Abstract

In this paper, we first propose and demonstrate a novel tracing atom based absorption spectroscopy method for the real-time measurement of the temperature rise inside the pump region of a pulsed diode pumped alkali laser (DPAL). By artificially adding potassium atoms into the gain medium of an operational rubidium laser, the information of the temperature rise can be obtained from the variation of the potassium absorption signal. Some important influencing factors are studied. Typical results show that, as the pump power (2 ms duration) increases from 22 W to 92 W, the temperature rise increases from 103 K to 227 K. As the pulse duration increases from 1ms to 5 ms, the temperature rise increases from 128 K to 314 K, and the heat relaxation time increases from 3.8 ms to 8.1 ms. The method is favored for its ability for real-time detection and high sensitivity, which provides a useful way for DPAL diagnostics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of time evolution of power and temperature in single-pulse and multi-pulses diode-pumped alkali vapor lasers

Binglin Shen, Jinghua Huang, Xingqi Xu, Chunsheng Xia, and Bailiang Pan
Opt. Express 25(12) 13396-13407 (2017)

Methane-based in situ temperature rise measurement in a diode-pumped rubidium laser

Rui Wang, Zining Yang, Hongyan Wang, and Xiaojun Xu
Opt. Lett. 42(4) 667-670 (2017)

Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers

Boris D. Barmashenko and Salman Rosenwaks
J. Opt. Soc. Am. B 30(5) 1118-1126 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
    [Crossref] [PubMed]
  2. W. Krupke, “Diode-pumped alkali lasers aim for single-aperture power scaling,” SPIE Newsroom (2008).
  3. J. Hecht, “Photonic Frontiers: Military Lasers: A new generation of laser weapons is born,” (Laser Focus World, 2010), http://www.laserfocusworld.com/articles/2010/04/photonic-frontiers.html .
  4. W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper),” Proc. SPIE 5448, 7–17 (2004).
    [Crossref]
  5. B. Zhdanov, T. Ehrenreich, and R. Knize, “Cesium laser for military and civilian applications,” SPIE Newsroom (2006).
  6. Y. Li, W. Hua, Z. Yang, H. Wang, and X. Xu, “Tunable diode pumped Rb laser with single longitudinal and transverse mode operation,” Opt. Commun. 357, 67–70 (2015).
    [Crossref]
  7. B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280(1), 161–164 (2007).
    [Crossref]
  8. S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of rubidium,” Opt. Express 20(8), 8915–8919 (2012).
    [Crossref] [PubMed]
  9. W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of He 3 with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
    [Crossref]
  10. R. Luo, L. Li, W. Cui, Z. Yang, H. Wang, and X. Xu, “Experimental study of diode pumped rubidium amplifier for single higher-order Laguerre-Gaussian modes,” Opt. Express 24(12), 13351–13356 (2016).
    [Crossref] [PubMed]
  11. W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
    [Crossref]
  12. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
    [Crossref]
  13. Y. Wang and G. An, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” Proc. SPIE 9521, 95211 (2014).
  14. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
    [Crossref]
  15. G. A. Pitz, E. M. Guild, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2015).
  16. E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of supersonic diode pumped alkali lasers,” J. Opt. Soc. Am. B 32(9), 1824 (2015).
    [Crossref]
  17. Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
    [Crossref]
  18. B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 271–283 (2014).
  19. M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
    [Crossref]
  20. J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
    [Crossref] [PubMed]
  21. J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D(2) blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
    [Crossref] [PubMed]
  22. K. L. Galbally-Kinney, D. L. Maser, W. J. Kessler, W. T. Rawlins, and S. J. Davis, “Measurements and imaging of optical gain in optically pumped alkali-rare gas systems,” Appl. Phys. Lett. 100(4), 041110 (2012).
    [Crossref]
  23. B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
    [Crossref]
  24. C. Fox and G. Perram, “Temperature gradients in diode-pumped alkali lasers,” SPIE Newsroom (2012)
  25. M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
    [Crossref] [PubMed]
  26. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
    [Crossref] [PubMed]
  27. R. Wang, Z. Yang, H. Wang, and X. Xu, “Methane-based in situ temperature rise measurement in a diode-pumped rubidium laser,” Opt. Lett. 42(4), 667–670 (2017).
    [Crossref] [PubMed]
  28. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Laser power, cell temperature, and beam quality dependence on cell length of static Cs DPAL,” J. Opt. Soc. Am. B 34(2), 279–286 (2017).
    [Crossref]
  29. G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80(6), 062718 (2009).
    [Crossref]
  30. G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. 113(5), 387–395 (2012).
    [Crossref]
  31. T. Tiecke, “Properties of potassium,” University of Amsterdam, The Netherlands, Thesis (2010).
  32. C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics Conference (Optical Society of America, 2005), pp. 698–702.
  33. L. R. Taylor, Y. Feng, and D. B. Calia, “50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express 18(8), 8540–8555 (2010).
    [Crossref] [PubMed]
  34. M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
    [Crossref]
  35. L. Krause, “Collisional excitation transfer between the 2P1/2 and 2P3/2 levels in alkali atoms,” Appl. Opt. 5(9), 1375–1382 (1966).
    [Crossref] [PubMed]

2017 (2)

2016 (3)

2015 (4)

G. A. Pitz, E. M. Guild, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2015).

E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of supersonic diode pumped alkali lasers,” J. Opt. Soc. Am. B 32(9), 1824 (2015).
[Crossref]

Y. Li, W. Hua, Z. Yang, H. Wang, and X. Xu, “Tunable diode pumped Rb laser with single longitudinal and transverse mode operation,” Opt. Commun. 357, 67–70 (2015).
[Crossref]

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

2014 (2)

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 271–283 (2014).

Y. Wang and G. An, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” Proc. SPIE 9521, 95211 (2014).

2012 (7)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

J. Han and M. C. Heaven, “Gain and lasing of optically pumped metastable rare gas atoms,” Opt. Lett. 37(11), 2157–2159 (2012).
[Crossref] [PubMed]

K. L. Galbally-Kinney, D. L. Maser, W. J. Kessler, W. T. Rawlins, and S. J. Davis, “Measurements and imaging of optical gain in optically pumped alkali-rare gas systems,” Appl. Phys. Lett. 100(4), 041110 (2012).
[Crossref]

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of rubidium,” Opt. Express 20(8), 8915–8919 (2012).
[Crossref] [PubMed]

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. 113(5), 387–395 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80(6), 062718 (2009).
[Crossref]

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D(2) blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
[Crossref] [PubMed]

2008 (1)

B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

2007 (2)

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of He 3 with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280(1), 161–164 (2007).
[Crossref]

2004 (1)

W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper),” Proc. SPIE 5448, 7–17 (2004).
[Crossref]

2003 (1)

1982 (1)

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

1966 (1)

Altin, P. A.

An, G.

Y. Wang and G. An, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” Proc. SPIE 9521, 95211 (2014).

Babcock, E.

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of He 3 with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

Barbier, L.

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

Barmashenko, B. D.

Beach, R. J.

W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper),” Proc. SPIE 5448, 7–17 (2004).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[Crossref] [PubMed]

Bennetts, S.

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Calia, D. B.

Chen, J.

Chen, W. C.

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of He 3 with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

Cheret, M.

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

Close, J. D.

Cui, W.

Davis, S. J.

K. L. Galbally-Kinney, D. L. Maser, W. J. Kessler, W. T. Rawlins, and S. J. Davis, “Measurements and imaging of optical gain in optically pumped alkali-rare gas systems,” Appl. Phys. Lett. 100(4), 041110 (2012).
[Crossref]

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D(2) blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
[Crossref] [PubMed]

Debs, J. E.

Deloche, R.

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

Denman, C. A.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics Conference (Optical Society of America, 2005), pp. 698–702.

Drummond, J. D.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics Conference (Optical Society of America, 2005), pp. 698–702.

Dudov, A. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Early, J. T.

W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper),” Proc. SPIE 5448, 7–17 (2004).
[Crossref]

Eden, J. G.

Elsbernd, P.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280(1), 161–164 (2007).
[Crossref]

Endo, M.

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

Eroshenko, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Feng, Y.

Fugate, R. Q.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics Conference (Optical Society of America, 2005), pp. 698–702.

Gabally-Kinney, K. L.

Galbally-Kinney, K. L.

K. L. Galbally-Kinney, D. L. Maser, W. J. Kessler, W. T. Rawlins, and S. J. Davis, “Measurements and imaging of optical gain in optically pumped alkali-rare gas systems,” Appl. Phys. Lett. 100(4), 041110 (2012).
[Crossref]

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Gentile, T. R.

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of He 3 with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

Guild, E. M.

G. A. Pitz, E. M. Guild, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2015).

Haiducek, J. D.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 271–283 (2014).

Hallada, F.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280(1), 161–164 (2007).
[Crossref]

Han, J.

Heaven, M. C.

Hillman, P. D.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics Conference (Optical Society of America, 2005), pp. 698–702.

Hostutler, D. A.

G. A. Pitz, E. M. Guild, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2015).

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 271–283 (2014).

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. 113(5), 387–395 (2012).
[Crossref]

Hua, W.

Y. Li, W. Hua, Z. Yang, H. Wang, and X. Xu, “Tunable diode pumped Rb laser with single longitudinal and transverse mode operation,” Opt. Commun. 357, 67–70 (2015).
[Crossref]

Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
[Crossref]

Kanz, V. K.

W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper),” Proc. SPIE 5448, 7–17 (2004).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[Crossref] [PubMed]

Kessler, W. J.

K. L. Galbally-Kinney, D. L. Maser, W. J. Kessler, W. T. Rawlins, and S. J. Davis, “Measurements and imaging of optical gain in optically pumped alkali-rare gas systems,” Appl. Phys. Lett. 100(4), 041110 (2012).
[Crossref]

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D(2) blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
[Crossref] [PubMed]

Klennert, W. L.

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. 113(5), 387–395 (2012).
[Crossref]

Knize, R.

B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

Knize, R. J.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280(1), 161–164 (2007).
[Crossref]

Kontur, F.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280(1), 161–164 (2007).
[Crossref]

Krause, L.

Krupke, W. F.

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper),” Proc. SPIE 5448, 7–17 (2004).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[Crossref] [PubMed]

Kuhn, C. C. N.

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Li, L.

Li, Y.

Y. Li, W. Hua, Z. Yang, H. Wang, and X. Xu, “Tunable diode pumped Rb laser with single longitudinal and transverse mode operation,” Opt. Commun. 357, 67–70 (2015).
[Crossref]

Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B 28(6), 1353–1364 (2011).
[Crossref]

Lilly, T. C.

Lindinger, W.

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

Lu, Q.

Luo, R.

Madden, T. J.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 271–283 (2014).

Maser, D. L.

K. L. Galbally-Kinney, D. L. Maser, W. J. Kessler, W. T. Rawlins, and S. J. Davis, “Measurements and imaging of optical gain in optically pumped alkali-rare gas systems,” Appl. Phys. Lett. 100(4), 041110 (2012).
[Crossref]

McDonald, G. D.

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Miller, W.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280(1), 161–164 (2007).
[Crossref]

Moore, G. T.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics Conference (Optical Society of America, 2005), pp. 698–702.

Nagai, T.

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

Nagaoka, H.

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

Nagaoka, R.

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

Oliker, B. Q.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 271–283 (2014).

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Pautov, V. O.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Payne, S. A.

W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper),” Proc. SPIE 5448, 7–17 (2004).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[Crossref] [PubMed]

Peay, A.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280(1), 161–164 (2007).
[Crossref]

Perram, G. P.

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80(6), 062718 (2009).
[Crossref]

Phipps, S.

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280(1), 161–164 (2007).
[Crossref]

Pitz, G. A.

G. A. Pitz, E. M. Guild, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2015).

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 271–283 (2014).

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. 113(5), 387–395 (2012).
[Crossref]

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80(6), 062718 (2009).
[Crossref]

Preston, J. E.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics Conference (Optical Society of America, 2005), pp. 698–702.

Rawlins, W. T.

K. L. Galbally-Kinney, D. L. Maser, W. J. Kessler, W. T. Rawlins, and S. J. Davis, “Measurements and imaging of optical gain in optically pumped alkali-rare gas systems,” Appl. Phys. Lett. 100(4), 041110 (2012).
[Crossref]

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Gabally-Kinney, W. T. Rawlins, and W. J. Kessler, “Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D(2) blue and red satellites,” Opt. Lett. 34(23), 3638–3640 (2009).
[Crossref] [PubMed]

Readle, J. D.

Robins, N. P.

Rosenwaks, S.

Rotondaro, M. D.

Rudolph, W.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 271–283 (2014).

Rus, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Sadot, O.

Sandoval, A. J.

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. 113(5), 387–395 (2012).
[Crossref]

Sané, S. S.

Sell, J.

B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

Shaffer, M. K.

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Taylor, L. R.

Telle, J. M.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics Conference (Optical Society of America, 2005), pp. 698–702.

Verdeyen, J. T.

Waichman, K.

Walker, T. G.

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of He 3 with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

Wang, H.

Wang, R.

Wang, Y.

Y. Wang and G. An, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” Proc. SPIE 9521, 95211 (2014).

Wani, F.

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

Wertepny, D. E.

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80(6), 062718 (2009).
[Crossref]

Xu, X.

Yacoby, E.

Yang, Z.

Zameroski, N. D.

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. 113(5), 387–395 (2012).
[Crossref]

Zhdanov, B.

B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

Zhdanov, B. V.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280(1), 161–164 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. L. Galbally-Kinney, D. L. Maser, W. J. Kessler, W. T. Rawlins, and S. J. Davis, “Measurements and imaging of optical gain in optically pumped alkali-rare gas systems,” Appl. Phys. Lett. 100(4), 041110 (2012).
[Crossref]

Electron. Lett. (1)

B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

J. Quant. Spectrosc. Radiat. (1)

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. 113(5), 387–395 (2012).
[Crossref]

Opt. Commun. (2)

Y. Li, W. Hua, Z. Yang, H. Wang, and X. Xu, “Tunable diode pumped Rb laser with single longitudinal and transverse mode operation,” Opt. Commun. 357, 67–70 (2015).
[Crossref]

B. V. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. J. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280(1), 161–164 (2007).
[Crossref]

Opt. Eng. (1)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. A (2)

G. A. Pitz, D. E. Wertepny, and G. P. Perram, “Pressure broadening and shift of the cesium D 1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He,” Phys. Rev. A 80(6), 062718 (2009).
[Crossref]

W. C. Chen, T. R. Gentile, T. G. Walker, and E. Babcock, “Spin-exchange optical pumping of He 3 with Rb-K mixtures and pure K,” Phys. Rev. A 75(1), 013416 (2007).
[Crossref]

Proc. SPIE (5)

G. A. Pitz, E. M. Guild, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2015).

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 271–283 (2014).

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

Y. Wang and G. An, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” Proc. SPIE 9521, 95211 (2014).

W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs) (Plenary Paper),” Proc. SPIE 5448, 7–17 (2004).
[Crossref]

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Quantum Electron. (1)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Other (6)

B. Zhdanov, T. Ehrenreich, and R. Knize, “Cesium laser for military and civilian applications,” SPIE Newsroom (2006).

W. Krupke, “Diode-pumped alkali lasers aim for single-aperture power scaling,” SPIE Newsroom (2008).

J. Hecht, “Photonic Frontiers: Military Lasers: A new generation of laser weapons is born,” (Laser Focus World, 2010), http://www.laserfocusworld.com/articles/2010/04/photonic-frontiers.html .

T. Tiecke, “Properties of potassium,” University of Amsterdam, The Netherlands, Thesis (2010).

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics Conference (Optical Society of America, 2005), pp. 698–702.

C. Fox and G. Perram, “Temperature gradients in diode-pumped alkali lasers,” SPIE Newsroom (2012)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Expected potassium absorption under different conditions.
Fig. 2
Fig. 2 Schematic of the experimental setup. The green, blue and red lines represent pump, probe and alkali lasers, respectively. CL: cylindrical lens, FL: focusing lens, PBS: polarized beam splitter.
Fig. 3
Fig. 3 Typical signal of time evolution of pump, laser, K transmitted signals and temperature. The alkali cell is heated to 408 K, the pump duration is 2 ms (FWHM), and the pump power is 92 W.
Fig. 4
Fig. 4 (a) Laser power and temperature rise under different pump powers. The alkali cell is heated to 408 K, the pump duration is 2 ms (FWHM). (b) Laser power and temperature rise under different pump pulse durations. The alkali cell is heated to 408 K, the pump power is 85.3 W.
Fig. 5
Fig. 5 Time evolution of laser and pump signals at pump power of 85.3W and alkali cell of 408K. (a) Pump duration is 2 ms (FWHM), (b) Pump duration is 5 ms (FWHM).

Tables (1)

Tables Icon

Table 1 Atomic data for K 39 D 1 line transition and interaction parameters with buffer gas.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P 1 = P 0 exp( n K unpumped σ 1 l ),
σ 1 = A 21 λ D 1 2 4 π 2 Δ v 1 -1 ,
Δ v 1 = p 1 γ( T 0 ) ( T 1 / T 0 ) 1/2 ,
γ( T 0 )= 0 σ(g)gf(g;T) dg,
P 2 = P 0 exp( n K pumped σ 2 l ).
σ 2 = A 21 λ D 1 2 4 π 2 Δ v 2 -1 ,
Δ v 2 = p 2 γ( T 0 ) ( T 2 / T 0 ) 1/2 .
p 2 p 1 = n 2 n 1 T 2 T 1 ,
T 2 T 1 = [ ln( P 0 / P 1 ) ln( P 0 / P 2 ) ] 2 .
n Rb unpumped n Rb pumped = n K unpumped n K pumped = T 2 T 1 .

Metrics