Abstract

As a direct band gap two-dimensional (2D) semiconductor material, black phosphorus (BP) bridges the characteristics of graphene, with a zero or near-zero band gap, and transition metal dichalcogenides, with a wide band gap. In the infrared (IR) regime, 2D BP materials can harvest electromagnetic energy due to losses derived from its surface conductivity. In this paper, we propose an IR absorber design comprising 2D BP metamaterials sandwiched between dielectric layers. The multilayered sandwich-like absorber structure is mounted on a full reflective gold mirror, which forms a Fabry-Perot resonator to strengthen light-matter interactions. Harvested surface plasmons are excited around the 2D BP metamaterial edges, and the incident IR light can be efficiently dissipated by increasing the number of layers of the sandwich-like structure (NLSS). The physical absorption mechanism can be attributed to the destructive interference from the metamaterials, which can be enhanced with increasing NLSS. Here, a phase difference of about 180° is obtained between the directly reflected wave from the first interface and the emergent wave derived from the superposition of the multiple reflections among the resonator, and the amplitude of the emergent wave is steadily reduced to a value close to that of the directly reflected wave with increasing NLSS for incident transverse-magnetic polarized IR illumination.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials

Jiao Wang, Yannan Jiang, and Zhirun Hu
Opt. Express 25(18) 22149-22157 (2017)

Anisotropic infrared plasmonic broadband absorber based on graphene-black phosphorus multilayers

Yijun Cai, Kai-Da Xu, Naixing Feng, Rongrong Guo, Haijun Lin, and Jinfeng Zhu
Opt. Express 27(3) 3101-3112 (2019)

Tunable asymmetric spin splitting by black phosphorus sandwiched epsilon-near-zero-metamaterial in the terahertz region

Yanmei Lin, Xiaohe Liu, Huifeng Chen, Xinyi Guo, Jintao Pan, Jianhui Yu, Huadan Zheng, Heyuan Guan, Huihui Lu, Yongchun Zhong, Yaofei Chen, Yunhan Luo, Wenguo Zhu, and Zhe Chen
Opt. Express 27(11) 15868-15879 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
    [PubMed]
  2. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  4. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  5. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
    [Crossref] [PubMed]
  6. J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
    [PubMed]
  7. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
    [PubMed]
  8. S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. THz Sci. Technol. 3, 757–763 (2013).
  9. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
    [Crossref] [PubMed]
  10. Y. N. Jiang, Y. Wang, D. B. Ge, S. M. Li, W. P. Cao, X. Gao, and X. H. Yu, “An ultra-wideband absorber based on graphene,” Wuli Xuebao 65, 054101 (2016).
  11. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref] [PubMed]
  12. Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
    [Crossref] [PubMed]
  13. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
    [Crossref]
  14. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref] [PubMed]
  15. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
    [Crossref] [PubMed]
  16. S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
    [Crossref] [PubMed]
  17. L. Chen, F. Xue, X. Li, X. Huang, L. Wang, J. Kou, and Z. L. Wang, “Strain-gated field effect transistor of a MoS2−ZnO 2D−1D hybrid structure,” ACS Nano 10(1), 1546–1551 (2016).
    [Crossref] [PubMed]
  18. H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
    [Crossref]
  19. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  20. H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting black phosphorus: synthesis, transport properties and electronic applications,” Chem. Soc. Rev. 44(9), 2732–2743 (2015).
    [Crossref] [PubMed]
  21. Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
    [Crossref]
  22. P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
    [Crossref] [PubMed]
  23. V. Sresht, A. A. H. Pádua, and D. Blankschtein, “Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations,” ACS Nano 9(8), 8255–8268 (2015).
    [Crossref] [PubMed]
  24. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
    [Crossref] [PubMed]
  25. A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
    [Crossref] [PubMed]
  26. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
    [Crossref] [PubMed]
  27. Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
    [Crossref]
  28. V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
    [Crossref]
  29. A. N. Rudenko and M. I. Katsnelson, “Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus,” Phys. Rev. B 89(20), 201408 (2014).
    [Crossref]
  30. A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6(21), 4280–4291 (2015).
    [Crossref] [PubMed]
  31. F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
    [Crossref] [PubMed]
  32. J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5, 4475 (2014).
    [Crossref] [PubMed]
  33. X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
    [Crossref] [PubMed]
  34. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  35. Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
    [Crossref] [PubMed]
  36. L. I. Berger, Semiconductor Materials (CRC, 1996).
  37. J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
    [Crossref] [PubMed]
  38. J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
    [Crossref] [PubMed]
  39. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  40. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
    [Crossref]
  41. L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
    [Crossref] [PubMed]
  42. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  43. D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
    [Crossref]

2016 (7)

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

L. Chen, F. Xue, X. Li, X. Huang, L. Wang, J. Kou, and Z. L. Wang, “Strain-gated field effect transistor of a MoS2−ZnO 2D−1D hybrid structure,” ACS Nano 10(1), 1546–1551 (2016).
[Crossref] [PubMed]

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Y. N. Jiang, Y. Wang, D. B. Ge, S. M. Li, W. P. Cao, X. Gao, and X. H. Yu, “An ultra-wideband absorber based on graphene,” Wuli Xuebao 65, 054101 (2016).

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

2015 (12)

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
[Crossref] [PubMed]

A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6(21), 4280–4291 (2015).
[Crossref] [PubMed]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting black phosphorus: synthesis, transport properties and electronic applications,” Chem. Soc. Rev. 44(9), 2732–2743 (2015).
[Crossref] [PubMed]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
[Crossref] [PubMed]

V. Sresht, A. A. H. Pádua, and D. Blankschtein, “Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations,” ACS Nano 9(8), 8255–8268 (2015).
[Crossref] [PubMed]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

2014 (13)

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

A. N. Rudenko and M. I. Katsnelson, “Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus,” Phys. Rev. B 89(20), 201408 (2014).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref] [PubMed]

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5, 4475 (2014).
[Crossref] [PubMed]

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

2013 (2)

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. THz Sci. Technol. 3, 757–763 (2013).

2012 (3)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

2010 (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2009 (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (2)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Abramski, K. M.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Adibi, A.

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Akinwande, D.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
[Crossref] [PubMed]

Alù, A.

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

Amin, M.

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Asadi, M.

P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
[Crossref] [PubMed]

Averitt, R. D.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Avouris, P.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Aydin, K.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Bagci, H.

Bao, Q.

Bao, Z. W.

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Blankschtein, D.

V. Sresht, A. A. H. Pádua, and D. Blankschtein, “Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations,” ACS Nano 9(8), 8255–8268 (2015).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Campbell, P. M.

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Cao, W. P.

Y. N. Jiang, Y. Wang, D. B. Ge, S. M. Li, W. P. Cao, X. Gao, and X. H. Yu, “An ultra-wideband absorber based on graphene,” Wuli Xuebao 65, 054101 (2016).

Carvalho, A.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref] [PubMed]

Castellanos-Gomez, A.

A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6(21), 4280–4291 (2015).
[Crossref] [PubMed]

Castro Neto, A. H.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref] [PubMed]

Chen, H. T.

Chen, K. S.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Chen, L.

L. Chen, F. Xue, X. Li, X. Huang, L. Wang, J. Kou, and Z. L. Wang, “Strain-gated field effect transistor of a MoS2−ZnO 2D−1D hybrid structure,” ACS Nano 10(1), 1546–1551 (2016).
[Crossref] [PubMed]

Chen, S.

Chen, T.

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. THz Sci. Technol. 3, 757–763 (2013).

Chen, X. H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Chen, Y.

Cho, E.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Chu, P. K.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Cole, M. T.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Correas-Serrano, D.

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

Deng, Y.

H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting black phosphorus: synthesis, transport properties and electronic applications,” Chem. Soc. Rev. 44(9), 2732–2743 (2015).
[Crossref] [PubMed]

Dodabalapur, A.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
[Crossref] [PubMed]

Du, J.

Du, Y.

H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting black phosphorus: synthesis, transport properties and electronic applications,” Chem. Soc. Rev. 44(9), 2732–2743 (2015).
[Crossref] [PubMed]

Eftekhar, A. A.

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Fan, D.

Fan, D. Y.

Farhat, M.

Feng, D.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Foroozan, T.

P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
[Crossref] [PubMed]

Gao, W.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Gao, X.

Y. N. Jiang, Y. Wang, D. B. Ge, S. M. Li, W. P. Cao, X. Gao, and X. H. Yu, “An ultra-wideband absorber based on graphene,” Wuli Xuebao 65, 054101 (2016).

Ge, D. B.

Y. N. Jiang, Y. Wang, D. B. Ge, S. M. Li, W. P. Cao, X. Gao, and X. H. Yu, “An ultra-wideband absorber based on graphene,” Wuli Xuebao 65, 054101 (2016).

Ge, Q.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Gomez-Diaz, J. S.

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

Griebner, U.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Guinea, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Guo, Z.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Guo, Z. N.

Hao, Y.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, S.

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. THz Sci. Technol. 3, 757–763 (2013).

Hersam, M. C.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Hosseinnia, A. H.

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Hu, Z. X.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5, 4475 (2014).
[Crossref] [PubMed]

Huang, X.

L. Chen, F. Xue, X. Li, X. Huang, L. Wang, J. Kou, and Z. L. Wang, “Strain-gated field effect transistor of a MoS2−ZnO 2D−1D hybrid structure,” ACS Nano 10(1), 1546–1551 (2016).
[Crossref] [PubMed]

Indacochea, J. E.

P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
[Crossref] [PubMed]

Jariwala, D.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Ji, W.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5, 4475 (2014).
[Crossref] [PubMed]

Jia, Y.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref] [PubMed]

Jiang, G.

Jiang, X. F.

Jiang, Y. N.

Y. N. Jiang, Y. Wang, D. B. Ge, S. M. Li, W. P. Cao, X. Gao, and X. H. Yu, “An ultra-wideband absorber based on graphene,” Wuli Xuebao 65, 054101 (2016).

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Jones, A. M.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Katsnelson, M. I.

A. N. Rudenko and M. I. Katsnelson, “Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus,” Phys. Rev. B 89(20), 201408 (2014).
[Crossref]

Kim, J. S.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
[Crossref] [PubMed]

Kim, S.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
[Crossref] [PubMed]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Klie, R. F.

P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
[Crossref] [PubMed]

Kong, X.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5, 4475 (2014).
[Crossref] [PubMed]

Kou, J.

L. Chen, F. Xue, X. Li, X. Huang, L. Wang, J. Kou, and Z. L. Wang, “Strain-gated field effect transistor of a MoS2−ZnO 2D−1D hybrid structure,” ACS Nano 10(1), 1546–1551 (2016).
[Crossref] [PubMed]

Kumar, B.

P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
[Crossref] [PubMed]

Lai, K.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lauhon, L. J.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Li, L.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Li, S. M.

Y. N. Jiang, Y. Wang, D. B. Ge, S. M. Li, W. P. Cao, X. Gao, and X. H. Yu, “An ultra-wideband absorber based on graphene,” Wuli Xuebao 65, 054101 (2016).

Li, X.

L. Chen, F. Xue, X. Li, X. Huang, L. Wang, J. Kou, and Z. L. Wang, “Strain-gated field effect transistor of a MoS2−ZnO 2D−1D hybrid structure,” ACS Nano 10(1), 1546–1551 (2016).
[Crossref] [PubMed]

Li, X. Q.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Liang, L.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Liang, Y.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

Lin, S. S.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Lin, W.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Liu, H.

H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting black phosphorus: synthesis, transport properties and electronic applications,” Chem. Soc. Rev. 44(9), 2732–2743 (2015).
[Crossref] [PubMed]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Liu, M.

Liu, X.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Liu, X. Y.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Liu, Y.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
[Crossref] [PubMed]

Liu, Z.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Loh, K. P.

Low, T.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Lu, S.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Lu, S. B.

Luo, A. P.

Luo, Z.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Luo, Z. C.

Lv, P.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Ma, J.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Marks, T. J.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Melcon, A. A.

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

Meunier, V.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Miao, L. L.

Milne, W. I.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Moradinejad, H.

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Moreno, L. M.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Naeem, M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Neal, A. T.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Ou, X.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Pádua, A. A. H.

V. Sresht, A. A. H. Pádua, and D. Blankschtein, “Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations,” ACS Nano 9(8), 8255–8268 (2015).
[Crossref] [PubMed]

Paletko, P.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Pan, M.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Petrov, V.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Qi, X.

Qian, L.

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Qiao, J.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5, 4475 (2014).
[Crossref] [PubMed]

Qin, Z.

Rodin, A. S.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref] [PubMed]

Roldán, R.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Rudenko, A. N.

A. N. Rudenko and M. I. Katsnelson, “Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus,” Phys. Rev. B 89(20), 201408 (2014).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Salehi-Khojin, A.

P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
[Crossref] [PubMed]

Sangwan, V. K.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Seyler, K. L.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Shao, J.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sobon, G.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Soklaski, R.

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

Sotor, J.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Sresht, V.

V. Sresht, A. A. H. Pádua, and D. Blankschtein, “Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations,” ACS Nano 9(8), 8255–8268 (2015).
[Crossref] [PubMed]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Sumpter, B. G.

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Sun, Z.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Taghinejad, H.

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Taghinejad, M.

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Tang, D.

Tang, D. Y.

Tang, S.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Tao, L.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
[Crossref] [PubMed]

Tarasov, A.

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Taylor, A. J.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Tománek, D.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Tran, V.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

Tsai, M. Y.

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Tuncer, H. M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Tuschel, D.

P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
[Crossref] [PubMed]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Vogel, E. M.

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Wang, C.

P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
[Crossref] [PubMed]

Wang, H.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Wang, J.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Wang, L.

L. Chen, F. Xue, X. Li, X. Huang, L. Wang, J. Kou, and Z. L. Wang, “Strain-gated field effect transistor of a MoS2−ZnO 2D−1D hybrid structure,” ACS Nano 10(1), 1546–1551 (2016).
[Crossref] [PubMed]

Wang, P.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, X.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Wang, Y.

Y. N. Jiang, Y. Wang, D. B. Ge, S. M. Li, W. P. Cao, X. Gao, and X. H. Yu, “An ultra-wideband absorber based on graphene,” Wuli Xuebao 65, 054101 (2016).

Wang, Z.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Wang, Z. L.

L. Chen, F. Xue, X. Li, X. Huang, L. Wang, J. Kou, and Z. L. Wang, “Strain-gated field effect transistor of a MoS2−ZnO 2D−1D hybrid structure,” ACS Nano 10(1), 1546–1551 (2016).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Wells, S. A.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Wen, S.

Wen, S. C.

Wood, J. D.

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

Wu, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Wu, D.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
[Crossref] [PubMed]

Wu, H.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Wu, H. A.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Wu, H. W.

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Wu, Z. Q.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Xia, F.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Xie, G.

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Xie, H.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Xu, W. C.

Xu, W. L.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Xu, X.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Xu, Z. J.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Xue, F.

L. Chen, F. Xue, X. Li, X. Huang, L. Wang, J. Kou, and Z. L. Wang, “Strain-gated field effect transistor of a MoS2−ZnO 2D−1D hybrid structure,” ACS Nano 10(1), 1546–1551 (2016).
[Crossref] [PubMed]

Yang, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Yang, F.

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5, 4475 (2014).
[Crossref] [PubMed]

Yang, L.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

Yasaei, P.

P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
[Crossref] [PubMed]

Ye, G. J.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Ye, P. D.

H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting black phosphorus: synthesis, transport properties and electronic applications,” Chem. Soc. Rev. 44(9), 2732–2743 (2015).
[Crossref] [PubMed]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

Yu, H.

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Yu, X.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Yu, X. F.

Yu, X. H.

Y. N. Jiang, Y. Wang, D. B. Ge, S. M. Li, W. P. Cao, X. Gao, and X. H. Yu, “An ultra-wideband absorber based on graphene,” Wuli Xuebao 65, 054101 (2016).

Yu, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Yuan, P.

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Zhang, H.

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

Zhang, S. J.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Zhang, Y.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

Zhao, C.

Zhao, C. J.

Zhao, H.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Zheng, J.

Zhong, H. K.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Zhou, Y.

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Zhu, W.

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
[Crossref] [PubMed]

Zhu, Z.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

ACS Nano (3)

L. Chen, F. Xue, X. Li, X. Huang, L. Wang, J. Kou, and Z. L. Wang, “Strain-gated field effect transistor of a MoS2−ZnO 2D−1D hybrid structure,” ACS Nano 10(1), 1546–1551 (2016).
[Crossref] [PubMed]

V. Sresht, A. A. H. Pádua, and D. Blankschtein, “Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations,” ACS Nano 9(8), 8255–8268 (2015).
[Crossref] [PubMed]

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 4033–4041 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

H. Taghinejad, M. Taghinejad, A. Tarasov, M. Y. Tsai, A. H. Hosseinnia, H. Moradinejad, P. M. Campbell, A. A. Eftekhar, E. M. Vogel, and A. Adibi, “Resonant light-induced heating in hybrid cavity-coupled 2D transition-metal dichalcogenides,” ACS Photonics 3(4), 700–707 (2016).
[Crossref]

Adv. Funct. Mater. (1)

Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. Yu, and P. K. Chu, “From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics,” Adv. Funct. Mater. 25(45), 6996–7002 (2015).
[Crossref]

Adv. Mater. (2)

P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. Salehi-Khojin, “High-quality black phosphorus atomic layers by liquid-phase exfoliation,” Adv. Mater. 27(11), 1887–1892 (2015).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Appl. Phys. Lett. (2)

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Z. W. Bao, H. W. Wu, and Y. Zhou, “Edge plasmons in monolayer black phosphorus,” Appl. Phys. Lett. 109(24), 241902 (2016).
[Crossref]

Chem. Soc. Rev. (1)

H. Liu, Y. Du, Y. Deng, and P. D. Ye, “Semiconducting black phosphorus: synthesis, transport properties and electronic applications,” Chem. Soc. Rev. 44(9), 2732–2743 (2015).
[Crossref] [PubMed]

IEEE Trans. THz Sci. Technol. (1)

S. He and T. Chen, “Broadband THz absorbers with graphene-based anisotropic metamaterial films,” IEEE Trans. THz Sci. Technol. 3, 757–763 (2013).

J. Opt. (1)

D. Correas-Serrano, J. S. Gomez-Diaz, A. A. Melcon, and A. Alù, “Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization,” J. Opt. 18(10), 104006 (2016).
[Crossref]

J. Phys. Chem. Lett. (1)

A. Castellanos-Gomez, “Black phosphorus: narrow gap, wide applications,” J. Phys. Chem. Lett. 6(21), 4280–4291 (2015).
[Crossref] [PubMed]

Nano Lett. (3)

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation of exfoliated black phosphorus transistors against ambient degradation,” Nano Lett. 14(12), 6964–6970 (2014).
[Crossref] [PubMed]

L. Liang, J. Wang, W. Lin, B. G. Sumpter, V. Meunier, and M. Pan, “Electronic bandgap and edge reconstruction in phosphorene materials,” Nano Lett. 14(11), 6400–6406 (2014).
[Crossref] [PubMed]

Nanoscale (1)

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Nat. Commun. (2)

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics,” Nat. Commun. 5, 4458 (2014).
[Crossref] [PubMed]

J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, “High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus,” Nat. Commun. 5, 4475 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref] [PubMed]

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Express (7)

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

Phys. Rev. B (4)

V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89(23), 235319 (2014).
[Crossref]

A. N. Rudenko and M. I. Katsnelson, “Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus,” Phys. Rev. B 89(20), 201408 (2014).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Sci. Rep. (3)

J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, “Toward air-stable multilayer phosphorene thin-films and transistors,” Sci. Rep. 5, 8989 (2015).
[Crossref] [PubMed]

J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, H. Zhang, and J. Wang, “Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).
[PubMed]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014).
[PubMed]

Wuli Xuebao (1)

Y. N. Jiang, Y. Wang, D. B. Ge, S. M. Li, W. P. Cao, X. Gao, and X. H. Yu, “An ultra-wideband absorber based on graphene,” Wuli Xuebao 65, 054101 (2016).

Other (1)

L. I. Berger, Semiconductor Materials (CRC, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Frequency dependent surface conductivity: (a) real part; (b) imaginary part. Black lines and red lines denote the surface conductivity along the x-direction and y-direction, respectively; solid lines, dotted lines, and dashed lines are the conductivity values for electron doping parameter ns given as 1013 cm−2, 5 × 1013 cm−2, and 1014 cm−2, respectively.
Fig. 2
Fig. 2 (a) Schematic of the proposed sandwich-like structured absorber. (b) Front view of the proposed absorber with layer dimensions. Simulated absorption rate (AR) spectra for various BP monolayer nano-ribbon widths w, and for transverse-magnetic TM polarization and transverse-electric (TE) polarization with ridges perpendicular to the x-direction (c and d) and the y-direction (e and f). The inset of (c) shows the AR spectrum for w = 210 nm in the lower wavelength region. Simulated TM polarization AR spectra for various distances between two nano-ribbons (g) and for various thicknesses BP with monolayer, bilayer and trilayer atom (h) while ridges perpendicular to x-direction.
Fig. 3
Fig. 3 (a) Simulated average electric field intensity values for monolayer BP metamaterials with two nano-ribbon periods aligned along the x-direction. The inset presents a sectional view at the in-plane across the 1st interface for NLSS value of 1. AR spectra for various NLSS with (b) TM polarization and (c) TE polarization. The open circles and lines denote results calculated from interference theory and simulation, respectively. The normalized AR spectra of (b) and (c) are presented in (d) and (e), respectively.
Fig. 4
Fig. 4 (a) A schematic diagram of the transmission and reflection for a four-layered sandwich-like structure. The amplitude and phase difference of direct reflection and multiple reflections for (b) TM polarization and (c) TE polarization for different NLSS of the proposed structure.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε ¯ ¯ =[ ε 1 0 0 0 ε 2 0 0 0 ε 3 ],
ε i = ε r + j σ i ε 0 ωd ( i=1, 2 or 3 ),
σ i = j D i π( ω+ jη / ) ( i=1 or 2 ).
D i = π e 2 n s m i ,
m 1 = 2 2 γ 2 /Δ + η c , m 2 = 2 ν c .
Γ l = r l,l+1 + t l+1,l t l,l+1 Γ l+1 e i2 ϕ l 1 r l+1,l Γ l+1 e i2 ϕ l = r l,l+1 + T l+1,l ,

Metrics