Abstract

We report ultrafast green pulse generation from a Yb-doped fiber laser system with gain-narrowing compensation. The chirped-pulse amplification system outputs repetitive 3 MHz pulses with an energy of 35 nJ and a reconstructed pulse duration of 41 fs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
65-fs Yb-doped fiber laser system with gain-narrowing compensation

Yuhei Chiba, Hideyuki Takada, Kenji Torizuka, and Kazuhiko Misawa
Opt. Express 23(5) 6809-6814 (2015)

260 fs and 1 nJ pulse generation from a compact, mode-locked Tm-doped fiber laser

Grzegorz Sobon, Jaroslaw Sotor, Iwona Pasternak, Aleksandra Krajewska, Wlodek Strupinski, and Krzysztof M. Abramski
Opt. Express 23(24) 31446-31451 (2015)

Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment

Bai Nie, Dmitry Pestov, Frank W. Wise, and Marcos Dantus
Opt. Express 19(13) 12074-12080 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of “transition states” in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
    [Crossref]
  2. H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
    [Crossref]
  3. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
    [Crossref] [PubMed]
  4. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
    [Crossref] [PubMed]
  5. K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
    [Crossref] [PubMed]
  6. P. Wan, L.-M. Yang, and J. Liu, “All fiber-based Yb-doped high energy, high power femtosecond fiber lasers,” Opt. Express 21(24), 29854–29859 (2013).
    [Crossref] [PubMed]
  7. T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
    [Crossref]
  8. Y. Chiba, H. Takada, K. Torizuka, and K. Misawa, “65-fs Yb-doped fiber laser system with gain-narrowing compensation,” Opt. Express 23(5), 6809–6814 (2015).
    [Crossref] [PubMed]
  9. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express 16(10), 7055–7059 (2008).
    [Crossref] [PubMed]
  10. H. Takada, M. Kakehata, and K. Torizuka, “Large-ratio stretch and recompression of sub-10-fs pulse utilizing dispersion managed devices and a spatial light modulator,” Appl. Phys. B 74(9), 253–257 (2002).
    [Crossref]
  11. C. L. Hutchinson, T. L. Troy, and E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35(13), 2325–2332 (1996).
    [Crossref] [PubMed]
  12. J. R. Birge, H. M. Crespo, and F. X. Kärtner, “Theory and design of two-dimensional spectral shearing interferometry for few-cycle pulse measurement,” J. Opt. Soc. Am. B 27(6), 1165–1173 (2010).
    [Crossref]
  13. T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, “Phase-matched second-harmonic generation and growth of a LiB305 crystal,” J. Opt. Soc. Am. B 9(7), 1128–1133 (1992).
    [Crossref]

2015 (1)

2013 (1)

2010 (1)

2008 (2)

X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express 16(10), 7055–7059 (2008).
[Crossref] [PubMed]

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

2007 (1)

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
[Crossref] [PubMed]

2002 (2)

H. Takada, M. Kakehata, and K. Torizuka, “Large-ratio stretch and recompression of sub-10-fs pulse utilizing dispersion managed devices and a spatial light modulator,” Appl. Phys. B 74(9), 253–257 (2002).
[Crossref]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

1998 (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

1996 (1)

1992 (1)

1989 (1)

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

1987 (1)

M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of “transition states” in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
[Crossref]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Becker, P. C.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Bigot, J.-Y.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Birge, J. R.

Bosenberg, W. R.

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Chiba, Y.

Cogdell, R. J.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Crespo, H. M.

Dantus, M.

M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of “transition states” in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
[Crossref]

Eidam, T.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

Fragnito, H. L.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Herek, J. L.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Horikoshi, K.

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
[Crossref] [PubMed]

Hutchinson, C. L.

Kakehata, M.

H. Takada, M. Kakehata, and K. Torizuka, “Large-ratio stretch and recompression of sub-10-fs pulse utilizing dispersion managed devices and a spatial light modulator,” Appl. Phys. B 74(9), 253–257 (2002).
[Crossref]

Kärtner, F. X.

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Kobayashi, Y.

Lane, R. J.

Lang, R.

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
[Crossref] [PubMed]

Limpert, J.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

Liu, J.

Misawa, K.

Y. Chiba, H. Takada, K. Torizuka, and K. Misawa, “65-fs Yb-doped fiber laser system with gain-narrowing compensation,” Opt. Express 23(5), 6809–6814 (2015).
[Crossref] [PubMed]

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
[Crossref] [PubMed]

Motzkus, M.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Röser, F.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

Rosker, M. J.

M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of “transition states” in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
[Crossref]

Schmidt, O.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

Sevick-Muraca, E. M.

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Shank, C. V.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Takada, H.

Y. Chiba, H. Takada, K. Torizuka, and K. Misawa, “65-fs Yb-doped fiber laser system with gain-narrowing compensation,” Opt. Express 23(5), 6809–6814 (2015).
[Crossref] [PubMed]

H. Takada, M. Kakehata, and K. Torizuka, “Large-ratio stretch and recompression of sub-10-fs pulse utilizing dispersion managed devices and a spatial light modulator,” Appl. Phys. B 74(9), 253–257 (2002).
[Crossref]

Tang, C. L.

Torizuka, K.

Troy, T. L.

Tünnermann, A.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

Ukachi, T.

Wan, P.

Wohlleben, W.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Yang, L.-M.

Yoshitomi, D.

Zeidler, D.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Zewail, A. H.

M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of “transition states” in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
[Crossref]

Zhou, X.

Appl. Opt. (1)

Appl. Phys. B (2)

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

H. Takada, M. Kakehata, and K. Torizuka, “Large-ratio stretch and recompression of sub-10-fs pulse utilizing dispersion managed devices and a spatial light modulator,” Appl. Phys. B 74(9), 253–257 (2002).
[Crossref]

Chem. Phys. Lett. (1)

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

J. Chem. Phys. (2)

M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of “transition states” in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
[Crossref]

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

Nature (1)

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Science (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of laser system.
Fig. 2
Fig. 2 Schematic of pulse stretcher.
Fig. 3
Fig. 3 Schematic of 2DSI for green pulses.
Fig. 4
Fig. 4 Spectra of the oscillator (blue line), before (purple line) and after (green line) the gain-narrowing compensator.
Fig. 5
Fig. 5 (a) Fundamental spectrum of the entire system (thick line) and phase with dispersion compensation (thin line), and (b) reconstructed temporal shape (solid line) and Fourier-transform-limit temporal shape (dotted line) of fundamental output pulse.
Fig. 6
Fig. 6 (a) Output spectrum of the entire system (thick line) and phase with dispersion compensation (thin line), and (b) reconstructed temporal shape (solid line) and Fourier-transform-limit temporal shape (dotted line) of output pulse.

Metrics