, and R. Bao, “Etching Method of the Fabrication Optical Tapered Fiber and Its Formula,” Appl. Mech. Mater. 145, 520–524 (2011).
[Crossref]

Bell, D. W.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Bjorkholm, J. E.

Chu, S.

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Digumarthy, S.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Dziedzic, J. M.

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Ekpenyong, A.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Engelbrecht, C. J.

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Etcheverry, S.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

A. Sudirman, S. Etcheverry, M. Stjernström, F. Laurell, and W. Margulis, “A fiber optic system for detection and collection of micrometer-size particles,” Opt. Express 22(18), 21480–21487 (2014).
[Crossref] [PubMed]

Faridi, A.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Fischer-Friedrich, E.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Girardo, S.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Göbel, W.

Golfier, S.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Goode, S. R.

B. J. Marquardt, S. R. Goode, and S. M. Angel, “In Situ Determination of Lead in Paint by Laser-Induced Breakdown Spectroscopy Using a Fiber-Optic Probe,” Anal. Chem. 68(6), 977–981 (1996).
[Crossref]

Guan, C.

Guck, J.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Guo, C.

Haber, D. A.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Helmchen, F.

Herold, C.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Hochmuth, R. M.

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
[Crossref] [PubMed]

Huang, P. H.

L. S. Jang, P. H. Huang, and K. C. Lan, “Biosensors and Bioelectronics Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes,” Biosens. Bioelectron. 24(12), 3637–3644 (2009).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, X. Wang, and R. Bao, “Etching Method of the Fabrication Optical Tapered Fiber and Its Formula,” Appl. Mech. Mater. 145, 520–524 (2011).
[Crossref]

Im, S.

Irimia, D.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Jacobi, A.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Jang, L. S.

L. S. Jang, P. H. Huang, and K. C. Lan, “Biosensors and Bioelectronics Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes,” Biosens. Bioelectron. 24(12), 3637–3644 (2009).
[Crossref] [PubMed]

Jeon, P. J.

Jones, P. H.

P. H. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2512–2520 (2012).
[Crossref]

Jönsson, H.

A. Nilsson, F. Petersson, H. Jönsson, and T. Laurell, “Acoustic control of suspended particles in micro fluidic chips,” Lab Chip 4(2), 131–135 (2004).
[Crossref] [PubMed]

Joo, B.

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Keyser, U. F.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Klaue, D.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Kumar, T.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Kwak, E. L.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Lan, K. C.

L. S. Jang, P. H. Huang, and K. C. Lan, “Biosensors and Bioelectronics Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes,” Biosens. Bioelectron. 24(12), 3637–3644 (2009).
[Crossref] [PubMed]

Laurell, F.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

A. Sudirman, S. Etcheverry, M. Stjernström, F. Laurell, and W. Margulis, “A fiber optic system for detection and collection of micrometer-size particles,” Opt. Express 22(18), 21480–21487 (2014).
[Crossref] [PubMed]

Laurell, T.

A. Nilsson, F. Petersson, H. Jönsson, and T. Laurell, “Acoustic control of suspended particles in micro fluidic chips,” Lab Chip 4(2), 131–135 (2004).
[Crossref] [PubMed]

Lee, S.

Lei, H.

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Li, B.

H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2(1), 818 (2012).
[Crossref] [PubMed]

H. Xin, H. Lei, Y. Zhang, X. Li, and B. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
[Crossref] [PubMed]

Li, X.

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Liu, Z.

Lizier, J. T.

Maheswaran, S.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Mansfeld, J.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Margulis, W.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

A. Sudirman and W. Margulis, “All-Fiber Optofluidic Component to Combine Light and Fluid,” IEEE Photonics Technol. Lett. 26(10), 1031–1033 (2014).
[Crossref]

A. Sudirman, S. Etcheverry, M. Stjernström, F. Laurell, and W. Margulis, “A fiber optic system for detection and collection of micrometer-size particles,” Opt. Express 22(18), 21480–21487 (2014).
[Crossref] [PubMed]

Marquardt, B. J.

B. J. Marquardt, S. R. Goode, and S. M. Angel, “In Situ Determination of Lead in Paint by Laser-Induced Breakdown Spectroscopy Using a Fiber-Optic Probe,” Anal. Chem. 68(6), 977–981 (1996).
[Crossref]

Mietke, A.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Müller, B. W.

N. Rasenack and B. W. Müller, “Micron-Size Drug Particles: Common and Novel Micronization Techniques,” Pharm. Dev. Technol. 9(1), 1–13 (2004).
[Crossref] [PubMed]

Murukeshan, V. M.

Muzikansky, A.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Nagrath, S.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Nilsson, A.

A. Nilsson, F. Petersson, H. Jönsson, and T. Laurell, “Acoustic control of suspended particles in micro fluidic chips,” Lab Chip 4(2), 131–135 (2004).
[Crossref] [PubMed]

Oh, K.

Otto, O.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Pagliara, S.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Petersson, F.

A. Nilsson, F. Petersson, H. Jönsson, and T. Laurell, “Acoustic control of suspended particles in micro fluidic chips,” Lab Chip 4(2), 131–135 (2004).
[Crossref] [PubMed]

Ramachandraiah, H.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Rasenack, N.

N. Rasenack and B. W. Müller, “Micron-Size Drug Particles: Common and Novel Micronization Techniques,” Pharm. Dev. Technol. 9(1), 1–13 (2004).
[Crossref] [PubMed]

Ren, K.

D. Ryan, K. Ren, and H. Wu, “Single-cell assays,” Biomicrofluidics 5(2), 021501 (2011).
[Crossref] [PubMed]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Rosendahl, P.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Russom, A.

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

Ryan, D.

D. Ryan, K. Ren, and H. Wu, “Single-cell assays,” Biomicrofluidics 5(2), 021501 (2011).
[Crossref] [PubMed]

Ryan, P.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Schinkinger, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Sequist, L. V.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Shinoj, V. K.

Smith, M. R.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Stjernström, M.

Sudirman, A.

A. Sudirman, S. Etcheverry, M. Stjernström, F. Laurell, and W. Margulis, “A fiber optic system for detection and collection of micrometer-size particles,” Opt. Express 22(18), 21480–21487 (2014).
[Crossref] [PubMed]

A. Sudirman and W. Margulis, “All-Fiber Optofluidic Component to Combine Light and Fluid,” IEEE Photonics Technol. Lett. 26(10), 1031–1033 (2014).
[Crossref]

Thornton, B.

B. Thornton and T. Ura, “Hollow-Optical-Fiber-Based Laser-Induced Breakdown Spectroscopy System and its Use in Soil Salinity Measurements,” Appl. Phys. Express 6(10), 102402 (2013).
[Crossref]

Tompkins, R. G.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Toner, M.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Töpfner, N.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Town, G. E.

Ulkus, L.

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Ura, T.

B. Thornton and T. Ura, “Hollow-Optical-Fiber-Based Laser-Induced Breakdown Spectroscopy System and its Use in Soil Salinity Measurements,” Appl. Phys. Express 6(10), 102402 (2013).
[Crossref]

Wang, X.

Y. Huang, X. Wang, and R. Bao, “Etching Method of the Fabrication Optical Tapered Fiber and Its Formula,” Appl. Mech. Mater. 145, 520–524 (2011).
[Crossref]

Wobus, M.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Wu, H.

D. Ryan, K. Ren, and H. Wu, “Single-cell assays,” Biomicrofluidics 5(2), 021501 (2011).
[Crossref] [PubMed]

Xin, H.

H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2(1), 818 (2012).
[Crossref] [PubMed]

H. Xin, H. Lei, Y. Zhang, X. Li, and B. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011).
[Crossref] [PubMed]

Xu, R.

H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2(1), 818 (2012).
[Crossref] [PubMed]

Yang, J.

Yuan, L.

Zhang, Y.

Anal. Chem. (1)

B. J. Marquardt, S. R. Goode, and S. M. Angel, “In Situ Determination of Lead in Paint by Laser-Induced Breakdown Spectroscopy Using a Fiber-Optic Probe,” Anal. Chem. 68(6), 977–981 (1996).
[Crossref]

Appl. Mech. Mater. (1)

Y. Huang, X. Wang, and R. Bao, “Etching Method of the Fabrication Optical Tapered Fiber and Its Formula,” Appl. Mech. Mater. 145, 520–524 (2011).
[Crossref]

Appl. Phys. Express (1)

B. Thornton and T. Ura, “Hollow-Optical-Fiber-Based Laser-Induced Breakdown Spectroscopy System and its Use in Soil Salinity Measurements,” Appl. Phys. Express 6(10), 102402 (2013).
[Crossref]

Biomed. Opt. Express (1)

Biomicrofluidics (1)

D. Ryan, K. Ren, and H. Wu, “Single-cell assays,” Biomicrofluidics 5(2), 021501 (2011).
[Crossref] [PubMed]

Biophys. J. (2)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

L. S. Jang, P. H. Huang, and K. C. Lan, “Biosensors and Bioelectronics Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes,” Biosens. Bioelectron. 24(12), 3637–3644 (2009).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

A. Sudirman and W. Margulis, “All-Fiber Optofluidic Component to Combine Light and Fluid,” IEEE Photonics Technol. Lett. 26(10), 1031–1033 (2014).
[Crossref]

J. Biomech. (1)

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33(1), 15–22 (2000).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

P. H. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2512–2520 (2012).
[Crossref]

Lab Chip (1)

A. Nilsson, F. Petersson, H. Jönsson, and T. Laurell, “Acoustic control of suspended particles in micro fluidic chips,” Lab Chip 4(2), 131–135 (2004).
[Crossref] [PubMed]

Nat. Methods (1)

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref] [PubMed]

Nature (1)

S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Pharm. Dev. Technol. (1)

N. Rasenack and B. W. Müller, “Micron-Size Drug Particles: Common and Novel Micronization Techniques,” Pharm. Dev. Technol. 9(1), 1–13 (2004).
[Crossref] [PubMed]

Sci. Rep. (2)

S. Etcheverry, A. Faridi, H. Ramachandraiah, T. Kumar, W. Margulis, F. Laurell, and A. Russom, “High performance micro-flow cytometer based on optical fibres,” Sci. Rep. 7(1), 5628 (2017).
[Crossref] [PubMed]

H. Xin, R. Xu, and B. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2(1), 818 (2012).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1       Media 1. Video showing continuous trapping, excitation, detection, and releasing of micro-particles

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Photographs of the illuminated 5-holes micro-structed optical fiber. Excitation laser light is confined in the 8-µm core (top) and collected fluorescence light in the 18-µm area delimited by the holes (bottom). (b) Schematic of the fiber probe for fluidic trapping and optical detection. The dashed black arrows indicate fluid flow and the red arrows the fluorescence light. Silica glass is represented in blue. (c) Microscope images of the fiber probe fabrication (left) showing the spliced capillaries (top) and the etched 5-holes fiber (bottom), and final component immersed in water after partial hole collapse (right).
Fig. 2
Fig. 2 Simulation of collection efficiency η as a function of distance d between trapped particles and fiber end-face. Solid blue and dashed orange curves correspond to the 5-holes fiber with NA 0.6 and a fiber with NA 0.2, respectively. The diameter of the collection region is 18 µm for both fibers. The black point corresponds to the parameters of the fiber probe shown in Fig. 1 (d = 100 µm and η = 0.002).
Fig. 3
Fig. 3 Schematic of the liquid-light combiner for coupling light to and from the 5-holes fiber core and accessing the holes for trapping and releasing particles. Microscope images are included, which illustrate different parts of the component.
Fig. 4
Fig. 4 Lay-out of the experimental setup. (A) corresponds to the liquid-light combiner described in section 2.2.
Fig. 5
Fig. 5 Simultaneous trapping and optical detection of 10-µm fluorescent particles (Visualization 1). (a) Particle flowing towards the fiber probe. (b) Particle trapped in the opening of the fiber probe. (c,d) Excitation (left) and recorded spectrum (left) of a green fluorescence particle (c) and a yellow fluorescent particle (d). A video can be found in Visualization 1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d in N A in = d out N A out

Metrics