Abstract

We investigated the relationship between three-photon electromagnetically induced absorption (TPEIA) and four-wave mixing (FWM) in the 5S1/2–5P3/2–5D5/2 transition of 87Rb atoms. When the driving field was additionally coupled to the ground and intermediate states of a lower V-type configuration in a typical ladder-type electromagnetically induced transparency (EIT) system, Doppler-free TPEIA and FWM spectra were simultaneously observed and then analyzed from the perspective of multi-photon atomic coherence. Comparing the TPEIA and FWM spectra according to the laser frequency detuning and laser intensity, we found that the enhanced TPEIA signal is strongly correlated with the generated FWM light. Analytical and numerical calculations for the analysis of the relationship are presented.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Relationship between two- and three-photon coherence in a ladder-type atomic system

Yoon-Seok Lee, Heung-Ryoul Noh, and Han Seb Moon
Opt. Express 23(3) 2999-3009 (2015)

Condition for Doppler-free three-photon resonance in a ladder-type atomic system

Yoon-Seok Lee and Han Seb Moon
Opt. Express 23(24) 31574-31581 (2015)

Atomic coherence effects in four-wave mixing process of a ladder-type atomic system

Yoon-Seok Lee and Han Seb Moon
Opt. Express 24(10) 10723-10732 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  2. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  3. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [Crossref] [PubMed]
  4. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
    [Crossref] [PubMed]
  5. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21(23), 1936–1938 (1996).
    [Crossref] [PubMed]
  6. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
    [Crossref]
  7. A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
    [Crossref]
  8. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
    [Crossref]
  9. H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16(16), 12163–12170 (2008).
    [Crossref] [PubMed]
  10. H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
    [Crossref]
  11. H. S. Moon and H.-R. Noh, “Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system,” Opt. Express 21(6), 7447–7455 (2013).
    [Crossref] [PubMed]
  12. H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
    [Crossref] [PubMed]
  13. A. Godone, F. Levi, and J. Vanier, “Coherent microwave emission in cesium under coherent population trapping,” Phys. Rev. A 59(1), R12–R15 (1999).
    [Crossref]
  14. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  15. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
    [Crossref]
  16. R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1), 144–154 (1998).
    [Crossref]
  17. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” J. Appl. Phys. B 81(4), 421–442 (2005).
    [Crossref]
  18. D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
    [Crossref]
  19. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
    [Crossref]
  20. C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Three-photon electromagnetically induced absorption and transparency in an inhomogeneously broadened atomic vapour,” J. Mod. Opt. 49(14), 2485–2499 (2002).
    [Crossref]
  21. C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, “Three-photon electromagnetically induced transparency using Rydberg states,” Opt. Lett. 37(18), 3858–3860 (2012).
    [Crossref] [PubMed]
  22. H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
    [Crossref]
  23. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref] [PubMed]
  24. J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
    [Crossref] [PubMed]
  25. Y.-S. Lee and H. S. Moon, “Atomic coherence effects in four-wave mixing process of a ladder-type atomic system,” Opt. Express 24(10), 10723–10732 (2016).
    [Crossref] [PubMed]
  26. Y.-Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
    [Crossref] [PubMed]
  27. A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
    [Crossref]
  28. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
    [Crossref]
  29. F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
    [Crossref]
  30. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
    [Crossref]
  31. U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
    [Crossref] [PubMed]
  32. F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
    [Crossref]
  33. S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
    [Crossref] [PubMed]
  34. Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
    [Crossref] [PubMed]
  35. L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
    [Crossref] [PubMed]
  36. Y.-S. Lee, H.-R. Noh, and H. S. Moon, “Relationship between two- and three-photon coherence in a ladder-type atomic system,” Opt. Express 23(3), 2999–3009 (2015).
    [Crossref] [PubMed]
  37. H.-R. Noh and H. S. Moon, “Three-photon coherence in a ladder-type atomic system,” Phys. Rev. A 92(1), 013807 (2015).
    [Crossref]
  38. Y.-S. Lee and H. S. Moon, “Condition for Doppler-free three-photon resonance in a ladder-type atomic system,” Opt. Express 23(24), 31574–31581 (2015).
    [Crossref] [PubMed]

2016 (1)

2015 (4)

Y.-S. Lee, H.-R. Noh, and H. S. Moon, “Relationship between two- and three-photon coherence in a ladder-type atomic system,” Opt. Express 23(3), 2999–3009 (2015).
[Crossref] [PubMed]

Y.-S. Lee and H. S. Moon, “Condition for Doppler-free three-photon resonance in a ladder-type atomic system,” Opt. Express 23(24), 31574–31581 (2015).
[Crossref] [PubMed]

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

H.-R. Noh and H. S. Moon, “Three-photon coherence in a ladder-type atomic system,” Phys. Rev. A 92(1), 013807 (2015).
[Crossref]

2014 (3)

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
[Crossref]

2009 (2)

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

2008 (3)

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16(16), 12163–12170 (2008).
[Crossref] [PubMed]

2007 (2)

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[Crossref]

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

2005 (1)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” J. Appl. Phys. B 81(4), 421–442 (2005).
[Crossref]

2002 (1)

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Three-photon electromagnetically induced absorption and transparency in an inhomogeneously broadened atomic vapour,” J. Mod. Opt. 49(14), 2485–2499 (2002).
[Crossref]

1999 (6)

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[Crossref]

A. Godone, F. Levi, and J. Vanier, “Coherent microwave emission in cesium under coherent population trapping,” Phys. Rev. A 59(1), R12–R15 (1999).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
[Crossref]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[Crossref]

1998 (2)

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1), 144–154 (1998).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

1996 (4)

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
[Crossref] [PubMed]

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Y.-Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
[Crossref] [PubMed]

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21(23), 1936–1938 (1996).
[Crossref] [PubMed]

1995 (2)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

1991 (1)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Adams, C. S.

Akulshin, A. M.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Anderson, B.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[Crossref]

Barreiro, S.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Becerra, F. E.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Belthangady, C.

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

Bergmann, K.

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1), 144–154 (1998).
[Crossref]

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Budker, D.

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Carr, C.

Chen, H.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Cho, Y.-W.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Du, S.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

Dunn, M. H.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Fleischhauer, M.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[Crossref]

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1), 144–154 (1998).
[Crossref]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
[Crossref]

Fulton, D. J.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Godone, A.

A. Godone, F. Levi, and J. Vanier, “Coherent microwave emission in cesium under coherent population trapping,” Phys. Rev. A 59(1), R12–R15 (1999).
[Crossref]

Guo, X.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

Harris, S. E.

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
[Crossref]

Imamoglu, A.

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21(23), 1936–1938 (1996).
[Crossref] [PubMed]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Jeong, T.

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
[Crossref]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
[Crossref]

Keitel, C. H.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Khadka, U.

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
[Crossref] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[Crossref]

Kim, J. B.

Kim, Y.-H.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Knight, P. L.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Kolchin, P.

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

Lee, J.-C.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Lee, L.

Lee, Y.-S.

Levi, F.

A. Godone, F. Levi, and J. Vanier, “Coherent microwave emission in cesium under coherent population trapping,” Phys. Rev. A 59(1), R12–R15 (1999).
[Crossref]

Lezama, A.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Li, Y.-Q.

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
[Crossref] [PubMed]

Y.-Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
[Crossref] [PubMed]

Ling, H. Y.

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
[Crossref] [PubMed]

Loy, M. M. T.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

Lukin, M. D.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
[Crossref]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[Crossref]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Marangos, J. P.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Matsko, A. B.

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Three-photon electromagnetically induced absorption and transparency in an inhomogeneously broadened atomic vapour,” J. Mod. Opt. 49(14), 2485–2499 (2002).
[Crossref]

Moon, H. S.

Moseley, R. R.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

Noh, H.-R.

Y.-S. Lee, H.-R. Noh, and H. S. Moon, “Relationship between two- and three-photon coherence in a ladder-type atomic system,” Opt. Express 23(3), 2999–3009 (2015).
[Crossref] [PubMed]

H.-R. Noh and H. S. Moon, “Three-photon coherence in a ladder-type atomic system,” Phys. Rev. A 92(1), 013807 (2015).
[Crossref]

H. S. Moon and H.-R. Noh, “Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system,” Opt. Express 21(6), 7447–7455 (2013).
[Crossref] [PubMed]

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
[Crossref]

Orozco, L. A.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

Park, K.-K.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Petch, J. C.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Rolston, S. L.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

Romalis, M. V.

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
[Crossref]

Rostovtsev, Y. V.

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Three-photon electromagnetically induced absorption and transparency in an inhomogeneously broadened atomic vapour,” J. Mod. Opt. 49(14), 2485–2499 (2002).
[Crossref]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Sargsyan, A.

Sarkisyan, D.

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
[Crossref]

Schmidt, H.

Scully, M. O.

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Three-photon electromagnetically induced absorption and transparency in an inhomogeneously broadened atomic vapour,” J. Mod. Opt. 49(14), 2485–2499 (2002).
[Crossref]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
[Crossref]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[Crossref]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[Crossref]

Shepherd, S.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

Shore, B. W.

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1), 144–154 (1998).
[Crossref]

Sinclair, B. D.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

Song, J.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Su, Y.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

Sun, Y.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

Tanasittikosol, M.

Tittel, W.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Unanyan, R.

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1), 144–154 (1998).
[Crossref]

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” J. Appl. Phys. B 81(4), 421–442 (2005).
[Crossref]

A. Godone, F. Levi, and J. Vanier, “Coherent microwave emission in cesium under coherent population trapping,” Phys. Rev. A 59(1), R12–R15 (1999).
[Crossref]

Weatherill, K. J.

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
[Crossref]

Wen, F.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Willis, R. T.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

Xiao, M.

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
[Crossref] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[Crossref]

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
[Crossref] [PubMed]

Y.-Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
[Crossref] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Xue, X.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Ye, C. Y.

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Three-photon electromagnetically induced absorption and transparency in an inhomogeneously broadened atomic vapour,” J. Mod. Opt. 49(14), 2485–2499 (2002).
[Crossref]

Yelin, S. F.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[Crossref]

Yin, G. Y.

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

Zhang, Y.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[Crossref]

Zhao, L.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

Zheng, H.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
[Crossref] [PubMed]

Zibrov, A. S.

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Three-photon electromagnetically induced absorption and transparency in an inhomogeneously broadened atomic vapour,” J. Mod. Opt. 49(14), 2485–2499 (2002).
[Crossref]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
[Crossref]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[Crossref]

Appl. Phys. Lett. (1)

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Controlling four-wave and six-wave mixing processes in multilevel atomic systems,” Appl. Phys. Lett. 91(22), 221108 (2007).
[Crossref]

J. Appl. Phys. B (1)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” J. Appl. Phys. B 81(4), 421–442 (2005).
[Crossref]

J. Mod. Opt. (1)

C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Three-photon electromagnetically induced absorption and transparency in an inhomogeneously broadened atomic vapour,” J. Mod. Opt. 49(14), 2485–2499 (2002).
[Crossref]

Nat. Photonics (1)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Nat. Phys. (1)

D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Opt. Commun. (1)

R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, “Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states,” Opt. Commun. 155(1), 144–154 (1998).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Opt. Mater. (1)

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Phys. Rev. A (12)

H.-R. Noh and H. S. Moon, “Three-photon coherence in a ladder-type atomic system,” Phys. Rev. A 92(1), 013807 (2015).
[Crossref]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[Crossref]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995).
[Crossref] [PubMed]

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms,” Phys. Rev. A 53(2), 1014–1026 (1996).
[Crossref] [PubMed]

A. Godone, F. Levi, and J. Vanier, “Coherent microwave emission in cesium under coherent population trapping,” Phys. Rev. A 59(1), R12–R15 (1999).
[Crossref]

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
[Crossref]

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (8)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5233 (1999).
[Crossref]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[Crossref]

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Upper Λ-type TPEIA and (b) lower V-type TPEIA configurations in simple four-level atomic model.
Fig. 2
Fig. 2 (a) Energy-level diagram of 5S1/2–5P3/2–5D5/2 transition of 87Rb, where the Ωd fields for Λ- (red) and V- (blue) type TPEIAs are coupled to the 5P3/2(F′ = 3)−5D5/2(F″ = 4) and 5S1/2(F′ = 2)–5P3/2(F′ = 3) transitions, respectively. (b) EIT (black curve), Λ-type TPEIA (red curve), and V-type TPEIA (blue curve) spectra as functions of ΩC-field detuning frequency.
Fig. 3
Fig. 3 (a) V-type TPEIA and FWM configuration for 5S1/2–5P3/2–5D5/2 transition of 87Rb. (b) V-type TPEIA (blue curve) and FWM (red curve) spectra as functions of ΩC-field detuning frequency.
Fig. 4
Fig. 4 TPEIA and FWM spectra according to ΩC-field detuning frequency, where the x-axis is the relative detuning frequency of the Ωp field; the gray curve is the saturated absorption spectrum (SAS) of the Ωp field.
Fig. 5
Fig. 5 (a) TPEIA and (b) FWM spectra according to Ωd power.
Fig. 6
Fig. 6 Numerically calculated (a) V-type TPEIA and (b) FWM spectra (black curves) according to Rabi frequency (Ωd) of driving field.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ 12 = Ω C ρ 14 Ω d ρ 23 2 δ p i Γ 12 ,
ρ 34 = Ω d ρ 14 Ω C ρ 23 2( δ C + δ p δ d )i( Γ 13 + Γ 34 ) .

Metrics