Abstract

In this paper we demonstrate the passive, material-based athermalization of all-fiber architectures by cascading multimode interference (MMI) devices. In-line thermal compensation is achieved by including a liquid-core multimode section of variable length that allows ensuring temperature-independent operation while preserving the inherent filter-like spectral response of the MMI devices. The design of the temperature compensation unit is straightforward and its fabrication is simple. The applicability of our approach is experimentally verified by fabricating a wavelength-locked MMI laser with sensitivity of only −0.1 pm/°C, which is at least one order of magnitude lower than that achieved with other fiber optics devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material

Soha Namnabat, Kyung-Jo Kim, Adam Jones, Roland Himmelhuber, Christopher T. DeRose, Douglas C. Trotter, Andrew L. Starbuck, Andrew Pomerene, Anthony L. Lentine, and Robert A. Norwood
Opt. Express 25(18) 21471-21482 (2017)

Linear multimode interference fiber temperature sensor using the liquid in glass thermometer principle

D. A. May-Arrioja, V. I. Ruiz-Perez, D. Lopez-Cortes, and N. Lozano-Crisostomo
Appl. Opt. 58(14) 3856-3861 (2019)

Widely tunable erbium-doped fiber laser based on multimode interference effect

A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa
Opt. Express 18(2) 591-597 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  2. G. T. Reed, “Silicon photonic applications,” in Silicon Photonics: the State of the Art (J. Wiley & Sons, 2008).
  3. M. Cole, “Temperature stabilization of BST thin films: a critical review,” Ferroelectrics 470(1), 67–89 (2014).
    [Crossref]
  4. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
    [Crossref]
  5. L. Chrostowski and M. Hochberg, “Modelling and design approaches,” in Silicon Photonics Design: from Devices to Systems (Cambridge University, 2015).
  6. S. Fathpour and B. Jalali, “Silicon photonics for biosensing applications,” in Silicon Photonics for Telecommunications and Biomedicine (CRC Press, 2011).
  7. K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, and B. B. Bakir, “Toward athermal silicon-on-insulator (de)multiplexers in the O-band,” Opt. Lett. 40(11), 2641–2644 (2015).
    [Crossref] [PubMed]
  8. Y. Park, S.-T. Lee, and C.-J. Chae, “A novel wavelength stabilization scheme using a fiber grating for WDM transmission,” IEEE Photonics Technol. Lett. 10(10), 1446–1448 (1998).
    [Crossref]
  9. M. Ichioka, J. Ichikawa, Y. Kinpara, T. Sakai, H. Oguri, and K. Kubodera, “Athermal wavelength lockers using fiber Bragg gratings,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), 208–212.
    [Crossref]
  10. Y.-L. Lo and C.-P. Kuo, “Packaging a fiber Bragg grating without preloading in a simple athermal bimaterial device,” IEEE Trans. Adv. Packag. 25(1), 50–53 (2002).
    [Crossref]
  11. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18(17), 17631–17639 (2010).
    [Crossref] [PubMed]
  12. H. Huang, S.-T. Ho, D. Huang, Y. Tu, and W. Liu, “Design of temperature-independent arrayed waveguide gratings based on the combination of multiple types of waveguide,” Appl. Opt. 49(16), 3025–3034 (2010).
    [Crossref] [PubMed]
  13. M. M. Milošević, N. G. Emerson, F. Y. Gardes, X. Chen, A. A. Adikaari, and G. Z. Mashanovich, “Athermal waveguides for optical communication wavelengths,” Opt. Lett. 36(23), 4659–4661 (2011).
    [Crossref] [PubMed]
  14. J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, W. N. Ye, and D. X. Xu, “Temperature-independent silicon subwavelength grating waveguides,” Opt. Lett. 36(11), 2110–2112 (2011).
    [Crossref] [PubMed]
  15. M. Ibrahim, J. H. Schmid, A. Aleali, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, D. X. Xu, and W. N. Ye, “Athermal silicon waveguides with bridged subwavelength gratings for TE and TM polarizations,” Opt. Express 20(16), 18356–18361 (2012).
    [Crossref] [PubMed]
  16. V. Raghunathan, “Athermal photonic devices and circuits on a silicon platform,” (Massachusetts Institute of Technology, 2013).
  17. J. Bovington, S. Srinivasan, and J. E. Bowers, “Athermal laser design,” Opt. Express 22(16), 19357–19364 (2014).
    [Crossref] [PubMed]
  18. K. T. Kim, I. S. Kim, C.-H. Lee, and J. Lee, “A temperature-insensitive cladding-etched Fiber Bragg grating using a liquid mixture with a negative thermo-optic coefficient,” Sensors (Basel) 12(6), 7886–7892 (2012).
    [Crossref] [PubMed]
  19. E. Li, “Temperature compensation of multimode-interference-based fiber devices,” Opt. Lett. 32(14), 2064–2066 (2007).
    [Crossref] [PubMed]
  20. S. M. Tripathi, A. Kumar, M. Kumar, and W. J. Bock, “Temperature-insensitive fiber-optic devices using multimode interference effect,” Opt. Lett. 37(22), 4570–4572 (2012).
    [Crossref] [PubMed]
  21. S. M. Tripathi, A. Kumar, M. Kumar, and W. J. Bock, “Temperature insensitive single-mode-multimode-single-mode fiber optic structures with two multimode fibers in series,” Opt. Lett. 39(11), 3340–3343 (2014).
    [Crossref] [PubMed]
  22. L. B. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  23. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
    [Crossref] [PubMed]
  24. J. R. Guzman-Sepulveda, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Design and analysis of athermal multimode interference devices for wavelength stabilization,” in Frontiers in Optics (Optical Society of America, 2013), paper FW1B. 3.
  25. M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly sensitive liquid core temperature sensor based on multimode interference effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
    [Crossref] [PubMed]
  26. N. Y. Winnie, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
    [Crossref]
  27. P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Athermal performance in high-Q polymer-clad silicon microdisk resonators,” Opt. Lett. 35(20), 3462–3464 (2010).
    [Crossref] [PubMed]
  28. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
    [Crossref] [PubMed]
  29. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004).
    [Crossref]
  30. R. Selvas, I. Torres-Gomez, A. Martinez-Rios, J. Alvarez-Chavez, D. May-Arrioja, P. Likamwa, A. Mehta, and E. Johnson, “Wavelength tuning of fiber lasers using multimode interference effects,” Opt. Express 13(23), 9439–9445 (2005).
    [Crossref] [PubMed]
  31. A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa, “Widely tunable erbium-doped fiber laser based on multimode interference effect,” Opt. Express 18(2), 591–597 (2010).
    [Crossref] [PubMed]

2015 (2)

K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, and B. B. Bakir, “Toward athermal silicon-on-insulator (de)multiplexers in the O-band,” Opt. Lett. 40(11), 2641–2644 (2015).
[Crossref] [PubMed]

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly sensitive liquid core temperature sensor based on multimode interference effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

2014 (4)

M. Cole, “Temperature stabilization of BST thin films: a critical review,” Ferroelectrics 470(1), 67–89 (2014).
[Crossref]

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

J. Bovington, S. Srinivasan, and J. E. Bowers, “Athermal laser design,” Opt. Express 22(16), 19357–19364 (2014).
[Crossref] [PubMed]

S. M. Tripathi, A. Kumar, M. Kumar, and W. J. Bock, “Temperature insensitive single-mode-multimode-single-mode fiber optic structures with two multimode fibers in series,” Opt. Lett. 39(11), 3340–3343 (2014).
[Crossref] [PubMed]

2012 (3)

2011 (2)

2010 (5)

2009 (1)

2008 (1)

N. Y. Winnie, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

2002 (1)

Y.-L. Lo and C.-P. Kuo, “Packaging a fiber Bragg grating without preloading in a simple athermal bimaterial device,” IEEE Trans. Adv. Packag. 25(1), 50–53 (2002).
[Crossref]

1998 (1)

Y. Park, S.-T. Lee, and C.-J. Chae, “A novel wavelength stabilization scheme using a fiber grating for WDM transmission,” IEEE Photonics Technol. Lett. 10(10), 1446–1448 (1998).
[Crossref]

1995 (1)

L. B. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Adibi, A.

Adikaari, A. A.

Aleali, A.

Alipour, P.

Alvarez-Chavez, J.

Antonio-Lopez, J. E.

Bakir, B. B.

Bergman, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

Bock, P. J.

Bock, W. J.

Bovington, J.

Bowers, J. E.

Castillo-Guzman, A.

Chae, C.-J.

Y. Park, S.-T. Lee, and C.-J. Chae, “A novel wavelength stabilization scheme using a fiber grating for WDM transmission,” IEEE Photonics Technol. Lett. 10(10), 1446–1448 (1998).
[Crossref]

Cheben, P.

Chen, X.

Cole, M.

M. Cole, “Temperature stabilization of BST thin films: a critical review,” Ferroelectrics 470(1), 67–89 (2014).
[Crossref]

Densmore, A.

Eftekhar, A. A.

Emerson, N. G.

Estudillo-Ayala, J.

Fathpour, S.

Ferrotti, T.

Fuentes-Fuentes, M. A.

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly sensitive liquid core temperature sensor based on multimode interference effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

Gardes, F. Y.

Guzman-Sepulveda, J. R.

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly sensitive liquid core temperature sensor based on multimode interference effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

Harduin, J.

Hassan, K.

Ho, S.-T.

Hosseini, E. S.

Hu, J.

Huang, D.

Huang, H.

Ibrahim, M.

Ichikawa, J.

M. Ichioka, J. Ichikawa, Y. Kinpara, T. Sakai, H. Oguri, and K. Kubodera, “Athermal wavelength lockers using fiber Bragg gratings,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), 208–212.
[Crossref]

Ichioka, M.

M. Ichioka, J. Ichikawa, Y. Kinpara, T. Sakai, H. Oguri, and K. Kubodera, “Athermal wavelength lockers using fiber Bragg gratings,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), 208–212.
[Crossref]

Izuhara, T.

Jalali, B.

Janz, S.

Johnson, E.

Johnson, E. G.

Kim, I. S.

K. T. Kim, I. S. Kim, C.-H. Lee, and J. Lee, “A temperature-insensitive cladding-etched Fiber Bragg grating using a liquid mixture with a negative thermo-optic coefficient,” Sensors (Basel) 12(6), 7886–7892 (2012).
[Crossref] [PubMed]

Kim, K. T.

K. T. Kim, I. S. Kim, C.-H. Lee, and J. Lee, “A temperature-insensitive cladding-etched Fiber Bragg grating using a liquid mixture with a negative thermo-optic coefficient,” Sensors (Basel) 12(6), 7886–7892 (2012).
[Crossref] [PubMed]

Kimerling, L.

Kimerling, L. C.

N. Y. Winnie, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

Kinpara, Y.

M. Ichioka, J. Ichikawa, Y. Kinpara, T. Sakai, H. Oguri, and K. Kubodera, “Athermal wavelength lockers using fiber Bragg gratings,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), 208–212.
[Crossref]

Kubodera, K.

M. Ichioka, J. Ichikawa, Y. Kinpara, T. Sakai, H. Oguri, and K. Kubodera, “Athermal wavelength lockers using fiber Bragg gratings,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), 208–212.
[Crossref]

Kumar, A.

Kumar, M.

Kuo, C.-P.

Y.-L. Lo and C.-P. Kuo, “Packaging a fiber Bragg grating without preloading in a simple athermal bimaterial device,” IEEE Trans. Adv. Packag. 25(1), 50–53 (2002).
[Crossref]

Lamontagne, B.

Lapointe, J.

Lee, C.-H.

K. T. Kim, I. S. Kim, C.-H. Lee, and J. Lee, “A temperature-insensitive cladding-etched Fiber Bragg grating using a liquid mixture with a negative thermo-optic coefficient,” Sensors (Basel) 12(6), 7886–7892 (2012).
[Crossref] [PubMed]

Lee, J.

K. T. Kim, I. S. Kim, C.-H. Lee, and J. Lee, “A temperature-insensitive cladding-etched Fiber Bragg grating using a liquid mixture with a negative thermo-optic coefficient,” Sensors (Basel) 12(6), 7886–7892 (2012).
[Crossref] [PubMed]

Lee, S.-T.

Y. Park, S.-T. Lee, and C.-J. Chae, “A novel wavelength stabilization scheme using a fiber grating for WDM transmission,” IEEE Photonics Technol. Lett. 10(10), 1446–1448 (1998).
[Crossref]

Li, E.

Likamwa, P.

Liu, W.

Lo, Y.-L.

Y.-L. Lo and C.-P. Kuo, “Packaging a fiber Bragg grating without preloading in a simple athermal bimaterial device,” IEEE Trans. Adv. Packag. 25(1), 50–53 (2002).
[Crossref]

Ma, R.

Martinez-Rios, A.

Mashanovich, G. Z.

May-Arrioja, D.

May-Arrioja, D. A.

Mehta, A.

Menezo, S.

Michel, J.

Miloševic, M. M.

Mohammed, W. S.

Momeni, B.

Moooka, T.

Oguri, H.

M. Ichioka, J. Ichikawa, Y. Kinpara, T. Sakai, H. Oguri, and K. Kubodera, “Athermal wavelength lockers using fiber Bragg gratings,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), 208–212.
[Crossref]

Padmaraju, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

Park, Y.

Y. Park, S.-T. Lee, and C.-J. Chae, “A novel wavelength stabilization scheme using a fiber grating for WDM transmission,” IEEE Photonics Technol. Lett. 10(10), 1446–1448 (1998).
[Crossref]

Pennings, E.

L. B. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Raghunathan, V.

Sakai, T.

M. Ichioka, J. Ichikawa, Y. Kinpara, T. Sakai, H. Oguri, and K. Kubodera, “Athermal wavelength lockers using fiber Bragg gratings,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), 208–212.
[Crossref]

Sánchez-Mondragón, J. J.

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly sensitive liquid core temperature sensor based on multimode interference effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

Schmid, J. H.

Sciancalepore, C.

Selvas, R.

Selvas-Aguilar, R.

Soldano, L. B.

L. B. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Srinivasan, S.

Torres-Cisneros, M.

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly sensitive liquid core temperature sensor based on multimode interference effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

Torres-Gomez, I.

Tripathi, S. M.

Tu, Y.

Uenuma, M.

Winnie, N. Y.

N. Y. Winnie, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

Xu, D. X.

Ye, W. N.

Appl. Opt. (1)

Ferroelectrics (1)

M. Cole, “Temperature stabilization of BST thin films: a critical review,” Ferroelectrics 470(1), 67–89 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Park, S.-T. Lee, and C.-J. Chae, “A novel wavelength stabilization scheme using a fiber grating for WDM transmission,” IEEE Photonics Technol. Lett. 10(10), 1446–1448 (1998).
[Crossref]

N. Y. Winnie, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photonics Technol. Lett. 20(11), 885–887 (2008).
[Crossref]

IEEE Trans. Adv. Packag. (1)

Y.-L. Lo and C.-P. Kuo, “Packaging a fiber Bragg grating without preloading in a simple athermal bimaterial device,” IEEE Trans. Adv. Packag. 25(1), 50–53 (2002).
[Crossref]

J. Lightwave Technol. (3)

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (9)

K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, and B. B. Bakir, “Toward athermal silicon-on-insulator (de)multiplexers in the O-band,” Opt. Lett. 40(11), 2641–2644 (2015).
[Crossref] [PubMed]

S. M. Tripathi, A. Kumar, M. Kumar, and W. J. Bock, “Temperature-insensitive fiber-optic devices using multimode interference effect,” Opt. Lett. 37(22), 4570–4572 (2012).
[Crossref] [PubMed]

S. M. Tripathi, A. Kumar, M. Kumar, and W. J. Bock, “Temperature insensitive single-mode-multimode-single-mode fiber optic structures with two multimode fibers in series,” Opt. Lett. 39(11), 3340–3343 (2014).
[Crossref] [PubMed]

J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
[Crossref] [PubMed]

P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Athermal performance in high-Q polymer-clad silicon microdisk resonators,” Opt. Lett. 35(20), 3462–3464 (2010).
[Crossref] [PubMed]

J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, W. N. Ye, and D. X. Xu, “Temperature-independent silicon subwavelength grating waveguides,” Opt. Lett. 36(11), 2110–2112 (2011).
[Crossref] [PubMed]

M. M. Milošević, N. G. Emerson, F. Y. Gardes, X. Chen, A. A. Adikaari, and G. Z. Mashanovich, “Athermal waveguides for optical communication wavelengths,” Opt. Lett. 36(23), 4659–4661 (2011).
[Crossref] [PubMed]

E. Li, “Temperature compensation of multimode-interference-based fiber devices,” Opt. Lett. 32(14), 2064–2066 (2007).
[Crossref] [PubMed]

M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
[Crossref] [PubMed]

Sensors (Basel) (2)

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly sensitive liquid core temperature sensor based on multimode interference effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

K. T. Kim, I. S. Kim, C.-H. Lee, and J. Lee, “A temperature-insensitive cladding-etched Fiber Bragg grating using a liquid mixture with a negative thermo-optic coefficient,” Sensors (Basel) 12(6), 7886–7892 (2012).
[Crossref] [PubMed]

Other (6)

V. Raghunathan, “Athermal photonic devices and circuits on a silicon platform,” (Massachusetts Institute of Technology, 2013).

M. Ichioka, J. Ichikawa, Y. Kinpara, T. Sakai, H. Oguri, and K. Kubodera, “Athermal wavelength lockers using fiber Bragg gratings,” in Proceedings of 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components (IEEE, 2002), 208–212.
[Crossref]

L. Chrostowski and M. Hochberg, “Modelling and design approaches,” in Silicon Photonics Design: from Devices to Systems (Cambridge University, 2015).

S. Fathpour and B. Jalali, “Silicon photonics for biosensing applications,” in Silicon Photonics for Telecommunications and Biomedicine (CRC Press, 2011).

G. T. Reed, “Silicon photonic applications,” in Silicon Photonics: the State of the Art (J. Wiley & Sons, 2008).

J. R. Guzman-Sepulveda, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Design and analysis of athermal multimode interference devices for wavelength stabilization,” in Frontiers in Optics (Optical Society of America, 2013), paper FW1B. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Passive, material-based cancellation of thermal effects achieved by cascading MMI devices having multimode sections with effective thermo-optic coefficients of opposite sign.
Fig. 2
Fig. 2 Thermo-optic compensation unit comprised by cascaded solid- and liquid-core multimode sections with effective thermos-optic coefficients of opposite sign.
Fig. 3
Fig. 3 Absolute spectral shift of the peak wavelength (indicated by the color bar, in nm) in a solid-liquid cascaded MMI structure when operating in the range from 25 °C to 150 °C for different lengths of the liquid section. Athermal operation is achieved for the specific length of the liquid section that results in zero shift.
Fig. 4
Fig. 4 Erbium-doped fiber ring-laser configuration with the thermo-optic compensation unit.
Fig. 5
Fig. 5 Erbium laser emission at different temperatures for different length of the liquid section as indicated in each panel. The inset in panel (d) shows a zoom-in into the peaks of the laser emission for the different temperatures in the condition of thermal compensation. The temperature labels in (d) are the same as in the other panels.
Fig. 6
Fig. 6 Net wavelength shift of the laser emission as a function of temperature for different lengths of the liquid multimode section (constant solid section of length 41.2 mm at all times). The thermal dependence of the experimental setup for each case can be calculated from the slope of the straight line as indicated.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ peak =p( n eff W eff 2 L ).
W eff =W+( λ 0 π ) ( n n c ) 2σ ( n c 2 n 2 ) 1 2 .
λ peak =p i=1 N ( n eff,i W eff,i 2 L i ) ( L i L )with 1 L i=1 N L i =1.
λ peak +Δλ=p i=1 N [ ( n eff,i +Δ n i ) ( W eff,i +Δ W i ) 2 L i +Δ L i ] ( L i +Δ L i L+ΔL ).

Metrics