Abstract

The conductivity of poly(3,4-ethylene dioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) is significantly enhanced on adding some organic solvent such as ethylene glycol (EG). In this paper, the optoelectronic properties of EG doped PEDOT/PSS on transmission and anti-reflection effects are investigated in detail by terahertz time domain spectroscopy (THz-TDS). The transmission line circuit theory gives us an insight into the THz transmission mechanisms of the main and second pulses. In particular, we show that the conductivities of 10% EG doped PEDOT/PSS are nearly frequency independent from 0.3 to 1.5 THz. To demonstrate applications of this property, we design and fabricate broadband terahertz neutral density filters and anti-reflection coatings based on 10% EG doped PEDOT/PSS thin films with varying thickness. Our measurements highlight the capability of THz-TDS to characterize the conductivity of EG doped PEDOT/PSS, which is essential for broadband optoelectronic devices in THz region.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Active bidirectional electrically-controlled terahertz device based on dimethyl sulfoxide-doped PEDOT:PSS

Wei Wang, Hongyu Ji, Dandan Liu, Luyao Xiong, Yanbing Hou, Bo Zhang, and Jingling Shen
Opt. Express 26(20) 25849-25857 (2018)

Super terahertz transparent electrodes

Yan Du, Hao Tian, Xuan Cui, Xiangjun Wang, Jiangang Lu, and Zhongxiang Zhou
Opt. Express 24(6) 6359-6366 (2016)

Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS

Fei Yan, Edward P. J. Parrott, Xu Dong Liu, and Emma Pickwell-MacPherson
Opt. Lett. 40(12) 2886-2889 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric Properties and Thermal Stability of PEDOT: PSS Films on a Polyimide Substrate and Application in Flexible Energy Conversion Devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
    [Crossref]
  2. E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT: PSS,” Org. Electron. 10(1), 61–66 (2009).
    [Crossref]
  3. Y. Jin, Q. Chen, and P. Lessner, “Thermal Stability Investigation of PEDOT Films from Chemical Oxidation and Prepolymerized Dispersion,” Electrochemistry 81(10), 801–803 (2013).
    [Crossref]
  4. T. Cheng, Y. Z. Zhang, J. D. Zhang, W. Y. Lai, and W. Huang, “High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors,” J. Mater. Chem. A Mater. Energy Sustain. 4(27), 10493–10499 (2016).
    [Crossref]
  5. Z. Yu, Y. Xia, D. Du, and J. Ouyang, “PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(18), 11629–11638 (2016).
    [Crossref] [PubMed]
  6. A. Pasha, A. S. Roy, M. V. Murugendrappa, O. A. Al-Hartomy, and S. Khasim, “Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films,” J. Mater. Sci. Mater. Electron. 27(8), 8332–8339 (2016).
    [Crossref]
  7. D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
    [Crossref] [PubMed]
  8. S. H. Park, J. Kim, C. E. Park, J. Lee, H. S. Lee, S. Lim, and S. H. Kim, “Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors,” Org. Electron. 38, 48–54 (2016).
    [Crossref]
  9. S. Kim, H. S. Kim, and Y. D. Park, “Doped PEDOT: PSS electrodes, patterned through wettability control, and their effects on the electrical properties of polymer thin film transistors,” Org. Electron. 30, 296–301 (2016).
    [Crossref]
  10. J. Peng, X. Xu, C. Yao, and L. Li, “Bi-layer hole-injecting layer composed of molybdenum oxide and polyelectrolyte for solution-processed OLEDs with prolonged stability,” RSC Advances 6(102), 100312 (2016).
    [Crossref]
  11. X. Wu, L. Lian, S. Yang, and G. He, “Highly conductive PEDOT: PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8528–8534 (2016).
    [Crossref]
  12. X. Huang, H. Guo, J. Yang, K. Wang, X. Niu, and X. Liu, “Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells,” Org. Electron. 39, 288–295 (2016).
    [Crossref]
  13. T. M. Abdel-Fattah, E. M. Younes, G. Namkoong, E. M. El-Maghraby, A. H. Elsayed, and A. H. Abo Elazm, “Solvents effects on the hole transport layer in organic solar cells performance,” Sol. Energy 137, 337–343 (2016).
    [Crossref]
  14. Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S. T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
    [Crossref] [PubMed]
  15. J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, and N. S. Sariciftci, “Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives,” Thin Solid Films 536(100), 211–215 (2013).
    [Crossref] [PubMed]
  16. M. Reyes-Reyes, I. Cruz-Cruz, and R. López-Sandoval, “Enhancement of the Electrical Conductivity in PEDOT: PSS Films by the Addition of Dimethyl Sulfate,” J. Phys. Chem. C 114(47), 20220–20224 (2010).
    [Crossref]
  17. J. Tarver, J. E. Yoo, and Y.-L. Loo, “Organic Electronic Devices with Water-Dispersible Conducting Polymers” in Handbook of Nanoscale Optics and Electronics, Gary P. Wiederrecht, (Academic, 2010).
  18. N. A. Kabir, Terahertz Spectroscopy of Semiconductor Nanostructures, (ProQuest, 2007), Chap. 20.
  19. F. Y. Ma, J. P. Su, Q. X. Gong, J. Yang, Y. L. Du, M. T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chinese Phys. Lett. 28(9), 097803 (2011).
  20. L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
    [Crossref]
  21. J. Lloyd-Hughes and T. I. Jeon, “A Review of the Terahertz Conductivity of Bulk and Nano-Materials,” J. Infrared Milli. Terahz. Waves 33(9), 871–925 (2012).
    [Crossref]
  22. J. Kröll, J. Darmo, and K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express 15(11), 6552–6560 (2007).
    [Crossref] [PubMed]
  23. F. Yan, E. P. J. Parrott, B. S. Y. Ung, and E. Pickwell-Macpherson, “Solvent Doping of PEDOT/PSS: Effect on Terahertz Optoelectronic Properties and Utilization in Terahertz Devices,” J. Phys. Chem. C 119(12), 6813–6818 (2015).
    [Crossref]
  24. Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
    [Crossref] [PubMed]
  25. B. H. Nguyen and V. H. Nguyen, “Advances in graphene-based optoelectronics, plasmonics and photonics,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 7(1), 013002 (2016).
  26. L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
    [Crossref]
  27. A. Mazhorova, J. F. Gu, A. Dupuis, M. Peccianti, O. Tsuneyuki, R. Morandotti, H. Minamide, M. Tang, Y. Wang, H. Ito, and M. Skorobogatiy, “Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation,” Opt. Express 18(24), 24632–24647 (2010).
    [Crossref] [PubMed]
  28. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
    [Crossref] [PubMed]
  29. V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase-Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).
  30. Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
    [Crossref]
  31. F. Yan, E. P. J. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
    [Crossref] [PubMed]
  32. I. I. Katkov, N. G. Kan, F. Cimadamore, B. Nelson, E. Y. Snyder, and A. V. Terskikh, “DMSO-Free Programmed Cryopreservation of Fully Dissociated and Adherent Human Induced Pluripotent Stem Cells,” Stem Cells Int. 2011(1), 981606 (2011).
    [PubMed]
  33. D. X. Zhou, E. P. Parrott, D. J. Paul, and J. A. Zeitler, “Determination of Complex Refractive Index of Thin Metal Films from Terahertz Time-Domain Spectroscopy,” J. Appl. Phys. 104(5), 053110 - 053110–9 (2008).
  34. A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 998–1002 (2008).
    [Crossref]
  35. Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A. A. Bernussi, “Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings,” J. Opt. Soc. Am. B 29(9), 2373–2378 (2012).
    [Crossref]

2016 (13)

T. Cheng, Y. Z. Zhang, J. D. Zhang, W. Y. Lai, and W. Huang, “High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors,” J. Mater. Chem. A Mater. Energy Sustain. 4(27), 10493–10499 (2016).
[Crossref]

Z. Yu, Y. Xia, D. Du, and J. Ouyang, “PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(18), 11629–11638 (2016).
[Crossref] [PubMed]

A. Pasha, A. S. Roy, M. V. Murugendrappa, O. A. Al-Hartomy, and S. Khasim, “Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films,” J. Mater. Sci. Mater. Electron. 27(8), 8332–8339 (2016).
[Crossref]

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

S. H. Park, J. Kim, C. E. Park, J. Lee, H. S. Lee, S. Lim, and S. H. Kim, “Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors,” Org. Electron. 38, 48–54 (2016).
[Crossref]

S. Kim, H. S. Kim, and Y. D. Park, “Doped PEDOT: PSS electrodes, patterned through wettability control, and their effects on the electrical properties of polymer thin film transistors,” Org. Electron. 30, 296–301 (2016).
[Crossref]

J. Peng, X. Xu, C. Yao, and L. Li, “Bi-layer hole-injecting layer composed of molybdenum oxide and polyelectrolyte for solution-processed OLEDs with prolonged stability,” RSC Advances 6(102), 100312 (2016).
[Crossref]

X. Wu, L. Lian, S. Yang, and G. He, “Highly conductive PEDOT: PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8528–8534 (2016).
[Crossref]

X. Huang, H. Guo, J. Yang, K. Wang, X. Niu, and X. Liu, “Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells,” Org. Electron. 39, 288–295 (2016).
[Crossref]

T. M. Abdel-Fattah, E. M. Younes, G. Namkoong, E. M. El-Maghraby, A. H. Elsayed, and A. H. Abo Elazm, “Solvents effects on the hole transport layer in organic solar cells performance,” Sol. Energy 137, 337–343 (2016).
[Crossref]

Y. Du, H. Tian, X. Cui, X. Wang, J. Lu, and Z. Zhou, “Super terahertz transparent electrodes,” Opt. Express 24(6), 6359–6366 (2016).
[Crossref] [PubMed]

B. H. Nguyen and V. H. Nguyen, “Advances in graphene-based optoelectronics, plasmonics and photonics,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 7(1), 013002 (2016).

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase-Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

2015 (4)

F. Yan, E. P. J. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
[Crossref] [PubMed]

F. Yan, E. P. J. Parrott, B. S. Y. Ung, and E. Pickwell-Macpherson, “Solvent Doping of PEDOT/PSS: Effect on Terahertz Optoelectronic Properties and Utilization in Terahertz Devices,” J. Phys. Chem. C 119(12), 6813–6818 (2015).
[Crossref]

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S. T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

2014 (2)

M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric Properties and Thermal Stability of PEDOT: PSS Films on a Polyimide Substrate and Application in Flexible Energy Conversion Devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
[Crossref]

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

2013 (2)

Y. Jin, Q. Chen, and P. Lessner, “Thermal Stability Investigation of PEDOT Films from Chemical Oxidation and Prepolymerized Dispersion,” Electrochemistry 81(10), 801–803 (2013).
[Crossref]

J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, and N. S. Sariciftci, “Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives,” Thin Solid Films 536(100), 211–215 (2013).
[Crossref] [PubMed]

2012 (3)

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

J. Lloyd-Hughes and T. I. Jeon, “A Review of the Terahertz Conductivity of Bulk and Nano-Materials,” J. Infrared Milli. Terahz. Waves 33(9), 871–925 (2012).
[Crossref]

Y. Zhu, Y. Zhao, M. Holtz, Z. Fan, and A. A. Bernussi, “Effect of substrate orientation on terahertz optical transmission through VO2 thin films and application to functional antireflection coatings,” J. Opt. Soc. Am. B 29(9), 2373–2378 (2012).
[Crossref]

2011 (2)

I. I. Katkov, N. G. Kan, F. Cimadamore, B. Nelson, E. Y. Snyder, and A. V. Terskikh, “DMSO-Free Programmed Cryopreservation of Fully Dissociated and Adherent Human Induced Pluripotent Stem Cells,” Stem Cells Int. 2011(1), 981606 (2011).
[PubMed]

F. Y. Ma, J. P. Su, Q. X. Gong, J. Yang, Y. L. Du, M. T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chinese Phys. Lett. 28(9), 097803 (2011).

2010 (2)

2009 (2)

O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
[Crossref] [PubMed]

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT: PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

2008 (1)

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 998–1002 (2008).
[Crossref]

2007 (1)

Abdel-Fattah, T. M.

T. M. Abdel-Fattah, E. M. Younes, G. Namkoong, E. M. El-Maghraby, A. H. Elsayed, and A. H. Abo Elazm, “Solvents effects on the hole transport layer in organic solar cells performance,” Sol. Energy 137, 337–343 (2016).
[Crossref]

Abo Elazm, A. H.

T. M. Abdel-Fattah, E. M. Younes, G. Namkoong, E. M. El-Maghraby, A. H. Elsayed, and A. H. Abo Elazm, “Solvents effects on the hole transport layer in organic solar cells performance,” Sol. Energy 137, 337–343 (2016).
[Crossref]

Al-Hartomy, O. A.

A. Pasha, A. S. Roy, M. V. Murugendrappa, O. A. Al-Hartomy, and S. Khasim, “Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films,” J. Mater. Sci. Mater. Electron. 27(8), 8332–8339 (2016).
[Crossref]

Anno, H.

M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric Properties and Thermal Stability of PEDOT: PSS Films on a Polyimide Substrate and Application in Flexible Energy Conversion Devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
[Crossref]

Bai, J.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Beigang, R.

Bernussi, A. A.

Chen, P.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Chen, Q.

Y. Jin, Q. Chen, and P. Lessner, “Thermal Stability Investigation of PEDOT Films from Chemical Oxidation and Prepolymerized Dispersion,” Electrochemistry 81(10), 801–803 (2013).
[Crossref]

Cheng, S.

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

Cheng, T.

T. Cheng, Y. Z. Zhang, J. D. Zhang, W. Y. Lai, and W. Huang, “High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors,” J. Mater. Chem. A Mater. Energy Sustain. 4(27), 10493–10499 (2016).
[Crossref]

Choulis, S. A.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT: PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Chung, J.

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

Cimadamore, F.

I. I. Katkov, N. G. Kan, F. Cimadamore, B. Nelson, E. Y. Snyder, and A. V. Terskikh, “DMSO-Free Programmed Cryopreservation of Fully Dissociated and Adherent Human Induced Pluripotent Stem Cells,” Stem Cells Int. 2011(1), 981606 (2011).
[PubMed]

Cruz-Cruz, I.

M. Reyes-Reyes, I. Cruz-Cruz, and R. López-Sandoval, “Enhancement of the Electrical Conductivity in PEDOT: PSS Films by the Addition of Dimethyl Sulfate,” J. Phys. Chem. C 114(47), 20220–20224 (2010).
[Crossref]

Cui, W.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S. T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Cui, X.

Dachev, M.

J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, and N. S. Sariciftci, “Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives,” Thin Solid Films 536(100), 211–215 (2013).
[Crossref] [PubMed]

Dalas, E.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT: PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Darmo, J.

Du, D.

Z. Yu, Y. Xia, D. Du, and J. Ouyang, “PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(18), 11629–11638 (2016).
[Crossref] [PubMed]

Du, Y.

Du, Y. L.

F. Y. Ma, J. P. Su, Q. X. Gong, J. Yang, Y. L. Du, M. T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chinese Phys. Lett. 28(9), 097803 (2011).

Dupuis, A.

El-Maghraby, E. M.

T. M. Abdel-Fattah, E. M. Younes, G. Namkoong, E. M. El-Maghraby, A. H. Elsayed, and A. H. Abo Elazm, “Solvents effects on the hole transport layer in organic solar cells performance,” Sol. Energy 137, 337–343 (2016).
[Crossref]

Elsayed, A. H.

T. M. Abdel-Fattah, E. M. Younes, G. Namkoong, E. M. El-Maghraby, A. H. Elsayed, and A. H. Abo Elazm, “Solvents effects on the hole transport layer in organic solar cells performance,” Sol. Energy 137, 337–343 (2016).
[Crossref]

Fan, Z.

Gasiorowski, J.

J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, and N. S. Sariciftci, “Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives,” Thin Solid Films 536(100), 211–215 (2013).
[Crossref] [PubMed]

Ghalichechian, N.

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase-Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

Gong, Q. X.

F. Y. Ma, J. P. Su, Q. X. Gong, J. Yang, Y. L. Du, M. T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chinese Phys. Lett. 28(9), 097803 (2011).

Gu, J. F.

Guo, H.

X. Huang, H. Guo, J. Yang, K. Wang, X. Niu, and X. Liu, “Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells,” Org. Electron. 39, 288–295 (2016).
[Crossref]

Guo, M. T.

F. Y. Ma, J. P. Su, Q. X. Gong, J. Yang, Y. L. Du, M. T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chinese Phys. Lett. 28(9), 097803 (2011).

Hai, T. S.

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

Ham, Y.

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

Haur, S. C.

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

He, G.

X. Wu, L. Lian, S. Yang, and G. He, “Highly conductive PEDOT: PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8528–8534 (2016).
[Crossref]

Helm, H.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 998–1002 (2008).
[Crossref]

Heo, S.

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

Hingerl, K.

J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, and N. S. Sariciftci, “Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives,” Thin Solid Films 536(100), 211–215 (2013).
[Crossref] [PubMed]

Hokazono, M.

M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric Properties and Thermal Stability of PEDOT: PSS Films on a Polyimide Substrate and Application in Flexible Energy Conversion Devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
[Crossref]

Holtz, M.

Hongwei, L.

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

Hu, F.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Hu, W.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Huang, W.

T. Cheng, Y. Z. Zhang, J. D. Zhang, W. Y. Lai, and W. Huang, “High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors,” J. Mater. Chem. A Mater. Energy Sustain. 4(27), 10493–10499 (2016).
[Crossref]

Huang, X.

X. Huang, H. Guo, J. Yang, K. Wang, X. Niu, and X. Liu, “Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells,” Org. Electron. 39, 288–295 (2016).
[Crossref]

Ito, H.

Jeon, T. I.

J. Lloyd-Hughes and T. I. Jeon, “A Review of the Terahertz Conductivity of Bulk and Nano-Materials,” J. Infrared Milli. Terahz. Waves 33(9), 871–925 (2012).
[Crossref]

Jin, B. B.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Jin, Y.

Y. Jin, Q. Chen, and P. Lessner, “Thermal Stability Investigation of PEDOT Films from Chemical Oxidation and Prepolymerized Dispersion,” Electrochemistry 81(10), 801–803 (2013).
[Crossref]

Junpeng, L.

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

Kan, N. G.

I. I. Katkov, N. G. Kan, F. Cimadamore, B. Nelson, E. Y. Snyder, and A. V. Terskikh, “DMSO-Free Programmed Cryopreservation of Fully Dissociated and Adherent Human Induced Pluripotent Stem Cells,” Stem Cells Int. 2011(1), 981606 (2011).
[PubMed]

Karageorgopoulos, D.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT: PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Katkov, I. I.

I. I. Katkov, N. G. Kan, F. Cimadamore, B. Nelson, E. Y. Snyder, and A. V. Terskikh, “DMSO-Free Programmed Cryopreservation of Fully Dissociated and Adherent Human Induced Pluripotent Stem Cells,” Stem Cells Int. 2011(1), 981606 (2011).
[PubMed]

Kennou, S.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT: PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Kern, A.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 998–1002 (2008).
[Crossref]

Khasim, S.

A. Pasha, A. S. Roy, M. V. Murugendrappa, O. A. Al-Hartomy, and S. Khasim, “Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films,” J. Mater. Sci. Mater. Electron. 27(8), 8332–8339 (2016).
[Crossref]

Kim, H. S.

S. Kim, H. S. Kim, and Y. D. Park, “Doped PEDOT: PSS electrodes, patterned through wettability control, and their effects on the electrical properties of polymer thin film transistors,” Org. Electron. 30, 296–301 (2016).
[Crossref]

Kim, J.

S. H. Park, J. Kim, C. E. Park, J. Lee, H. S. Lee, S. Lim, and S. H. Kim, “Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors,” Org. Electron. 38, 48–54 (2016).
[Crossref]

Kim, J. H.

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

Kim, S.

S. Kim, H. S. Kim, and Y. D. Park, “Doped PEDOT: PSS electrodes, patterned through wettability control, and their effects on the electrical properties of polymer thin film transistors,” Org. Electron. 30, 296–301 (2016).
[Crossref]

Kim, S. H.

S. H. Park, J. Kim, C. E. Park, J. Lee, H. S. Lee, S. Lim, and S. H. Kim, “Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors,” Org. Electron. 38, 48–54 (2016).
[Crossref]

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

Kim, Y.

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

Kröll, J.

Kwon, H.

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

Lai, W. Y.

T. Cheng, Y. Z. Zhang, J. D. Zhang, W. Y. Lai, and W. Huang, “High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors,” J. Mater. Chem. A Mater. Energy Sustain. 4(27), 10493–10499 (2016).
[Crossref]

Lee, H. S.

S. H. Park, J. Kim, C. E. Park, J. Lee, H. S. Lee, S. Lim, and S. H. Kim, “Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors,” Org. Electron. 38, 48–54 (2016).
[Crossref]

Lee, J.

S. H. Park, J. Kim, C. E. Park, J. Lee, H. S. Lee, S. Lim, and S. H. Kim, “Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors,” Org. Electron. 38, 48–54 (2016).
[Crossref]

Lee, S. T.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S. T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Lessner, P.

Y. Jin, Q. Chen, and P. Lessner, “Thermal Stability Investigation of PEDOT Films from Chemical Oxidation and Prepolymerized Dispersion,” Electrochemistry 81(10), 801–803 (2013).
[Crossref]

Li, L.

J. Peng, X. Xu, C. Yao, and L. Li, “Bi-layer hole-injecting layer composed of molybdenum oxide and polyelectrolyte for solution-processed OLEDs with prolonged stability,” RSC Advances 6(102), 100312 (2016).
[Crossref]

Li, W.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Lian, L.

X. Wu, L. Lian, S. Yang, and G. He, “Highly conductive PEDOT: PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8528–8534 (2016).
[Crossref]

Liang, L. J.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liang, X.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lim, S.

S. H. Park, J. Kim, C. E. Park, J. Lee, H. S. Lee, S. Lim, and S. H. Kim, “Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors,” Org. Electron. 38, 48–54 (2016).
[Crossref]

Lin, X. W.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liu, X.

X. Huang, H. Guo, J. Yang, K. Wang, X. Niu, and X. Liu, “Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells,” Org. Electron. 39, 288–295 (2016).
[Crossref]

Liu, X. D.

Liu, Y.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S. T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Lloyd-Hughes, J.

J. Lloyd-Hughes and T. I. Jeon, “A Review of the Terahertz Conductivity of Bulk and Nano-Materials,” J. Infrared Milli. Terahz. Waves 33(9), 871–925 (2012).
[Crossref]

López-Sandoval, R.

M. Reyes-Reyes, I. Cruz-Cruz, and R. López-Sandoval, “Enhancement of the Electrical Conductivity in PEDOT: PSS Films by the Addition of Dimethyl Sulfate,” J. Phys. Chem. C 114(47), 20220–20224 (2010).
[Crossref]

Lu, J.

Lu, Y. N.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lu, Y. Q.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Ma, F. Y.

F. Y. Ma, J. P. Su, Q. X. Gong, J. Yang, Y. L. Du, M. T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chinese Phys. Lett. 28(9), 097803 (2011).

Mathews, N.

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

Mazhorova, A.

Menon, R.

J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, and N. S. Sariciftci, “Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives,” Thin Solid Films 536(100), 211–215 (2013).
[Crossref] [PubMed]

Mhaisalkar, S. G.

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

Minamide, H.

Minrui, Z.

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

Morandotti, R.

Murugendrappa, M. V.

A. Pasha, A. S. Roy, M. V. Murugendrappa, O. A. Al-Hartomy, and S. Khasim, “Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films,” J. Mater. Sci. Mater. Electron. 27(8), 8332–8339 (2016).
[Crossref]

Nahar, N. K.

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase-Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

Namkoong, G.

T. M. Abdel-Fattah, E. M. Younes, G. Namkoong, E. M. El-Maghraby, A. H. Elsayed, and A. H. Abo Elazm, “Solvents effects on the hole transport layer in organic solar cells performance,” Sol. Energy 137, 337–343 (2016).
[Crossref]

Nelson, B.

I. I. Katkov, N. G. Kan, F. Cimadamore, B. Nelson, E. Y. Snyder, and A. V. Terskikh, “DMSO-Free Programmed Cryopreservation of Fully Dissociated and Adherent Human Induced Pluripotent Stem Cells,” Stem Cells Int. 2011(1), 981606 (2011).
[PubMed]

Nguyen, B. H.

B. H. Nguyen and V. H. Nguyen, “Advances in graphene-based optoelectronics, plasmonics and photonics,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 7(1), 013002 (2016).

Nguyen, V. H.

B. H. Nguyen and V. H. Nguyen, “Advances in graphene-based optoelectronics, plasmonics and photonics,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 7(1), 013002 (2016).

Niu, X.

X. Huang, H. Guo, J. Yang, K. Wang, X. Niu, and X. Liu, “Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells,” Org. Electron. 39, 288–295 (2016).
[Crossref]

Ouyang, J.

Z. Yu, Y. Xia, D. Du, and J. Ouyang, “PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(18), 11629–11638 (2016).
[Crossref] [PubMed]

Paliatsas, N.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT: PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Park, C. E.

S. H. Park, J. Kim, C. E. Park, J. Lee, H. S. Lee, S. Lim, and S. H. Kim, “Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors,” Org. Electron. 38, 48–54 (2016).
[Crossref]

Park, S. H.

S. H. Park, J. Kim, C. E. Park, J. Lee, H. S. Lee, S. Lim, and S. H. Kim, “Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors,” Org. Electron. 38, 48–54 (2016).
[Crossref]

Park, Y. D.

S. Kim, H. S. Kim, and Y. D. Park, “Doped PEDOT: PSS electrodes, patterned through wettability control, and their effects on the electrical properties of polymer thin film transistors,” Org. Electron. 30, 296–301 (2016).
[Crossref]

Parrott, E. P. J.

F. Yan, E. P. J. Parrott, B. S. Y. Ung, and E. Pickwell-Macpherson, “Solvent Doping of PEDOT/PSS: Effect on Terahertz Optoelectronic Properties and Utilization in Terahertz Devices,” J. Phys. Chem. C 119(12), 6813–6818 (2015).
[Crossref]

F. Yan, E. P. J. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
[Crossref] [PubMed]

Pasha, A.

A. Pasha, A. S. Roy, M. V. Murugendrappa, O. A. Al-Hartomy, and S. Khasim, “Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films,” J. Mater. Sci. Mater. Electron. 27(8), 8332–8339 (2016).
[Crossref]

Paul, O.

Peccianti, M.

Peng, J.

J. Peng, X. Xu, C. Yao, and L. Li, “Bi-layer hole-injecting layer composed of molybdenum oxide and polyelectrolyte for solution-processed OLEDs with prolonged stability,” RSC Advances 6(102), 100312 (2016).
[Crossref]

Petraki, F.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT: PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Pickwell-Macpherson, E.

F. Yan, E. P. J. Parrott, B. S. Y. Ung, and E. Pickwell-Macpherson, “Solvent Doping of PEDOT/PSS: Effect on Terahertz Optoelectronic Properties and Utilization in Terahertz Devices,” J. Phys. Chem. C 119(12), 6813–6818 (2015).
[Crossref]

F. Yan, E. P. J. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
[Crossref] [PubMed]

Qian, H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Rahm, M.

Ren, Z.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Reyes-Reyes, M.

M. Reyes-Reyes, I. Cruz-Cruz, and R. López-Sandoval, “Enhancement of the Electrical Conductivity in PEDOT: PSS Films by the Addition of Dimethyl Sulfate,” J. Phys. Chem. C 114(47), 20220–20224 (2010).
[Crossref]

Roy, A. S.

A. Pasha, A. S. Roy, M. V. Murugendrappa, O. A. Al-Hartomy, and S. Khasim, “Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films,” J. Mater. Sci. Mater. Electron. 27(8), 8332–8339 (2016).
[Crossref]

Sakkopoulos, S.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT: PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Sanphuang, V.

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase-Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

Sariciftci, N. S.

J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, and N. S. Sariciftci, “Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives,” Thin Solid Films 536(100), 211–215 (2013).
[Crossref] [PubMed]

Seol, M.

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

Shao, G. H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Skorobogatiy, M.

Snyder, E. Y.

I. I. Katkov, N. G. Kan, F. Cimadamore, B. Nelson, E. Y. Snyder, and A. V. Terskikh, “DMSO-Free Programmed Cryopreservation of Fully Dissociated and Adherent Human Induced Pluripotent Stem Cells,” Stem Cells Int. 2011(1), 981606 (2011).
[PubMed]

Song, T.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S. T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Su, J. P.

F. Y. Ma, J. P. Su, Q. X. Gong, J. Yang, Y. L. Du, M. T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chinese Phys. Lett. 28(9), 097803 (2011).

Sun, B.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S. T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Tang, M.

Terskikh, A. V.

I. I. Katkov, N. G. Kan, F. Cimadamore, B. Nelson, E. Y. Snyder, and A. V. Terskikh, “DMSO-Free Programmed Cryopreservation of Fully Dissociated and Adherent Human Induced Pluripotent Stem Cells,” Stem Cells Int. 2011(1), 981606 (2011).
[PubMed]

Thoman, A.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 998–1002 (2008).
[Crossref]

Tian, H.

Toshima, N.

M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric Properties and Thermal Stability of PEDOT: PSS Films on a Polyimide Substrate and Application in Flexible Energy Conversion Devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
[Crossref]

Tsuneyuki, O.

Ung, B. S. Y.

F. Yan, E. P. J. Parrott, B. S. Y. Ung, and E. Pickwell-Macpherson, “Solvent Doping of PEDOT/PSS: Effect on Terahertz Optoelectronic Properties and Utilization in Terahertz Devices,” J. Phys. Chem. C 119(12), 6813–6818 (2015).
[Crossref]

Unterrainer, K.

Vitoratos, E.

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT: PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

Volakis, J. L.

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase-Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

Walther, M.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 998–1002 (2008).
[Crossref]

Wang, K.

X. Huang, H. Guo, J. Yang, K. Wang, X. Niu, and X. Liu, “Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells,” Org. Electron. 39, 288–295 (2016).
[Crossref]

Wang, L.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Wang, X.

Wang, Y.

Wu, P. H.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Wu, X.

X. Wu, L. Lian, S. Yang, and G. He, “Highly conductive PEDOT: PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8528–8534 (2016).
[Crossref]

Xia, Y.

Z. Yu, Y. Xia, D. Du, and J. Ouyang, “PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(18), 11629–11638 (2016).
[Crossref] [PubMed]

Xinhai, Z.

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

Xu, Q.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S. T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Xu, W.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S. T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Xu, X.

J. Peng, X. Xu, C. Yao, and L. Li, “Bi-layer hole-injecting layer composed of molybdenum oxide and polyelectrolyte for solution-processed OLEDs with prolonged stability,” RSC Advances 6(102), 100312 (2016).
[Crossref]

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Yan, F.

F. Yan, E. P. J. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
[Crossref] [PubMed]

F. Yan, E. P. J. Parrott, B. S. Y. Ung, and E. Pickwell-Macpherson, “Solvent Doping of PEDOT/PSS: Effect on Terahertz Optoelectronic Properties and Utilization in Terahertz Devices,” J. Phys. Chem. C 119(12), 6813–6818 (2015).
[Crossref]

Yang, J.

X. Huang, H. Guo, J. Yang, K. Wang, X. Niu, and X. Liu, “Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells,” Org. Electron. 39, 288–295 (2016).
[Crossref]

F. Y. Ma, J. P. Su, Q. X. Gong, J. Yang, Y. L. Du, M. T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chinese Phys. Lett. 28(9), 097803 (2011).

Yang, S.

X. Wu, L. Lian, S. Yang, and G. He, “Highly conductive PEDOT: PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8528–8534 (2016).
[Crossref]

Yao, C.

J. Peng, X. Xu, C. Yao, and L. Li, “Bi-layer hole-injecting layer composed of molybdenum oxide and polyelectrolyte for solution-processed OLEDs with prolonged stability,” RSC Advances 6(102), 100312 (2016).
[Crossref]

Yong, L. K.

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

Younes, E. M.

T. M. Abdel-Fattah, E. M. Younes, G. Namkoong, E. M. El-Maghraby, A. H. Elsayed, and A. H. Abo Elazm, “Solvents effects on the hole transport layer in organic solar cells performance,” Sol. Energy 137, 337–343 (2016).
[Crossref]

Yu, D.

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

Yu, Z.

Z. Yu, Y. Xia, D. Du, and J. Ouyang, “PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(18), 11629–11638 (2016).
[Crossref] [PubMed]

Yuan, B.

F. Y. Ma, J. P. Su, Q. X. Gong, J. Yang, Y. L. Du, M. T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chinese Phys. Lett. 28(9), 097803 (2011).

Yun, D. J.

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

Zhang, J. D.

T. Cheng, Y. Z. Zhang, J. D. Zhang, W. Y. Lai, and W. Huang, “High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors,” J. Mater. Chem. A Mater. Energy Sustain. 4(27), 10493–10499 (2016).
[Crossref]

Zhang, Y. Z.

T. Cheng, Y. Z. Zhang, J. D. Zhang, W. Y. Lai, and W. Huang, “High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors,” J. Mater. Chem. A Mater. Energy Sustain. 4(27), 10493–10499 (2016).
[Crossref]

Zhao, P.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Zhao, Y.

Zheng, X.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Zheng, Z. G.

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Zhou, Y.

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Zhou, Z.

Zhu, Y.

ACS Appl. Mater. Interfaces (2)

Z. Yu, Y. Xia, D. Du, and J. Ouyang, “PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(18), 11629–11638 (2016).
[Crossref] [PubMed]

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S. T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Adv. Nat. Sci.: Nanosci. Nanotechnol. (1)

B. H. Nguyen and V. H. Nguyen, “Advances in graphene-based optoelectronics, plasmonics and photonics,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 7(1), 013002 (2016).

Appl. Phys. Lett. (1)

Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, “Graphene as broadband terahertz antireflection coating,” Appl. Phys. Lett. 104(5), 051106 (2014).
[Crossref]

Chinese Phys. Lett. (1)

F. Y. Ma, J. P. Su, Q. X. Gong, J. Yang, Y. L. Du, M. T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chinese Phys. Lett. 28(9), 097803 (2011).

Electrochemistry (1)

Y. Jin, Q. Chen, and P. Lessner, “Thermal Stability Investigation of PEDOT Films from Chemical Oxidation and Prepolymerized Dispersion,” Electrochemistry 81(10), 801–803 (2013).
[Crossref]

IEEE T. THz Sci. Technol. (1)

V. Sanphuang, N. Ghalichechian, N. K. Nahar, and J. L. Volakis, “Reconfigurable THz Filters Using Phase-Change Material and Integrated Heater,” IEEE T. THz Sci. Technol. 6(4), 583–591 (2016).

J. Electron. Mater. (1)

M. Hokazono, H. Anno, and N. Toshima, “Thermoelectric Properties and Thermal Stability of PEDOT: PSS Films on a Polyimide Substrate and Application in Flexible Energy Conversion Devices,” J. Electron. Mater. 43(6), 2196–2201 (2014).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

J. Lloyd-Hughes and T. I. Jeon, “A Review of the Terahertz Conductivity of Bulk and Nano-Materials,” J. Infrared Milli. Terahz. Waves 33(9), 871–925 (2012).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

T. Cheng, Y. Z. Zhang, J. D. Zhang, W. Y. Lai, and W. Huang, “High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors,” J. Mater. Chem. A Mater. Energy Sustain. 4(27), 10493–10499 (2016).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

X. Wu, L. Lian, S. Yang, and G. He, “Highly conductive PEDOT: PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(36), 8528–8534 (2016).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

A. Pasha, A. S. Roy, M. V. Murugendrappa, O. A. Al-Hartomy, and S. Khasim, “Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films,” J. Mater. Sci. Mater. Electron. 27(8), 8332–8339 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

M. Reyes-Reyes, I. Cruz-Cruz, and R. López-Sandoval, “Enhancement of the Electrical Conductivity in PEDOT: PSS Films by the Addition of Dimethyl Sulfate,” J. Phys. Chem. C 114(47), 20220–20224 (2010).
[Crossref]

F. Yan, E. P. J. Parrott, B. S. Y. Ung, and E. Pickwell-Macpherson, “Solvent Doping of PEDOT/PSS: Effect on Terahertz Optoelectronic Properties and Utilization in Terahertz Devices,” J. Phys. Chem. C 119(12), 6813–6818 (2015).
[Crossref]

Light Sci. Appl. (1)

L. Wang, X. W. Lin, W. Hu, G. H. Shao, P. Chen, L. J. Liang, B. B. Jin, P. H. Wu, H. Qian, Y. N. Lu, X. Liang, Z. G. Zheng, and Y. Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Nanotechnology (1)

D. J. Yun, J. H. Kim, S. H. Kim, M. Seol, D. Yu, H. Kwon, Y. Ham, J. Chung, Y. Kim, and S. Heo, “Study on the disparate transition behaviors of the electrical/physical properties in PEDOT:PSS film depending on solvent species under a follow-up solution-treatment process,” Nanotechnology 27(16), 165706 (2016).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Org. Electron. (4)

S. H. Park, J. Kim, C. E. Park, J. Lee, H. S. Lee, S. Lim, and S. H. Kim, “Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors,” Org. Electron. 38, 48–54 (2016).
[Crossref]

S. Kim, H. S. Kim, and Y. D. Park, “Doped PEDOT: PSS electrodes, patterned through wettability control, and their effects on the electrical properties of polymer thin film transistors,” Org. Electron. 30, 296–301 (2016).
[Crossref]

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, and S. A. Choulis, “Thermal degradation mechanisms of PEDOT: PSS,” Org. Electron. 10(1), 61–66 (2009).
[Crossref]

X. Huang, H. Guo, J. Yang, K. Wang, X. Niu, and X. Liu, “Moderately reduced graphene oxide/PEDOT:PSS as hole transport layer to fabricate efficient perovskite hybrid solar cells,” Org. Electron. 39, 288–295 (2016).
[Crossref]

Phys. Rev. B (1)

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 998–1002 (2008).
[Crossref]

RSC Advances (2)

L. Hongwei, S. Cheng, L. Junpeng, Z. Minrui, L. K. Yong, N. Mathews, S. G. Mhaisalkar, T. S. Hai, Z. Xinhai, and S. C. Haur, “Improved electrical property of Sb-doped SnO2 nanonets as measured by contact and non-contact approaches,” RSC Advances 2(25), 9590–9595 (2012).
[Crossref]

J. Peng, X. Xu, C. Yao, and L. Li, “Bi-layer hole-injecting layer composed of molybdenum oxide and polyelectrolyte for solution-processed OLEDs with prolonged stability,” RSC Advances 6(102), 100312 (2016).
[Crossref]

Sol. Energy (1)

T. M. Abdel-Fattah, E. M. Younes, G. Namkoong, E. M. El-Maghraby, A. H. Elsayed, and A. H. Abo Elazm, “Solvents effects on the hole transport layer in organic solar cells performance,” Sol. Energy 137, 337–343 (2016).
[Crossref]

Stem Cells Int. (1)

I. I. Katkov, N. G. Kan, F. Cimadamore, B. Nelson, E. Y. Snyder, and A. V. Terskikh, “DMSO-Free Programmed Cryopreservation of Fully Dissociated and Adherent Human Induced Pluripotent Stem Cells,” Stem Cells Int. 2011(1), 981606 (2011).
[PubMed]

Thin Solid Films (1)

J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, and N. S. Sariciftci, “Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives,” Thin Solid Films 536(100), 211–215 (2013).
[Crossref] [PubMed]

Other (3)

J. Tarver, J. E. Yoo, and Y.-L. Loo, “Organic Electronic Devices with Water-Dispersible Conducting Polymers” in Handbook of Nanoscale Optics and Electronics, Gary P. Wiederrecht, (Academic, 2010).

N. A. Kabir, Terahertz Spectroscopy of Semiconductor Nanostructures, (ProQuest, 2007), Chap. 20.

D. X. Zhou, E. P. Parrott, D. J. Paul, and J. A. Zeitler, “Determination of Complex Refractive Index of Thin Metal Films from Terahertz Time-Domain Spectroscopy,” J. Appl. Phys. 104(5), 053110 - 053110–9 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 THz time-domain data for quartz reference and PEDOT/PSS thin films on quartz.
Fig. 2
Fig. 2 The frequency dependent transmissions of the main pulse for the PEDOT/PSS thin films on quartz normalized to the bare substrate.
Fig. 3
Fig. 3 (a) Transmission and reflection at substrate-air interface; (b) Transmission and reflection at substrate-PEDOT/PSS-air interface; (c) The equivalent transmission line circuit of that in (b).
Fig. 4
Fig. 4 Real conductivity of pristine, 2%, 4%, 6%, 8%, and 10% EG doped PEDOT/PSS thin films.
Fig. 5
Fig. 5 Thickness of PEDOT/PSS thin films on quartz with different spin coating speeds.
Fig. 6
Fig. 6 (a) THz time domain waveforms of quartz reference and 10% EG doped PEDOT/PSS thin films of different thicknesses on quartz; (b) Normalized THz transmission of the main pulse of 10% EG doped PEDOT/PSS samples.
Fig. 7
Fig. 7 (a) THz time domain waveforms of the second pulse of quartz reference and 10% EG doped PEDOT/PSS thin films of different thicknesses on quartz; (b) Normalized transmission of the second pulse of PEDOT/PSS on quartz substrate (red squares denote the theoretical calculation and black triangles signify the experiment results).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t 0 = 2 n s n s + n a , t s = 2 n s n s + n a + Z 0 σ d
r 0 = n s n a n s + n a , r s = n s n a Z 0 σ d n s + n a + Z 0 σ d
t p 1 = t s t 0 = n s + n a n s + n a + Z 0 σ d , t p 2 = r s r 0 t s t 0 = ( n s + n a ) 2 n s n a n s n a Z 0 σ d ( n s + n a + Z 0 σ d ) 2

Metrics