Abstract

A high-performance silicon-based polarizing beam splitter (PBS) is proposed and demonstrated experimentally by using an improved structure with cascaded bent directional couplers. The measured extinction ratio (ER) is >35dB and the excess losses (EL) is <0.35dB around the central wavelength for both polarizations. The present PBS has a compact footprint of ~6.9 × 20μm2. The measured bandwidths for an ER of >20dB, >25dB and >30dB are ~135nm, ~95nm and ~70nm, respectively, while the measured EL is <1dB and <0.5dB in a bandwidth of ~140nm and ~85nm, respectively. The fabrication tolerance of the core-width variation is as large as ± 40nm, which makes the fabrication very easy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler

Daoxin Dai and John E Bowers
Opt. Express 19(19) 18614-18620 (2011)

Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide

Hongnan Xu and Yaocheng Shi
Opt. Express 25(15) 18485-18491 (2017)

Compact polarization beam splitter with a high extinction ratio over S + C + L band

Ye Tian, Jifang Qiu, Chang Liu, Shenghao Tian, Zhuili Huang, and Jian Wu
Opt. Express 27(2) 999-1009 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]
  2. P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
    [Crossref]
  3. L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
    [Crossref] [PubMed]
  4. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
    [Crossref]
  5. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
    [Crossref] [PubMed]
  6. S. Kim and M. Qi, “Copper nanorod array assisted silicon waveguide polarization beam splitter,” Opt. Express 22(8), 9508–9516 (2014).
    [Crossref] [PubMed]
  7. Y. Xu and J. Xiao, “Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers,” Opt. Lett. 41(4), 773–776 (2016).
    [Crossref] [PubMed]
  8. Z. Lu, Y. Wang, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers,” Opt. Express 23(23), 29413–29422 (2015).
    [Crossref] [PubMed]
  9. D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23(2), 998–1004 (2015).
    [Crossref] [PubMed]
  10. D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
    [Crossref] [PubMed]
  11. J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
    [Crossref] [PubMed]
  12. S. Chen, H. Wu, and D. Dai, “High extinction-ratio compact polarisation beam splitter on silicon,” Electron. Lett. 52(12), 1043–1045 (2016).
    [Crossref]
  13. C.-W. Hsu, T.-K. Chang, J.-Y. Chen, and Y.-C. Cheng, “8.13 μm in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler,” Appl. Opt. 55(12), 3313–3318 (2016).
    [Crossref] [PubMed]
  14. J. Feng, R. Akimoto, and H. Zeng, “Asymmetric silicon slot-waveguide-assisted polarizing beam splitter,” IEEE Photonics Tech. Lett. 28(12), 1294–1297 (2016).
    [Crossref]
  15. H. Wu and D. Dai, “Novel high-performance polarization beam splitter on silicon,” in Asia Communications and Photonics Conference 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper AF3B.4.
    [Crossref]
  16. Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
    [Crossref]
  17. X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
    [Crossref] [PubMed]
  18. Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
    [Crossref] [PubMed]
  19. T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Tech. Lett. 17(2), 393–395 (2005).
    [Crossref]

2016 (7)

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

J. Feng, R. Akimoto, and H. Zeng, “Asymmetric silicon slot-waveguide-assisted polarizing beam splitter,” IEEE Photonics Tech. Lett. 28(12), 1294–1297 (2016).
[Crossref]

S. Chen, H. Wu, and D. Dai, “High extinction-ratio compact polarisation beam splitter on silicon,” Electron. Lett. 52(12), 1043–1045 (2016).
[Crossref]

Y. Xu and J. Xiao, “Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers,” Opt. Lett. 41(4), 773–776 (2016).
[Crossref] [PubMed]

Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24(6), 6586–6593 (2016).
[Crossref] [PubMed]

C.-W. Hsu, T.-K. Chang, J.-Y. Chen, and Y.-C. Cheng, “8.13 μm in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler,” Appl. Opt. 55(12), 3313–3318 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (2)

2013 (2)

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
[Crossref] [PubMed]

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

2012 (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

2011 (2)

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

2005 (1)

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Tech. Lett. 17(2), 393–395 (2005).
[Crossref]

Akimoto, R.

J. Feng, R. Akimoto, and H. Zeng, “Asymmetric silicon slot-waveguide-assisted polarizing beam splitter,” IEEE Photonics Tech. Lett. 28(12), 1294–1297 (2016).
[Crossref]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Bowers, J. E.

Chang, T.-K.

Chen, J.-Y.

Chen, S.

S. Chen, H. Wu, and D. Dai, “High extinction-ratio compact polarisation beam splitter on silicon,” Electron. Lett. 52(12), 1043–1045 (2016).
[Crossref]

Cheng, Y.-C.

Chrostowski, L.

Dai, D.

Dai, D. X.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Dong, P.

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

Feng, J.

J. Feng, R. Akimoto, and H. Zeng, “Asymmetric silicon slot-waveguide-assisted polarizing beam splitter,” IEEE Photonics Tech. Lett. 28(12), 1294–1297 (2016).
[Crossref]

Feng, L. T.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Guan, X.

Guo, G. C.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Guo, G. P.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

He, Y.

Hsu, C.-W.

Hu, W.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Huang, Y.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Jaeger, N. A. F.

Jiang, X.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Kim, D. W.

Kim, K. H.

Kim, S.

Kim, Y.

Lee, M. H.

Li, M.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Li, Y.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Liang, D.

Liang, T. K.

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Tech. Lett. 17(2), 393–395 (2005).
[Crossref]

Liu, R.

Lu, Z.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Qi, M.

Qiu, C.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Ren, X. F.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Shi, B. S.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Shi, Y.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Su, Y.

Tang, Y.

Tremblay, C.

Tsang, H. K.

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Tech. Lett. 17(2), 393–395 (2005).
[Crossref]

Tu, Z.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Wang, J.

Wang, X.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Wang, Y.

Wang, Z.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Wu, H.

Wu, J.

Xiao, J.

Xiong, X.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Xu, Y.

Yang, J.

Yi, H.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Yu, L.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Zeng, H.

J. Feng, R. Akimoto, and H. Zeng, “Asymmetric silicon slot-waveguide-assisted polarizing beam splitter,” IEEE Photonics Tech. Lett. 28(12), 1294–1297 (2016).
[Crossref]

Zhang, F.

Zhang, M.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Zhang, Y.

Zhou, Z. Y.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Electron. Lett. (1)

S. Chen, H. Wu, and D. Dai, “High extinction-ratio compact polarisation beam splitter on silicon,” Electron. Lett. 52(12), 1043–1045 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

IEEE Photonics Tech. Lett. (2)

J. Feng, R. Akimoto, and H. Zeng, “Asymmetric silicon slot-waveguide-assisted polarizing beam splitter,” IEEE Photonics Tech. Lett. 28(12), 1294–1297 (2016).
[Crossref]

T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photonics Tech. Lett. 17(2), 393–395 (2005).
[Crossref]

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Nat. Commun. (1)

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7, 11985 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Opt. Commun. (1)

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Other (1)

H. Wu and D. Dai, “Novel high-performance polarization beam splitter on silicon,” in Asia Communications and Photonics Conference 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper AF3B.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic conifiguration of the prosposed PBS. (a) 3D view; (b) top view.
Fig. 2
Fig. 2 Calculated neff R for bent waveguides with different core widths. (a) TE; (b) TM.
Fig. 3
Fig. 3 Calculated transmissions for the structure consisting of DC #1 and DC #2 only (shwon in the inset) as θ1 varies. (a) TE polarization; (b) TM polarization.
Fig. 4
Fig. 4 Calculated transmissions of the whole structure with different lengths l1. (a) TE; (b) TM.
Fig. 5
Fig. 5 Calculated results of the designed PBSs with/without DC #3. (a) TE; (b) TM. Light propagation for TE @1550nm (c),TM @1550nm (d), TM @1500nm (e), TM @1600nm (f).
Fig. 6
Fig. 6 (a) Microscope pictures, (b) SEM picture, (c) measured transmissions at the through- and cross-ports of the fabricated PBS.
Fig. 7
Fig. 7 (a) Test structures for measuring ELs. (b) Calculated ELs; (c) Measured ELs.
Fig. 8
Fig. 8 Measured results of the PBS when there is a core-width variation Δw. (a) TE; (b) TM.

Tables (1)

Tables Icon

Table 1 Comparison of silicon-based high-performance PBSs demonstrated.

Metrics