Abstract

We propose new structure of photonic-crystal surface-emitting lasers with oblique-triangular-prism-shaped air holes for direct emission of circularly polarized beam. We show appropriate height and tilt angle of oblique-triangular-prism-shaped air holes to achieve high degree of polarization. Secondly, we investigate the influence of cavity length. High degree of polarization can be obtained by appropriate air-hole shape and cavity length. We also show that right-handed or left-handed circular polarization can be chosen by changing tilt direction of air holes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls

Chao Peng, Yong Liang, Kyosuke Sakai, Seita Iwahashi, and Susumu Noda
Opt. Express 19(24) 24672-24686 (2011)

Three-dimensional coupled-wave analysis for triangular-lattice photonic-crystal surface-emitting lasers with transverse-electric polarization

Yong Liang, Chao Peng, Kenji Ishizaki, Seita Iwahashi, Kyosuke Sakai, Yoshinori Tanaka, Kyoko Kitamura, and Susumu Noda
Opt. Express 21(1) 565-580 (2013)

Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects

Yong Liang, Chao Peng, Kyosuke Sakai, Seita Iwahashi, and Susumu Noda
Opt. Express 20(14) 15945-15961 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
    [Crossref]
  2. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
    [Crossref]
  3. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
    [Crossref] [PubMed]
  4. I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
    [Crossref]
  5. M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
    [Crossref]
  6. T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
    [Crossref]
  7. K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
    [Crossref]
  8. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
    [Crossref] [PubMed]
  9. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
    [Crossref]
  10. S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19(13), 11963–11968 (2011).
    [Crossref] [PubMed]
  11. K. Kitamura, K. Sakai, N. Takayama, M. Nishimoto, and S. Noda, “Focusing properties of vector vortex beams emitted by photonic-crystal lasers,” Opt. Lett. 37(12), 2421–2423 (2012).
    [Crossref] [PubMed]
  12. T. Okino, K. Kitamura, D. Yasuda, Y. Liang, and S. Noda, “Position-modulated photonic-crystal lasers and control of beam direction and polarization,” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW1F.1.
  13. Y. Kurosaka, K. Hirose, T. Sugiyama, Y. Takiguchi, and Y. Nomoto, “Phase-modulating lasers toward on-chip integration,” Sci. Rep. 6, 30138 (2016).
    [Crossref] [PubMed]
  14. K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
    [Crossref] [PubMed]
  15. Y. Inoue, “Asymmetric photochemical reactions in solution,” Chem. Rev. 92(5), 741–770 (1992).
    [Crossref]
  16. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432(7013), 81–84 (2004).
    [Crossref] [PubMed]
  17. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach,” Phys. Rev. B 84(19), 195119 (2011).
    [Crossref]
  18. C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls,” Opt. Express 19(24), 24672–24686 (2011).
    [Crossref] [PubMed]
  19. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
    [Crossref] [PubMed]
  20. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
    [Crossref] [PubMed]
  21. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  22. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007).

2016 (1)

Y. Kurosaka, K. Hirose, T. Sugiyama, Y. Takiguchi, and Y. Nomoto, “Phase-modulating lasers toward on-chip integration,” Sci. Rep. 6, 30138 (2016).
[Crossref] [PubMed]

2014 (1)

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

2012 (2)

2011 (3)

2010 (1)

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[Crossref]

2009 (1)

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[Crossref] [PubMed]

2008 (1)

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[Crossref]

2006 (2)

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

2004 (1)

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432(7013), 81–84 (2004).
[Crossref] [PubMed]

2003 (2)

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[Crossref]

2001 (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

1999 (2)

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

1992 (1)

Y. Inoue, “Asymmetric photochemical reactions in solution,” Chem. Rev. 92(5), 741–770 (1992).
[Crossref]

1981 (1)

Abstreiter, G.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432(7013), 81–84 (2004).
[Crossref] [PubMed]

Bewley, W. W.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

Bichler, M.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432(7013), 81–84 (2004).
[Crossref] [PubMed]

Canedy, C. L.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

Chen, S.

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[Crossref]

Chutinan, A.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Claborn, K.

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

Dodabalapur, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Ducommun, Y.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432(7013), 81–84 (2004).
[Crossref] [PubMed]

Fan, S.

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[Crossref]

Finley, J. J.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432(7013), 81–84 (2004).
[Crossref] [PubMed]

Gaylord, T. K.

Heiss, D.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432(7013), 81–84 (2004).
[Crossref] [PubMed]

Hirose, K.

Y. Kurosaka, K. Hirose, T. Sugiyama, Y. Takiguchi, and Y. Nomoto, “Phase-modulating lasers toward on-chip integration,” Sci. Rep. 6, 30138 (2016).
[Crossref] [PubMed]

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Imada, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[Crossref] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Inoue, Y.

Y. Inoue, “Asymmetric photochemical reactions in solution,” Chem. Rev. 92(5), 741–770 (1992).
[Crossref]

Ishizaki, K.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[Crossref] [PubMed]

Iwahashi, S.

Joannopoulos, J. D.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Kahr, B.

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

Kaminsky, W.

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

Kao, C.

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[Crossref]

Kao, T.

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[Crossref]

Kim, C. S.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

Kim, M.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

Kitamura, K.

Kroutvar, M.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432(7013), 81–84 (2004).
[Crossref] [PubMed]

Kunishi, W.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[Crossref]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

Kuo, H.

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[Crossref]

Kurimoto, M.

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

Kurosaka, Y.

Y. Kurosaka, K. Hirose, T. Sugiyama, Y. Takiguchi, and Y. Nomoto, “Phase-modulating lasers toward on-chip integration,” Sci. Rep. 6, 30138 (2016).
[Crossref] [PubMed]

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19(13), 11963–11968 (2011).
[Crossref] [PubMed]

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[Crossref]

Liang, Y.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
[Crossref] [PubMed]

C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls,” Opt. Express 19(24), 24672–24686 (2011).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach,” Phys. Rev. B 84(19), 195119 (2011).
[Crossref]

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[Crossref]

Lin, L.

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[Crossref]

Lindle, J. R.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

Lu, T.

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[Crossref]

Meier, M.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Meyer, J. R.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[Crossref]

Miyai, E.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[Crossref]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

Mochizuki, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Moharam, M. G.

Murata, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Nakamori, T.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[Crossref] [PubMed]

Nalamasu, O.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Nishimoto, M.

Noda, S.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

K. Kitamura, K. Sakai, N. Takayama, M. Nishimoto, and S. Noda, “Focusing properties of vector vortex beams emitted by photonic-crystal lasers,” Opt. Lett. 37(12), 2421–2423 (2012).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
[Crossref] [PubMed]

C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls,” Opt. Express 19(24), 24672–24686 (2011).
[Crossref] [PubMed]

S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19(13), 11963–11968 (2011).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach,” Phys. Rev. B 84(19), 195119 (2011).
[Crossref]

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[Crossref]

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[Crossref] [PubMed]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Nomoto, Y.

Y. Kurosaka, K. Hirose, T. Sugiyama, Y. Takiguchi, and Y. Nomoto, “Phase-modulating lasers toward on-chip integration,” Sci. Rep. 6, 30138 (2016).
[Crossref] [PubMed]

Ohnishi, D.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[Crossref]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

Okano, M.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[Crossref] [PubMed]

Okano, T.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

Ota, Y.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[Crossref] [PubMed]

Peng, C.

Puklin-Faucher, E.

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

Sakai, K.

K. Kitamura, K. Sakai, N. Takayama, M. Nishimoto, and S. Noda, “Focusing properties of vector vortex beams emitted by photonic-crystal lasers,” Opt. Lett. 37(12), 2421–2423 (2012).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20(14), 15945–15961 (2012).
[Crossref] [PubMed]

C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls,” Opt. Express 19(24), 24672–24686 (2011).
[Crossref] [PubMed]

S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, and S. Noda, “Higher-order vector beams produced by photonic-crystal lasers,” Opt. Express 19(13), 11963–11968 (2011).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach,” Phys. Rev. B 84(19), 195119 (2011).
[Crossref]

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[Crossref]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Schuh, D.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432(7013), 81–84 (2004).
[Crossref] [PubMed]

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Sugiyama, T.

Y. Kurosaka, K. Hirose, T. Sugiyama, Y. Takiguchi, and Y. Nomoto, “Phase-modulating lasers toward on-chip integration,” Sci. Rep. 6, 30138 (2016).
[Crossref] [PubMed]

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Suzuki, K.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[Crossref] [PubMed]

Takahashi, S.

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[Crossref] [PubMed]

Takayama, N.

Takiguchi, Y.

Y. Kurosaka, K. Hirose, T. Sugiyama, Y. Takiguchi, and Y. Nomoto, “Phase-modulating lasers toward on-chip integration,” Sci. Rep. 6, 30138 (2016).
[Crossref] [PubMed]

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

Vurgaftman, I.

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[Crossref]

Wang, S.

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[Crossref]

Watanabe, A.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Yokoyama, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Yu, P.

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[Crossref]

Appl. Phys. Lett. (4)

M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006).
[Crossref]

T. Lu, S. Chen, L. Lin, T. Kao, C. Kao, P. Yu, H. Kuo, S. Wang, and S. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008).
[Crossref]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[Crossref]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999).
[Crossref]

Chem. Rev. (1)

Y. Inoue, “Asymmetric photochemical reactions in solution,” Chem. Rev. 92(5), 741–770 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003).
[Crossref]

J. Am. Chem. Soc. (1)

K. Claborn, E. Puklin-Faucher, M. Kurimoto, W. Kaminsky, and B. Kahr, “Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone,” J. Am. Chem. Soc. 125(48), 14825–14831 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Nat. Mater. (1)

S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8(9), 721–725 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8(5), 406–411 (2014).
[Crossref]

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[Crossref]

Nature (2)

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: Lasers producing tailored beams,” Nature 441(7096), 946 (2006).
[Crossref] [PubMed]

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432(7013), 81–84 (2004).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach,” Phys. Rev. B 84(19), 195119 (2011).
[Crossref]

Sci. Rep. (1)

Y. Kurosaka, K. Hirose, T. Sugiyama, Y. Takiguchi, and Y. Nomoto, “Phase-modulating lasers toward on-chip integration,” Sci. Rep. 6, 30138 (2016).
[Crossref] [PubMed]

Science (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[Crossref] [PubMed]

Other (2)

T. Okino, K. Kitamura, D. Yasuda, Y. Liang, and S. Noda, “Position-modulated photonic-crystal lasers and control of beam direction and polarization,” in CLEO:2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW1F.1.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of photonic-crystal surface-emitting lasers and a typical photonic-band structure of square-lattice photonic crystal with circular air holes calculated by plane-wave-expansion method.
Fig. 2
Fig. 2 (a) Schematic of photonic-crystal structure for generation of circularly-polarized beam. (b) Electric field distribution inside a unit cell at the top (upper panel), middle (middle panel), and bottom (lower panel) of air hole.
Fig. 3
Fig. 3 Ellipticity of polarization χ vs. tilt angle θ with different height of photonic-crystal layer.
Fig. 4
Fig. 4 (a) Amplitude of Ex and Ey vs. tilt angle θ, (b) Phase difference δ between Ex and Ey vs. tilt angle θ, (c) Stokes parameters S1, S2, and S3, vs. tilt angle θ.
Fig. 5
Fig. 5 DOP vs. cavity length L calculated by 3D-CWT. Two panels in the graph show far-field profiles with L = 50 and 200 μm.
Fig. 6
Fig. 6 Threshold gain vs. tilt angle θ with (a) L = 50 μm, and (b) L = 200 μm.
Fig. 7
Fig. 7 Polarization characteristics with different tilt direction.
Fig. 8
Fig. 8 Calculated absorptivity spectrum with left- and right-handed circularly polarized light incident.
Fig. 9
Fig. 9 (a) Cross-sectional structure used in RCWA calculation. Distribution of (b) Ex and (c) Ey with left-circularly polarized light incident at the frequency of 0.2979 c/a. (d) In-plane electric field distribution around air holes in three different height indicated as I, II, and III in (a).
Fig. 10
Fig. 10 (a) Top-view and (b) cross-sectional SEM images of photonic crystal structure with oblique-triangular-prism-shaped air holes after etching.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F j ( θ x ,   θ y ,   t ) ( cos θ x + cos θ y 1 ) 0 L Δ E j ( x ,   y ,   z = d PC 2 ) e i ω t · e i k 0 ( tan θ x x + tan θ y y ) d x d y ,    j = x , y
B ( θ x ,   θ y ) = B x ( θ x ,   θ y ) + B y ( θ x ,   θ y )
B j ( θ x ,   θ y ) = 1 T 0 T | R e [ F j ( θ x , θ y ,   t ) ] | 2 d t ,       j = x ,   y ,      T = 2 π / ω
I ( φ ) = { 1 T 0 T | R e [ F x ( θ x , θ y ,   t ) cos φ + F x ( θ x , θ y ,   t ) sin φ ] | 2 d t } d θ x d θ y
S 0 = I ( 0 ° ) + I ( 90 ° )
S 1 = I ( 0 ° ) I ( 90 ° )
S 2 = I ( 45 ° ) I ( 135 ° )
S 3 = I λ / 4 ( 45 ° ) I λ / 4 ( 135 ° )
I λ / 4 ( φ ) = { 1 T 0 T | R e [ F x ( θ x , θ y ,   t ) cos φ + i F x ( θ x , θ y ,   t ) sin φ ] | 2 d t } d θ x d θ y

Metrics