Abstract

A novel technique combining Brillouin phase-shift measurements with Brillouin dynamic gratings (BDGs) reflectometry in polarization-maintaining fibers is presented here for the first time. While a direct measurement of the optical phase in standard BDG setups is impractical due to non-local phase contributions, their detrimental effect is reduced by ~4 orders of magnitude through the coherent addition of Stokes and anti-Stokes reflections from two counter-propagating BDGs in the fiber. The technique advantageously combines the high-spatial-resolution of BDGs reflectometry with the increased tolerance to optical power fluctuations of phasorial measurements, to enhance the performance of fiber-optic strain sensors. We demonstrate a distributed measurement (20cm spatial-resolution) of both static and dynamic (5kHz of vibrations at a sampling rate of 1MHz) strain fields acting on the fiber, in good agreement with theory and (for the static case) with the results of commercial reflectometers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers

Yong Hyun Kim, Hong Kwon, Jeongjun Kim, and Kwang Yong Song
Opt. Express 24(19) 21399-21406 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
    [Crossref]
  2. I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
    [Crossref]
  3. C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
    [Crossref]
  4. A. Bergman, T. Langer, and M. Tur, “High spatial resolution, low-noise Brillouin dynamic gratings reflectometry based on digital pulse compression,” Opt. Lett. 41(15), 3643–3646 (2016).
    [Crossref] [PubMed]
  5. Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
    [Crossref] [PubMed]
  6. A. Minardo, A. Coscetta, R. Bernini, R. Ruiz-Lombera, J. Mirapeix Serrano, J. M. Lopez-Higuera, and L. Zeni, “Structural damage identification in an aluminum composite plate by Brillouin sensing,” IEEE Sens. J. 15(2), 659–660 (2015).
    [Crossref]
  7. B. Lissak, A. Arie, and M. Tur, “Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings,” Opt. Lett. 23(24), 1930–1932 (1998).
    [Crossref] [PubMed]
  8. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [Crossref] [PubMed]
  9. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [Crossref] [PubMed]
  10. A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
    [Crossref]
  11. J. Chen, Q. Liu, X. Fan, and Z. He, “Ultrahigh resolution optical fiber strain sensor using dual Pound-Drever-Hall feedback loops,” Opt. Lett. 41(5), 1066–1069 (2016).
    [Crossref] [PubMed]
  12. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  13. A. Motil, R. Hadar, I. Sovran, and M. Tur, “Gain dependence of the linewidth of Brillouin amplification in optical fibers,” Opt. Express 22(22), 27535–27541 (2014).
    [Crossref] [PubMed]
  14. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
  15. D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
    [Crossref] [PubMed]
  16. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  17. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
    [Crossref] [PubMed]
  18. A. Lopez-Gil, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Exploiting nonreciprocity in BOTDA systems,” Opt. Lett. 40(10), 2193–2196 (2015).
    [Crossref] [PubMed]
  19. A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
    [Crossref]
  20. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  21. A. Motil, Y. Peled, L. Yaron, and M. Tur, “Fast and distributed high resolution Brillouin based fiber optic sensor,” Opt. Fiber Commun. Conf., pp. OM3G.2, 2013.
    [Crossref]
  22. J. Urricelqui, M. Sagues, and A. Loayssa, “Phasorial differential pulse-width pair technique for long-range Brillouin optical time-domain analysis sensors,” Opt. Express 22(14), 17403–17408 (2014).
    [Crossref] [PubMed]
  23. K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
    [Crossref] [PubMed]
  24. S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sens. J. 12(1), 189–194 (2012).
    [Crossref]
  25. A. Bergman, L. Yaron, T. Langer, and M. Tur, “Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings,” J. Lightwave Technol. 33(12), 2611–2616 (2015).
    [Crossref]
  26. A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR Improvement and Distributed phase shift measurements in BOTDA,” J. Lightwave Technol. 30(8), 1066–1072 (2012).
    [Crossref]
  27. L. Yaron, E. Shahmoon, A. Bergman, T. Langer, and M. Tur, “Spontaneous anti-Stokes backscattering in Brillouin dynamic gratings,” Proc. SPIE 9634, 96342X (2015).
    [Crossref]
  28. A. M. Scott and K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25(3), 438–459 (1989).
    [Crossref]
  29. Y. Dong, H. Zhang, D. Zhou, X. Bao, and L. Chen, “Chapter 5: Characterization of Brillouin grating in optical fibers and their applications,” in Fiber Optic Sensors (Intech Publisher, 2012), pp. 115–136.
  30. L. Thévenaz, ed., Advanced Fiber Optics: Concepts and Technology (EPFL press, 2011), Chap. 9.
  31. H. Kogelnik, “Theory of Optical Waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer, 1988).
  32. A. Bergman, T. Langer, and M. Tur, “Coding-enhanced ultrafast and distributed Brillouin dynamic gratings sensing using coherent detection,” J. Lightwave Technol. 34(24), 5593–5600 (2016).
    [Crossref]
  33. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
    [Crossref] [PubMed]
  34. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  35. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
    [Crossref]
  36. J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012).
    [Crossref] [PubMed]

2016 (5)

2015 (6)

A. Bergman, L. Yaron, T. Langer, and M. Tur, “Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings,” J. Lightwave Technol. 33(12), 2611–2616 (2015).
[Crossref]

L. Yaron, E. Shahmoon, A. Bergman, T. Langer, and M. Tur, “Spontaneous anti-Stokes backscattering in Brillouin dynamic gratings,” Proc. SPIE 9634, 96342X (2015).
[Crossref]

A. Lopez-Gil, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, and M. Gonzalez-Herraez, “Exploiting nonreciprocity in BOTDA systems,” Opt. Lett. 40(10), 2193–2196 (2015).
[Crossref] [PubMed]

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

A. Minardo, A. Coscetta, R. Bernini, R. Ruiz-Lombera, J. Mirapeix Serrano, J. M. Lopez-Higuera, and L. Zeni, “Structural damage identification in an aluminum composite plate by Brillouin sensing,” IEEE Sens. J. 15(2), 659–660 (2015).
[Crossref]

2014 (4)

2013 (2)

2012 (5)

2011 (2)

2010 (1)

2009 (2)

2008 (2)

1998 (1)

1989 (1)

A. M. Scott and K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25(3), 438–459 (1989).
[Crossref]

Angulo-Vinuesa, X.

Antman, Y.

Arbel, D.

Arie, A.

Ballato, J.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Bao, X.

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Bergman, A.

Bernini, R.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

A. Minardo, A. Coscetta, R. Bernini, R. Ruiz-Lombera, J. Mirapeix Serrano, J. M. Lopez-Higuera, and L. Zeni, “Structural damage identification in an aluminum composite plate by Brillouin sensing,” IEEE Sens. J. 15(2), 659–660 (2015).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
[Crossref] [PubMed]

Chen, J.

Chen, L.

Chin, S.

S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sens. J. 12(1), 189–194 (2012).
[Crossref]

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012).
[Crossref] [PubMed]

Coscetta, A.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

A. Minardo, A. Coscetta, R. Bernini, R. Ruiz-Lombera, J. Mirapeix Serrano, J. M. Lopez-Higuera, and L. Zeni, “Structural damage identification in an aluminum composite plate by Brillouin sensing,” IEEE Sens. J. 15(2), 659–660 (2015).
[Crossref]

Danon, O.

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

Dominguez-Lopez, A.

Dragic, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Eyal, A.

Fan, X.

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Gonzalez-Herraez, M.

Hadar, R.

Hawkins, T.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

He, Z.

Hotate, K.

Kishi, M.

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

Kressel, I.

Langer, T.

Li, W.

Li, Y.

Lissak, B.

Liu, Q.

Loayssa, A.

Lopez-Gil, A.

Lopez-Higuera, J. M.

A. Minardo, A. Coscetta, R. Bernini, R. Ruiz-Lombera, J. Mirapeix Serrano, J. M. Lopez-Higuera, and L. Zeni, “Structural damage identification in an aluminum composite plate by Brillouin sensing,” IEEE Sens. J. 15(2), 659–660 (2015).
[Crossref]

Lu, Y.

Martin-Lopez, S.

Masoudi, A.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Minardo, A.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

A. Minardo, A. Coscetta, R. Bernini, R. Ruiz-Lombera, J. Mirapeix Serrano, J. M. Lopez-Higuera, and L. Zeni, “Structural damage identification in an aluminum composite plate by Brillouin sensing,” IEEE Sens. J. 15(2), 659–660 (2015).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
[Crossref] [PubMed]

Mirapeix Serrano, J.

A. Minardo, A. Coscetta, R. Bernini, R. Ruiz-Lombera, J. Mirapeix Serrano, J. M. Lopez-Higuera, and L. Zeni, “Structural damage identification in an aluminum composite plate by Brillouin sensing,” IEEE Sens. J. 15(2), 659–660 (2015).
[Crossref]

Morris, S.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Motil, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

A. Motil, R. Hadar, I. Sovran, and M. Tur, “Gain dependence of the linewidth of Brillouin amplification in optical fibers,” Opt. Express 22(22), 27535–27541 (2014).
[Crossref] [PubMed]

Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
[Crossref] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

A. Motil, Y. Peled, L. Yaron, and M. Tur, “Fast and distributed high resolution Brillouin based fiber optic sensor,” Opt. Fiber Commun. Conf., pp. OM3G.2, 2013.
[Crossref]

Newson, T. P.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Ntziachristos, V.

Peled, Y.

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
[Crossref] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

A. Motil, Y. Peled, L. Yaron, and M. Tur, “Fast and distributed high resolution Brillouin based fiber optic sensor,” Opt. Fiber Commun. Conf., pp. OM3G.2, 2013.
[Crossref]

Primerov, N.

S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sens. J. 12(1), 189–194 (2012).
[Crossref]

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012).
[Crossref] [PubMed]

Razansky, D.

Ridley, K. D.

A. M. Scott and K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25(3), 438–459 (1989).
[Crossref]

Rosenthal, A.

Ruiz-Lombera, R.

A. Minardo, A. Coscetta, R. Bernini, R. Ruiz-Lombera, J. Mirapeix Serrano, J. M. Lopez-Higuera, and L. Zeni, “Structural damage identification in an aluminum composite plate by Brillouin sensing,” IEEE Sens. J. 15(2), 659–660 (2015).
[Crossref]

Sagues, M.

Sales, S.

Sancho, J.

Scott, A. M.

A. M. Scott and K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25(3), 438–459 (1989).
[Crossref]

Shahmoon, E.

L. Yaron, E. Shahmoon, A. Bergman, T. Langer, and M. Tur, “Spontaneous anti-Stokes backscattering in Brillouin dynamic gratings,” Proc. SPIE 9634, 96342X (2015).
[Crossref]

Song, K. Y.

Sovran, I.

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

A. Motil, R. Hadar, I. Sovran, and M. Tur, “Gain dependence of the linewidth of Brillouin amplification in optical fibers,” Opt. Express 22(22), 27535–27541 (2014).
[Crossref] [PubMed]

Thevenaz, L.

S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sens. J. 12(1), 189–194 (2012).
[Crossref]

Thévenaz, L.

Tur, M.

A. Bergman, T. Langer, and M. Tur, “High spatial resolution, low-noise Brillouin dynamic gratings reflectometry based on digital pulse compression,” Opt. Lett. 41(15), 3643–3646 (2016).
[Crossref] [PubMed]

A. Bergman, T. Langer, and M. Tur, “Coding-enhanced ultrafast and distributed Brillouin dynamic gratings sensing using coherent detection,” J. Lightwave Technol. 34(24), 5593–5600 (2016).
[Crossref]

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

L. Yaron, E. Shahmoon, A. Bergman, T. Langer, and M. Tur, “Spontaneous anti-Stokes backscattering in Brillouin dynamic gratings,” Proc. SPIE 9634, 96342X (2015).
[Crossref]

A. Bergman, L. Yaron, T. Langer, and M. Tur, “Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings,” J. Lightwave Technol. 33(12), 2611–2616 (2015).
[Crossref]

A. Motil, R. Hadar, I. Sovran, and M. Tur, “Gain dependence of the linewidth of Brillouin amplification in optical fibers,” Opt. Express 22(22), 27535–27541 (2014).
[Crossref] [PubMed]

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
[Crossref] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

B. Lissak, A. Arie, and M. Tur, “Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings,” Opt. Lett. 23(24), 1930–1932 (1998).
[Crossref] [PubMed]

A. Motil, Y. Peled, L. Yaron, and M. Tur, “Fast and distributed high resolution Brillouin based fiber optic sensor,” Opt. Fiber Commun. Conf., pp. OM3G.2, 2013.
[Crossref]

Urricelqui, J.

Yaron, L.

A. Bergman, L. Yaron, T. Langer, and M. Tur, “Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings,” J. Lightwave Technol. 33(12), 2611–2616 (2015).
[Crossref]

L. Yaron, E. Shahmoon, A. Bergman, T. Langer, and M. Tur, “Spontaneous anti-Stokes backscattering in Brillouin dynamic gratings,” Proc. SPIE 9634, 96342X (2015).
[Crossref]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

A. Motil, Y. Peled, L. Yaron, and M. Tur, “Fast and distributed high resolution Brillouin based fiber optic sensor,” Opt. Fiber Commun. Conf., pp. OM3G.2, 2013.
[Crossref]

Zadok, A.

Zeni, L.

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

A. Minardo, A. Coscetta, R. Bernini, R. Ruiz-Lombera, J. Mirapeix Serrano, J. M. Lopez-Higuera, and L. Zeni, “Structural damage identification in an aluminum composite plate by Brillouin sensing,” IEEE Sens. J. 15(2), 659–660 (2015).
[Crossref]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

Zhu, T.

Zornoza, A.

Zou, W.

Appl. Phys. Express (1)

C. Zhang, M. Kishi, and K. Hotate, “5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis,” Appl. Phys. Express 8(4), 042501 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

A. M. Scott and K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25(3), 438–459 (1989).
[Crossref]

IEEE Photonics Technol. Lett. (2)

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

A. Motil, O. Danon, Y. Peled, and M. Tur, “Pump-power-independent double slope-assisted distributed and fast Brillouin fiber-optic sensor,” IEEE Photonics Technol. Lett. 26(8), 797–800 (2014).
[Crossref]

IEEE Sens. J. (2)

A. Minardo, A. Coscetta, R. Bernini, R. Ruiz-Lombera, J. Mirapeix Serrano, J. M. Lopez-Higuera, and L. Zeni, “Structural damage identification in an aluminum composite plate by Brillouin sensing,” IEEE Sens. J. 15(2), 659–660 (2015).
[Crossref]

S. Chin, N. Primerov, and L. Thevenaz, “Sub-centimeter spatial resolution in distributed fiber sensing based on dynamic Brillouin grating in optical fibers,” IEEE Sens. J. 12(1), 189–194 (2012).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. (1)

A. Minardo, A. Coscetta, R. Bernini, and L. Zeni, “Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements,” J. Opt. 18(2), 025606 (2016).
[Crossref]

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Nat. Photonics (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Opt. Express (9)

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express 20(6), 6157–6162 (2012).
[Crossref] [PubMed]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[Crossref] [PubMed]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

J. Urricelqui, M. Sagues, and A. Loayssa, “Phasorial differential pulse-width pair technique for long-range Brillouin optical time-domain analysis sensors,” Opt. Express 22(14), 17403–17408 (2014).
[Crossref] [PubMed]

J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
[Crossref] [PubMed]

D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
[Crossref] [PubMed]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

A. Motil, R. Hadar, I. Sovran, and M. Tur, “Gain dependence of the linewidth of Brillouin amplification in optical fibers,” Opt. Express 22(22), 27535–27541 (2014).
[Crossref] [PubMed]

Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Opt. Lett. (7)

Proc. SPIE (1)

L. Yaron, E. Shahmoon, A. Bergman, T. Langer, and M. Tur, “Spontaneous anti-Stokes backscattering in Brillouin dynamic gratings,” Proc. SPIE 9634, 96342X (2015).
[Crossref]

Other (5)

A. Motil, Y. Peled, L. Yaron, and M. Tur, “Fast and distributed high resolution Brillouin based fiber optic sensor,” Opt. Fiber Commun. Conf., pp. OM3G.2, 2013.
[Crossref]

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Y. Dong, H. Zhang, D. Zhou, X. Bao, and L. Chen, “Chapter 5: Characterization of Brillouin grating in optical fibers and their applications,” in Fiber Optic Sensors (Intech Publisher, 2012), pp. 115–136.

L. Thévenaz, ed., Advanced Fiber Optics: Concepts and Technology (EPFL press, 2011), Chap. 9.

H. Kogelnik, “Theory of Optical Waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 A schematic diagram of the proposed PM-BDG setup for distributed measurement of Brillouin-induced phase-shift using two simultaneously counter-propagating Brillouin dynamic gratings and a dual-tone probe. PBS: Polarization beam splitter; PD: Fast photodiode.
Fig. 2
Fig. 2 Schematic description of the (a) Stokes-BDG and (b) anti-Stokes-BDG interactions, described by the equation sets (1) and (2), respectively.
Fig. 3
Fig. 3 The theoretical phase-shift spectra of the Stokes-BDG reflection, the anti-Stokes-BDG reflection, and the beat term (ΓB = 2π·20.5MHz).
Fig. 4
Fig. 4 Experimental setup. LD: A narrow-band tunable laser diode set at 1550nm; MZM1-3: A low-Vπ electro-optic Mach-Zehnder modulators, biased at their minimum transmission to maximally suppress the carrier; SG1/2: RF signal generators whose modulation frequencies lie in the vicinity of νB/2 and νBDG, respectively; EDFA1-5: Erbium-doped fiber amplifiers; TOF1: A tunable optical filter which removes the higher frequency sideband of MZM2 as well as the amplified spontaneous emission (ASE) of EDFA3; SOA: A high extinction ratio semiconductor optical amplifier; PG: Pulse generator; ISO1-3: Isolators; PBS: Polarization beam splitter; FUT: Fiber under test; TOF2: A second tunable optical filter which removes the pumps leakage into the fast axis as well as the ASE of EDFA5; PD1/2; Fast photodiodes.
Fig. 5
Fig. 5 (a) The transmitted spectrum of the lower ‘pumps’ branch of Fig. 4, after ISO2. (b) The ProbeR signal of PD2 for different intensities of the receding grating and a constant intensity of the oncoming grating, to which the Probe signal was matched.
Fig. 6
Fig. 6 The OSA measured spectrum of ProbeR for two cases: one when pumps where turned off (representing only the Rayleigh backscattering contribution) and other when pumps where turned on.
Fig. 7
Fig. 7 Measured BDG reflectivity as a function of (a) pumps power and (b) the Probe power.
Fig. 8
Fig. 8 (a) Static strain experimental setup employed for the calibration procedure. (b) RF phase-shift as a function of the measured strain (ΓB = 2π·26MHz).
Fig. 9
Fig. 9 (a) The setup of the second static strain experiment. (b) Longitudinal strain field along the fiber as measured by a commercial OFDR interrogator, compared vs. the maximum of the difference in the Brillouin-induced phase-shift.
Fig. 10
Fig. 10 (a) A 20cm section of the FUT was bonded to a linear translation stage at one end, and to a mechanical shaker on the other end. (b) RF phase-shift as a function of time, measured at the periodically stretched section of the FUT driven by an electrical function generator at 1kHz and (c) 5kHz (in Fig. 10(c), 10kHz low pass filter was applied).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E Probe,S z = i 2 g 2 E ProbeR,S ρ S e iΔkz E ProbeR,S z = i 2 g 2 E Probe,S ρ S * e iΔkz ρ S = i g 1 Γ A E PumpH,S E PumpL,S *
E Probe,AS z = i 2 g 2 E ProbeR,AS ρ AS * e iΔkz E ProbeR,AS z = i 2 g 2 E Probe,AS ρ AS e iΔkz ρ AS = i g 1 Γ A E PumpH,AS E PumpL,AS *
h ProbeR,S (t) Γ B rect( ct/2nL ) 4Δ Ω B 2 ( ct/2n )+ Γ B 2 exp[ iarctg( 2Δ Ω B ( ct/2n )/ Γ B ) ]exp[ iΔ Ω BDG (ct/2n)t ] exp[i( ω Probe_Stokes Ω)t]
h ProbeR,AS (t) Γ B rect( ct/2nL ) 4Δ Ω B 2 ( ct/2n )+ Γ B 2 exp[ iarctg( 2Δ Ω B ( ct/2n )/ Γ B ) ]exp[ iΔ Ω BDG (ct/2n)t ] exp[i( ω Probe_antiStokes +Ω)t]
i(t) | AC | h ProbeR,S (t)+ h ProbeR,AS (t) | 2 | AC = Γ B rect( ct/2n ) 4Δ Ω B 2 ( ct/2n )+ Γ B 2 cos( Ωt+Δ ϕ RF (t) )
Δ ϕ RF (t)=2arctg( 2Δ Ω B ( ct/2n )/ Γ B ).

Metrics